Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnetrrd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrrd | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2745 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqnetrrd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 2, 3 | eqnetrd 3012 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-ne 2945 |
This theorem is referenced by: eqnetrrid 3020 3netr3d 3021 cantnflem1c 9406 eqsqrt2d 15061 tanval2 15823 tanval3 15824 tanhlt1 15850 pcadd 16571 efgsres 19325 gsumval3 19489 ablfac 19672 ablsimpgfind 19694 isdrngrd 19998 lspsneq 20365 lebnumlem3 24107 minveclem4a 24575 evthicc 24604 ioorf 24718 deg1ldgn 25239 fta1blem 25314 vieta1lem1 25451 vieta1lem2 25452 vieta1 25453 tanregt0 25676 isosctrlem2 25950 angpieqvd 25962 chordthmlem2 25964 dcubic2 25975 dquartlem1 25982 dquart 25984 asinlem 25999 atandmcj 26040 2efiatan 26049 tanatan 26050 dvatan 26066 dmgmn0 26156 dmgmdivn0 26158 lgamgulmlem2 26160 gamne0 26176 footexALT 27060 footexlem1 27061 footexlem2 27062 ttgcontlem1 27233 wlkn0 27968 fsuppcurry1 31039 fsuppcurry2 31040 bcm1n 31095 zarclssn 31802 sibfof 32286 nosep1o 33863 noetasuplem4 33918 finxpreclem2 35540 poimirlem9 35765 heicant 35791 heiborlem6 35953 lkrlspeqN 37164 cdlemg18d 38674 cdlemg21 38679 dibord 39152 lclkrlem2u 39520 lcfrlem9 39543 mapdindp4 39716 hdmaprnlem3uN 39844 hdmaprnlem9N 39850 fsuppind 40259 binomcxplemnotnn0 41927 dstregt0 42773 stoweidlem31 43526 stoweidlem59 43554 wallispilem4 43563 dirkertrigeqlem2 43594 fourierdlem43 43645 fourierdlem65 43666 catprs 46244 |
Copyright terms: Public domain | W3C validator |