Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnetrrd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrrd | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqnetrrd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 2, 3 | eqnetrd 3009 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-ne 2942 |
This theorem is referenced by: eqnetrrid 3017 3netr3d 3018 cantnflem1c 9489 eqsqrt2d 15125 tanval2 15887 tanval3 15888 tanhlt1 15914 pcadd 16635 efgsres 19389 gsumval3 19553 ablfac 19736 ablsimpgfind 19758 isdrngrd 20062 lspsneq 20429 lebnumlem3 24171 minveclem4a 24639 evthicc 24668 ioorf 24782 deg1ldgn 25303 fta1blem 25378 vieta1lem1 25515 vieta1lem2 25516 vieta1 25517 tanregt0 25740 isosctrlem2 26014 angpieqvd 26026 chordthmlem2 26028 dcubic2 26039 dquartlem1 26046 dquart 26048 asinlem 26063 atandmcj 26104 2efiatan 26113 tanatan 26114 dvatan 26130 dmgmn0 26220 dmgmdivn0 26222 lgamgulmlem2 26224 gamne0 26240 footexALT 27124 footexlem1 27125 footexlem2 27126 ttgcontlem1 27297 wlkn0 28033 fsuppcurry1 31105 fsuppcurry2 31106 bcm1n 31161 zarclssn 31868 sibfof 32352 nosep1o 33929 noetasuplem4 33984 finxpreclem2 35605 poimirlem9 35830 heicant 35856 heiborlem6 36018 lkrlspeqN 37227 cdlemg18d 38737 cdlemg21 38742 dibord 39215 lclkrlem2u 39583 lcfrlem9 39606 mapdindp4 39779 hdmaprnlem3uN 39907 hdmaprnlem9N 39913 fsuppind 40316 binomcxplemnotnn0 42012 dstregt0 42868 stoweidlem31 43621 stoweidlem59 43649 wallispilem4 43658 dirkertrigeqlem2 43689 fourierdlem43 43740 fourierdlem65 43761 catprs 46350 |
Copyright terms: Public domain | W3C validator |