MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem2 Structured version   Visualization version   GIF version

Theorem vieta1lem2 26217
Description: Lemma for vieta1 26218: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥𝑅𝑥 = -𝐴𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem2 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . . . . 5 (𝜑 → (♯‘𝑅) = 𝑁)
2 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
3 vieta1lem.6 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
43peano2nnd 12145 . . . . . . 7 (𝜑 → (𝐷 + 1) ∈ ℕ)
52, 4eqeltrrd 2829 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnne0d 12178 . . . . 5 (𝜑𝑁 ≠ 0)
71, 6eqnetrd 2992 . . . 4 (𝜑 → (♯‘𝑅) ≠ 0)
8 vieta1.4 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
9 vieta1.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
109, 6eqnetrrid 3000 . . . . . . . . 9 (𝜑 → (deg‘𝐹) ≠ 0)
11 fveq2 6822 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 26166 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2780 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1413necon3i 2957 . . . . . . . . 9 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
1510, 14syl 17 . . . . . . . 8 (𝜑𝐹 ≠ 0𝑝)
16 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
1716fta1 26214 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
188, 15, 17syl2anc 584 . . . . . . 7 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
1918simpld 494 . . . . . 6 (𝜑𝑅 ∈ Fin)
20 hasheq0 14270 . . . . . 6 (𝑅 ∈ Fin → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2119, 20syl 17 . . . . 5 (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2221necon3bid 2969 . . . 4 (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅))
237, 22mpbid 232 . . 3 (𝜑𝑅 ≠ ∅)
24 n0 4304 . . 3 (𝑅 ≠ ∅ ↔ ∃𝑧 𝑧𝑅)
2523, 24sylib 218 . 2 (𝜑 → ∃𝑧 𝑧𝑅)
26 incom 4160 . . . . 5 ({𝑧} ∩ (𝑄 “ {0})) = ((𝑄 “ {0}) ∩ {𝑧})
27 vieta1.1 . . . . . . . . . . 11 𝐴 = (coeff‘𝐹)
28 vieta1lem.8 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
29 vieta1lem.9 . . . . . . . . . . 11 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
3027, 9, 16, 8, 1, 3, 2, 28, 29vieta1lem1 26216 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
3130simprd 495 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
3230simpld 494 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
33 dgrcl 26136 . . . . . . . . . . 11 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0red 12446 . . . . . . . . 9 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℝ)
3631, 35eqeltrd 2828 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 ∈ ℝ)
3736ltp1d 12055 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 < (𝐷 + 1))
3836, 37gtned 11251 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 + 1) ≠ 𝐷)
39 snssi 4759 . . . . . . . . . . 11 (𝑧 ∈ (𝑄 “ {0}) → {𝑧} ⊆ (𝑄 “ {0}))
40 ssequn1 4137 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑄 “ {0}) ↔ ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4139, 40sylib 218 . . . . . . . . . 10 (𝑧 ∈ (𝑄 “ {0}) → ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4241fveq2d 6826 . . . . . . . . 9 (𝑧 ∈ (𝑄 “ {0}) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})))
438adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
44 cnvimass 6033 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ {0}) ⊆ dom 𝐹
4516, 44eqsstri 3982 . . . . . . . . . . . . . . . . . . . 20 𝑅 ⊆ dom 𝐹
46 plyf 26101 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
47 fdm 6661 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → dom 𝐹 = ℂ)
488, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℂ)
4945, 48sseqtrid 3978 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ⊆ ℂ)
5049sselda 3935 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
5116eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
52 ffn 6652 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
53 fniniseg 6994 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
548, 46, 52, 534syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5551, 54bitrid 283 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5655simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
57 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
5857facth 26212 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
5943, 50, 56, 58syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
6029oveq2i 7360 . . . . . . . . . . . . . . . . 17 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
6159, 60eqtr4di 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6261cnveqd 5818 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6362imaeq1d 6010 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
6416, 63eqtrid 2776 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 𝑅 = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
65 cnex 11090 . . . . . . . . . . . . . 14 ℂ ∈ V
6657plyremlem 26210 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6750, 66syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6867simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
69 plyf 26101 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
7068, 69syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
71 plyf 26101 . . . . . . . . . . . . . . 15 (𝑄 ∈ (Poly‘ℂ) → 𝑄:ℂ⟶ℂ)
7232, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄:ℂ⟶ℂ)
73 ofmulrt 26187 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7465, 70, 72, 73mp3an2i 1468 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7567simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧})
7675uneq1d 4118 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})) = ({𝑧} ∪ (𝑄 “ {0})))
7764, 74, 763eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → 𝑅 = ({𝑧} ∪ (𝑄 “ {0})))
7877fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (𝑄 “ {0}))))
791, 2eqtr4d 2767 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑅) = (𝐷 + 1))
8079adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (𝐷 + 1))
8178, 80eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (𝐷 + 1))
8215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
8361, 82eqnetrrd 2993 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
84 plymul0or 26186 . . . . . . . . . . . . . . . . . . 19 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8568, 32, 84syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8685necon3abid 2961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
88 neanior 3018 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
8987, 88sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
9089simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
91 eqid 2729 . . . . . . . . . . . . . . 15 (𝑄 “ {0}) = (𝑄 “ {0})
9291fta1 26214 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9332, 90, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9493simprd 495 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄))
9594, 31breqtrrd 5120 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ 𝐷)
96 snfi 8968 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
9793simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝑄 “ {0}) ∈ Fin)
98 hashun2 14290 . . . . . . . . . . . . . 14 (({𝑧} ∈ Fin ∧ (𝑄 “ {0}) ∈ Fin) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
9996, 97, 98sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
100 ax-1cn 11067 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1013nncnd 12144 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
102101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
103 addcom 11302 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
104100, 102, 103sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
10581, 104eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (1 + 𝐷))
106 hashsng 14276 . . . . . . . . . . . . . . 15 (𝑧𝑅 → (♯‘{𝑧}) = 1)
107106adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘{𝑧}) = 1)
108107oveq1d 7364 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))) = (1 + (♯‘(𝑄 “ {0}))))
10999, 105, 1083brtr3d 5123 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0}))))
110 hashcl 14263 . . . . . . . . . . . . . . 15 ((𝑄 “ {0}) ∈ Fin → (♯‘(𝑄 “ {0})) ∈ ℕ0)
11197, 110syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℕ0)
112111nn0red 12446 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℝ)
113 1red 11116 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 1 ∈ ℝ)
11436, 112, 113leadd2d 11715 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (𝐷 ≤ (♯‘(𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0})))))
115109, 114mpbird 257 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝐷 ≤ (♯‘(𝑄 “ {0})))
116112, 36letri3d 11258 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((♯‘(𝑄 “ {0})) = 𝐷 ↔ ((♯‘(𝑄 “ {0})) ≤ 𝐷𝐷 ≤ (♯‘(𝑄 “ {0})))))
11795, 115, 116mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = 𝐷)
11881, 117eqeq12d 2745 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷))
11942, 118imbitrid 244 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝑧 ∈ (𝑄 “ {0}) → (𝐷 + 1) = 𝐷))
120119necon3ad 2938 . . . . . . 7 ((𝜑𝑧𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (𝑄 “ {0})))
12138, 120mpd 15 . . . . . 6 ((𝜑𝑧𝑅) → ¬ 𝑧 ∈ (𝑄 “ {0}))
122 disjsn 4663 . . . . . 6 (((𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑄 “ {0}))
123121, 122sylibr 234 . . . . 5 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∩ {𝑧}) = ∅)
12426, 123eqtrid 2776 . . . 4 ((𝜑𝑧𝑅) → ({𝑧} ∩ (𝑄 “ {0})) = ∅)
12519adantr 480 . . . 4 ((𝜑𝑧𝑅) → 𝑅 ∈ Fin)
12649adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝑅 ⊆ ℂ)
127126sselda 3935 . . . 4 (((𝜑𝑧𝑅) ∧ 𝑥𝑅) → 𝑥 ∈ ℂ)
128124, 77, 125, 127fsumsplit 15648 . . 3 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥))
129 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
130129sumsn 15653 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13150, 50, 130syl2anc 584 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13250negnegd 11466 . . . . 5 ((𝜑𝑧𝑅) → --𝑧 = 𝑧)
133131, 132eqtr4d 2767 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧)
134117, 31eqtrd 2764 . . . . . 6 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = (deg‘𝑄))
135 fveq2 6822 . . . . . . . . . 10 (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄))
136135eqeq2d 2740 . . . . . . . . 9 (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄)))
137 cnveq 5816 . . . . . . . . . . . 12 (𝑓 = 𝑄𝑓 = 𝑄)
138137imaeq1d 6010 . . . . . . . . . . 11 (𝑓 = 𝑄 → (𝑓 “ {0}) = (𝑄 “ {0}))
139138fveq2d 6826 . . . . . . . . . 10 (𝑓 = 𝑄 → (♯‘(𝑓 “ {0})) = (♯‘(𝑄 “ {0})))
140139, 135eqeq12d 2745 . . . . . . . . 9 (𝑓 = 𝑄 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(𝑄 “ {0})) = (deg‘𝑄)))
141136, 140anbi12d 632 . . . . . . . 8 (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄))))
142138sumeq1d 15607 . . . . . . . . 9 (𝑓 = 𝑄 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥 ∈ (𝑄 “ {0})𝑥)
143 fveq2 6822 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄))
144135oveq1d 7364 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1))
145143, 144fveq12d 6829 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
146143, 135fveq12d 6829 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄)))
147145, 146oveq12d 7367 . . . . . . . . . 10 (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
148147negeqd 11357 . . . . . . . . 9 (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
149142, 148eqeq12d 2745 . . . . . . . 8 (𝑓 = 𝑄 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
150141, 149imbi12d 344 . . . . . . 7 (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))))
15128adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
152150, 151, 32rspcdva 3578 . . . . . 6 ((𝜑𝑧𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
15331, 134, 152mp2and 699 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
15431fvoveq1d 7371 . . . . . . 7 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
15561fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (coeff‘𝐹) = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15627, 155eqtrid 2776 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐴 = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15761fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15867simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
159 ax-1ne0 11078 . . . . . . . . . . . . . . 15 1 ≠ 0
160159a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 1 ≠ 0)
161158, 160eqnetrd 2992 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
162 fveq2 6822 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
163162, 12eqtrdi 2780 . . . . . . . . . . . . . 14 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
164163necon3i 2957 . . . . . . . . . . . . 13 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
165161, 164syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
166 eqid 2729 . . . . . . . . . . . . 13 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
167 eqid 2729 . . . . . . . . . . . . 13 (deg‘𝑄) = (deg‘𝑄)
168166, 167dgrmul 26174 . . . . . . . . . . . 12 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
16968, 165, 32, 90, 168syl22anc 838 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
170157, 169eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝐹) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
1719, 170eqtrid 2776 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝑁 = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
172156, 171fveq12d 6829 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))))
173 eqid 2729 . . . . . . . . . 10 (coeff‘(Xpf − (ℂ × {𝑧}))) = (coeff‘(Xpf − (ℂ × {𝑧})))
174 eqid 2729 . . . . . . . . . 10 (coeff‘𝑄) = (coeff‘𝑄)
175173, 174, 166, 167coemulhi 26157 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
17668, 32, 175syl2anc 584 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
177158fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
178 ssid 3958 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
179 plyid 26112 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
180178, 100, 179mp2an 692 . . . . . . . . . . . . . 14 Xp ∈ (Poly‘ℂ)
181 plyconst 26109 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
182178, 50, 181sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
183 eqid 2729 . . . . . . . . . . . . . . 15 (coeff‘Xp) = (coeff‘Xp)
184 eqid 2729 . . . . . . . . . . . . . . 15 (coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧}))
185183, 184coesub 26160 . . . . . . . . . . . . . 14 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝑧}) ∈ (Poly‘ℂ)) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
186180, 182, 185sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
187186fveq1d 6824 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1))
188 1nn0 12400 . . . . . . . . . . . . . 14 1 ∈ ℕ0
189183coef3 26135 . . . . . . . . . . . . . . . . 17 (Xp ∈ (Poly‘ℂ) → (coeff‘Xp):ℕ0⟶ℂ)
190 ffn 6652 . . . . . . . . . . . . . . . . 17 ((coeff‘Xp):ℕ0⟶ℂ → (coeff‘Xp) Fn ℕ0)
191180, 189, 190mp2b 10 . . . . . . . . . . . . . . . 16 (coeff‘Xp) Fn ℕ0
192191a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘Xp) Fn ℕ0)
193184coef3 26135 . . . . . . . . . . . . . . . 16 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ)
194 ffn 6652 . . . . . . . . . . . . . . . 16 ((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
195182, 193, 1943syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
196 nn0ex 12390 . . . . . . . . . . . . . . . 16 0 ∈ V
197196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ℕ0 ∈ V)
198 inidm 4178 . . . . . . . . . . . . . . 15 (ℕ0 ∩ ℕ0) = ℕ0
199 coeidp 26167 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ0 → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
200199adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
201 eqid 2729 . . . . . . . . . . . . . . . . 17 1 = 1
202201iftruei 4483 . . . . . . . . . . . . . . . 16 if(1 = 1, 1, 0) = 1
203200, 202eqtrdi 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = 1)
204 0lt1 11642 . . . . . . . . . . . . . . . . . 18 0 < 1
205 0re 11117 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
206 1re 11115 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
207205, 206ltnlei 11237 . . . . . . . . . . . . . . . . . 18 (0 < 1 ↔ ¬ 1 ≤ 0)
208204, 207mpbi 230 . . . . . . . . . . . . . . . . 17 ¬ 1 ≤ 0
20950adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → 𝑧 ∈ ℂ)
210 0dgr 26148 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (deg‘(ℂ × {𝑧})) = 0)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (deg‘(ℂ × {𝑧})) = 0)
212211breq2d 5104 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0))
213208, 212mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ¬ 1 ≤ (deg‘(ℂ × {𝑧})))
214 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧}))
215184, 214dgrub 26137 . . . . . . . . . . . . . . . . . . 19 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤ (deg‘(ℂ × {𝑧})))
2162153expia 1121 . . . . . . . . . . . . . . . . . 18 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
217182, 216sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
218217necon1bd 2943 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ × {𝑧}))‘1) = 0))
219213, 218mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘1) = 0)
220192, 195, 197, 197, 198, 203, 219ofval 7624 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
221188, 220mpan2 691 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
222 1m0e1 12244 . . . . . . . . . . . . 13 (1 − 0) = 1
223221, 222eqtrdi 2780 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = 1)
224187, 223eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = 1)
225177, 224eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = 1)
226225oveq1d 7364 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 · ((coeff‘𝑄)‘(deg‘𝑄))))
227174coef3 26135 . . . . . . . . . . . 12 (𝑄 ∈ (Poly‘ℂ) → (coeff‘𝑄):ℕ0⟶ℂ)
22832, 227syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (coeff‘𝑄):ℕ0⟶ℂ)
229228, 34ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ)
230229mullidd 11133 . . . . . . . . 9 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
231226, 230eqtrd 2764 . . . . . . . 8 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
232172, 176, 2313eqtrd 2768 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘𝑄)‘(deg‘𝑄)))
233154, 232oveq12d 7367 . . . . . 6 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
234233negeqd 11357 . . . . 5 ((𝜑𝑧𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
235153, 234eqtr4d 2767 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)))
236133, 235oveq12d 7367 . . 3 ((𝜑𝑧𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
23750negcld 11462 . . . . 5 ((𝜑𝑧𝑅) → -𝑧 ∈ ℂ)
238 nnm1nn0 12425 . . . . . . . . 9 (𝐷 ∈ ℕ → (𝐷 − 1) ∈ ℕ0)
2393, 238syl 17 . . . . . . . 8 (𝜑 → (𝐷 − 1) ∈ ℕ0)
240239adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 − 1) ∈ ℕ0)
241228, 240ffvelcdmd 7019 . . . . . 6 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈ ℂ)
242232, 229eqeltrd 2828 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ∈ ℂ)
2439, 27dgreq0 26169 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
24443, 243syl 17 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
245244necon3bid 2969 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴𝑁) ≠ 0))
24682, 245mpbid 232 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ≠ 0)
247241, 242, 246divcld 11900 . . . . 5 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) ∈ ℂ)
248237, 247negdid 11488 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
249237, 242mulcld 11135 . . . . . . 7 ((𝜑𝑧𝑅) → (-𝑧 · (𝐴𝑁)) ∈ ℂ)
250249, 241, 242, 246divdird 11938 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
251 nnm1nn0 12425 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2525, 251syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
253252adantr 480 . . . . . . . . 9 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ0)
254173, 174coemul 26155 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
25568, 32, 253, 254syl3anc 1373 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
256156fveq1d 6824 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴‘(𝑁 − 1)) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)))
257 1e0p1 12633 . . . . . . . . . . . 12 1 = (0 + 1)
258257oveq2i 7360 . . . . . . . . . . 11 (0...1) = (0...(0 + 1))
259258sumeq1i 15604 . . . . . . . . . 10 Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))
260 0nn0 12399 . . . . . . . . . . . . 13 0 ∈ ℕ0
261 nn0uz 12777 . . . . . . . . . . . . 13 0 = (ℤ‘0)
262260, 261eleqtri 2826 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
263262a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 0 ∈ (ℤ‘0))
264258eleq2i 2820 . . . . . . . . . . . 12 (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 + 1)))
265173coef3 26135 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
26668, 265syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
267 elfznn0 13523 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
268 ffvelcdm 7015 . . . . . . . . . . . . . 14 (((coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
269266, 267, 268syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
2702oveq1d 7364 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1))
271 pncan 11369 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐷 + 1) − 1) = 𝐷)
272101, 100, 271sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = 𝐷)
273270, 272eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) = 𝐷)
274273adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝑁 − 1) = 𝐷)
2753adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐷 ∈ ℕ)
276274, 275eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ)
277 nnuz 12778 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
278276, 277eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ (ℤ‘1))
279 fzss2 13467 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ (ℤ‘1) → (0...1) ⊆ (0...(𝑁 − 1)))
280278, 279syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (0...1) ⊆ (0...(𝑁 − 1)))
281280sselda 3935 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
282 fznn0sub 13459 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈ ℕ0)
283 ffvelcdm 7015 . . . . . . . . . . . . . . 15 (((coeff‘𝑄):ℕ0⟶ℂ ∧ ((𝑁 − 1) − 𝑘) ∈ ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
284228, 282, 283syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
285281, 284syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
286269, 285mulcld 11135 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
287264, 286sylan2br 595 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
288 id 22 . . . . . . . . . . . . . 14 (𝑘 = (0 + 1) → 𝑘 = (0 + 1))
289288, 257eqtr4di 2782 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → 𝑘 = 1)
290289fveq2d 6826 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
291289oveq2d 7365 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1))
292291fveq2d 6826 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1)))
293290, 292oveq12d 7367 . . . . . . . . . . 11 (𝑘 = (0 + 1) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))
294263, 287, 293fsump1 15663 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
295259, 294eqtrid 2776 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
296 eldifn 4083 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬ 𝑘 ∈ (0...1))
297296adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬ 𝑘 ∈ (0...1))
298 eldifi 4082 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
299 elfznn0 13523 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
300298, 299syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ ℕ0)
301173, 166dgrub 26137 . . . . . . . . . . . . . . . . 17 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))))
3023013expia 1121 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
30368, 300, 302syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
304 elfzuz 13423 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ (ℤ‘0))
305298, 304syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (ℤ‘0))
306305adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈ (ℤ‘0))
307 1z 12505 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
308 elfz5 13419 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
309306, 307, 308sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
310158breq2d 5104 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
311310adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
312309, 311bitr4d 282 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
313303, 312sylibrd 259 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1)))
314313necon1bd 2943 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬ 𝑘 ∈ (0...1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0))
315297, 314mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0)
316315oveq1d 7364 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
317298, 284sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
318317mul02d 11314 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
319316, 318eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
320 fzfid 13880 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (0...(𝑁 − 1)) ∈ Fin)
321280, 286, 319, 320fsumss 15632 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
322 0z 12482 . . . . . . . . . . . 12 0 ∈ ℤ
323186fveq1d 6824 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0))
324 coeidp 26167 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = if(0 = 1, 1, 0))
325159nesymi 2982 . . . . . . . . . . . . . . . . . . . . 21 ¬ 0 = 1
326325iffalsei 4486 . . . . . . . . . . . . . . . . . . . 20 if(0 = 1, 1, 0) = 0
327324, 326eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = 0)
328327adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘Xp)‘0) = 0)
329184coefv0 26151 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
330182, 329syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑅) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
331 0cn 11107 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
332 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
333332fvconst2 7140 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℂ → ((ℂ × {𝑧})‘0) = 𝑧)
334331, 333ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℂ × {𝑧})‘0) = 𝑧
335330, 334eqtr3di 2779 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑅) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
336335adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
337192, 195, 197, 197, 198, 328, 336ofval 7624 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
338260, 337mpan2 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
339 df-neg 11350 . . . . . . . . . . . . . . . 16 -𝑧 = (0 − 𝑧)
340338, 339eqtr4di 2782 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = -𝑧)
341323, 340eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = -𝑧)
342274oveq1d 7364 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0))
343102subid1d 11464 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝐷 − 0) = 𝐷)
344342, 343, 313eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄))
345344fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = ((coeff‘𝑄)‘(deg‘𝑄)))
346345, 232eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴𝑁))
347341, 346oveq12d 7367 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴𝑁)))
348347, 249eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
349 fveq2 6822 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘0))
350 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0))
351350fveq2d 6826 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0)))
352349, 351oveq12d 7367 . . . . . . . . . . . . 13 (𝑘 = 0 → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
353352fsum1 15654 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
354322, 348, 353sylancr 587 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
355354, 347eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴𝑁)))
356274fvoveq1d 7371 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) = ((coeff‘𝑄)‘(𝐷 − 1)))
357224, 356oveq12d 7367 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 · ((coeff‘𝑄)‘(𝐷 − 1))))
358241mullidd 11133 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
359357, 358eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
360355, 359oveq12d 7367 . . . . . . . . 9 ((𝜑𝑧𝑅) → (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))))
361295, 321, 3603eqtr3rd 2773 . . . . . . . 8 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
362255, 256, 3613eqtr4rd 2775 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1)))
363362oveq1d 7364 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
364237, 242, 246divcan4d 11906 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) = -𝑧)
365364oveq1d 7364 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
366250, 363, 3653eqtr3rd 2773 . . . . 5 ((𝜑𝑧𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
367366negeqd 11357 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
368248, 367eqtr3d 2766 . . 3 ((𝜑𝑧𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
369128, 236, 3683eqtrd 2768 . 2 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
37025, 369exlimddv 1935 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092   × cxp 5617  ccnv 5618  dom cdm 5619  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  chash 14237  Σcsu 15593  0𝑝c0p 25568  Polycply 26087  Xpcidp 26088  coeffccoe 26089  degcdgr 26090   quot cquot 26196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-idp 26092  df-coe 26093  df-dgr 26094  df-quot 26197
This theorem is referenced by:  vieta1  26218
  Copyright terms: Public domain W3C validator