Step | Hyp | Ref
| Expression |
1 | | vieta1.5 |
. . . . 5
⊢ (𝜑 → (♯‘𝑅) = 𝑁) |
2 | | vieta1lem.7 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 1) = 𝑁) |
3 | | vieta1lem.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
4 | 3 | peano2nnd 11393 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 1) ∈ ℕ) |
5 | 2, 4 | eqeltrrd 2859 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnne0d 11425 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
7 | 1, 6 | eqnetrd 3035 |
. . . 4
⊢ (𝜑 → (♯‘𝑅) ≠ 0) |
8 | | vieta1.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
9 | | vieta1.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
10 | 9, 6 | syl5eqner 3043 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘𝐹) ≠ 0) |
11 | | fveq2 6446 |
. . . . . . . . . . 11
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
12 | | dgr0 24455 |
. . . . . . . . . . 11
⊢
(deg‘0𝑝) = 0 |
13 | 11, 12 | syl6eq 2829 |
. . . . . . . . . 10
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
14 | 13 | necon3i 3000 |
. . . . . . . . 9
⊢
((deg‘𝐹) ≠
0 → 𝐹 ≠
0𝑝) |
15 | 10, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ≠
0𝑝) |
16 | | vieta1.3 |
. . . . . . . . 9
⊢ 𝑅 = (◡𝐹 “ {0}) |
17 | 16 | fta1 24500 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧
(♯‘𝑅) ≤
(deg‘𝐹))) |
18 | 8, 15, 17 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) |
19 | 18 | simpld 490 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Fin) |
20 | | hasheq0 13469 |
. . . . . 6
⊢ (𝑅 ∈ Fin →
((♯‘𝑅) = 0
↔ 𝑅 =
∅)) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅)) |
22 | 21 | necon3bid 3012 |
. . . 4
⊢ (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅)) |
23 | 7, 22 | mpbid 224 |
. . 3
⊢ (𝜑 → 𝑅 ≠ ∅) |
24 | | n0 4158 |
. . 3
⊢ (𝑅 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝑅) |
25 | 23, 24 | sylib 210 |
. 2
⊢ (𝜑 → ∃𝑧 𝑧 ∈ 𝑅) |
26 | | incom 4027 |
. . . . 5
⊢ ({𝑧} ∩ (◡𝑄 “ {0})) = ((◡𝑄 “ {0}) ∩ {𝑧}) |
27 | | vieta1.1 |
. . . . . . . . . . 11
⊢ 𝐴 = (coeff‘𝐹) |
28 | | vieta1lem.8 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
29 | | vieta1lem.9 |
. . . . . . . . . . 11
⊢ 𝑄 = (𝐹 quot (Xp
∘𝑓 − (ℂ × {𝑧}))) |
30 | 27, 9, 16, 8, 1, 3,
2, 28, 29 | vieta1lem1 24502 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) |
31 | 30 | simprd 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 = (deg‘𝑄)) |
32 | 30 | simpld 490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ∈
(Poly‘ℂ)) |
33 | | dgrcl 24426 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ (Poly‘ℂ)
→ (deg‘𝑄) ∈
ℕ0) |
34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈
ℕ0) |
35 | 34 | nn0red 11703 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈ ℝ) |
36 | 31, 35 | eqeltrd 2858 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℝ) |
37 | 36 | ltp1d 11308 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 < (𝐷 + 1)) |
38 | 36, 37 | gtned 10511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 + 1) ≠ 𝐷) |
39 | | snssi 4570 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → {𝑧} ⊆ (◡𝑄 “ {0})) |
40 | | ssequn1 4005 |
. . . . . . . . . . 11
⊢ ({𝑧} ⊆ (◡𝑄 “ {0}) ↔ ({𝑧} ∪ (◡𝑄 “ {0})) = (◡𝑄 “ {0})) |
41 | 39, 40 | sylib 210 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → ({𝑧} ∪ (◡𝑄 “ {0})) = (◡𝑄 “ {0})) |
42 | 41 | fveq2d 6450 |
. . . . . . . . 9
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (♯‘(◡𝑄 “ {0}))) |
43 | 8 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ∈ (Poly‘𝑆)) |
44 | | cnvimass 5739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐹 “ {0}) ⊆ dom 𝐹 |
45 | 16, 44 | eqsstri 3853 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑅 ⊆ dom 𝐹 |
46 | | plyf 24391 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
47 | | fdm 6299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℂ⟶ℂ →
dom 𝐹 =
ℂ) |
48 | 8, 46, 47 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = ℂ) |
49 | 45, 48 | syl5sseq 3871 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑅 ⊆ ℂ) |
50 | 49 | sselda 3820 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ ℂ) |
51 | 16 | eleq2i 2850 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑅 ↔ 𝑧 ∈ (◡𝐹 “ {0})) |
52 | | ffn 6291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℂ⟶ℂ →
𝐹 Fn
ℂ) |
53 | | fniniseg 6602 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℂ → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
54 | 8, 46, 52, 53 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
55 | 51, 54 | syl5bb 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
56 | 55 | simplbda 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹‘𝑧) = 0) |
57 | | eqid 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Xp ∘𝑓 − (ℂ
× {𝑧})) =
(Xp ∘𝑓 − (ℂ ×
{𝑧})) |
58 | 57 | facth 24498 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0) → 𝐹 = ((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
(𝐹 quot
(Xp ∘𝑓 − (ℂ ×
{𝑧}))))) |
59 | 43, 50, 56, 58 | syl3anc 1439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
(𝐹 quot
(Xp ∘𝑓 − (ℂ ×
{𝑧}))))) |
60 | 29 | oveq2i 6933 |
. . . . . . . . . . . . . . . . 17
⊢
((Xp ∘𝑓 − (ℂ
× {𝑧}))
∘𝑓 · 𝑄) = ((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
(𝐹 quot
(Xp ∘𝑓 − (ℂ ×
{𝑧})))) |
61 | 59, 60 | syl6eqr 2831 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄)) |
62 | 61 | cnveqd 5543 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ◡𝐹 = ◡((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄)) |
63 | 62 | imaeq1d 5719 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡𝐹 “ {0}) = (◡((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) “
{0})) |
64 | 16, 63 | syl5eq 2825 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 = (◡((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) “
{0})) |
65 | | cnex 10353 |
. . . . . . . . . . . . . . 15
⊢ ℂ
∈ V |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ℂ ∈ V) |
67 | 57 | plyremlem 24496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℂ →
((Xp ∘𝑓 − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) = 1 ∧ (◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧})) |
68 | 50, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧
(deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) = 1 ∧
(◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧})) |
69 | 68 | simp1d 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘𝑓 − (ℂ × {𝑧})) ∈
(Poly‘ℂ)) |
70 | | plyf 24391 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) → (Xp ∘𝑓
− (ℂ × {𝑧})):ℂ⟶ℂ) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘𝑓 − (ℂ × {𝑧})):ℂ⟶ℂ) |
72 | | plyf 24391 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (Poly‘ℂ)
→ 𝑄:ℂ⟶ℂ) |
73 | 32, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄:ℂ⟶ℂ) |
74 | | ofmulrt 24474 |
. . . . . . . . . . . . . 14
⊢ ((ℂ
∈ V ∧ (Xp ∘𝑓 −
(ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) →
(◡((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) “ {0}) = ((◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0}))) |
75 | 66, 71, 73, 74 | syl3anc 1439 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) “ {0}) = ((◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0}))) |
76 | 68 | simp3d 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧}) |
77 | 76 | uneq1d 3988 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡(Xp
∘𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0})) = ({𝑧} ∪ (◡𝑄 “ {0}))) |
78 | 64, 75, 77 | 3eqtrd 2817 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 = ({𝑧} ∪ (◡𝑄 “ {0}))) |
79 | 78 | fveq2d 6450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (◡𝑄 “ {0})))) |
80 | 1, 2 | eqtr4d 2816 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑅) = (𝐷 + 1)) |
81 | 80 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘𝑅) = (𝐷 + 1)) |
82 | 79, 81 | eqtr3d 2815 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (𝐷 + 1)) |
83 | 15 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ≠
0𝑝) |
84 | 61, 83 | eqnetrrd 3036 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) ≠
0𝑝) |
85 | | plymul0or 24473 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) →
(((Xp ∘𝑓 − (ℂ ×
{𝑧}))
∘𝑓 · 𝑄) = 0𝑝 ↔
((Xp ∘𝑓 − (ℂ ×
{𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
86 | 69, 32, 85 | syl2anc 579 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) = 0𝑝
↔ ((Xp ∘𝑓 − (ℂ
× {𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
87 | 86 | necon3abid 3004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄) ≠
0𝑝 ↔ ¬ ((Xp
∘𝑓 − (ℂ × {𝑧})) = 0𝑝 ∨ 𝑄 =
0𝑝))) |
88 | 84, 87 | mpbid 224 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ¬ ((Xp
∘𝑓 − (ℂ × {𝑧})) = 0𝑝 ∨ 𝑄 =
0𝑝)) |
89 | | neanior 3061 |
. . . . . . . . . . . . . . . 16
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ≠
0𝑝 ∧ 𝑄 ≠ 0𝑝) ↔ ¬
((Xp ∘𝑓 − (ℂ ×
{𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝)) |
90 | 88, 89 | sylibr 226 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘𝑓 − (ℂ × {𝑧})) ≠ 0𝑝 ∧ 𝑄 ≠
0𝑝)) |
91 | 90 | simprd 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ≠
0𝑝) |
92 | | eqid 2777 |
. . . . . . . . . . . . . . 15
⊢ (◡𝑄 “ {0}) = (◡𝑄 “ {0}) |
93 | 92 | fta1 24500 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (Poly‘ℂ)
∧ 𝑄 ≠
0𝑝) → ((◡𝑄 “ {0}) ∈ Fin ∧
(♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄))) |
94 | 32, 91, 93 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡𝑄 “ {0}) ∈ Fin ∧
(♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄))) |
95 | 94 | simprd 491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄)) |
96 | 95, 31 | breqtrrd 4914 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ≤ 𝐷) |
97 | | snfi 8326 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ Fin |
98 | 94 | simpld 490 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡𝑄 “ {0}) ∈ Fin) |
99 | | hashun2 13487 |
. . . . . . . . . . . . . 14
⊢ (({𝑧} ∈ Fin ∧ (◡𝑄 “ {0}) ∈ Fin) →
(♯‘({𝑧} ∪
(◡𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0})))) |
100 | 97, 98, 99 | sylancr 581 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0})))) |
101 | | ax-1cn 10330 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
102 | 3 | nncnd 11392 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ ℂ) |
103 | 102 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℂ) |
104 | | addcom 10562 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝐷
∈ ℂ) → (1 + 𝐷) = (𝐷 + 1)) |
105 | 101, 103,
104 | sylancr 581 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) = (𝐷 + 1)) |
106 | 82, 105 | eqtr4d 2816 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (1 + 𝐷)) |
107 | | hashsng 13474 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑅 → (♯‘{𝑧}) = 1) |
108 | 107 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘{𝑧}) = 1) |
109 | 108 | oveq1d 6937 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0}))) = (1 + (♯‘(◡𝑄 “ {0})))) |
110 | 100, 106,
109 | 3brtr3d 4917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(◡𝑄 “ {0})))) |
111 | | hashcl 13462 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑄 “ {0}) ∈ Fin →
(♯‘(◡𝑄 “ {0})) ∈
ℕ0) |
112 | 98, 111 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ∈
ℕ0) |
113 | 112 | nn0red 11703 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ∈
ℝ) |
114 | | 1red 10377 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ∈ ℝ) |
115 | 36, 113, 114 | leadd2d 10970 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 ≤ (♯‘(◡𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(◡𝑄 “ {0}))))) |
116 | 110, 115 | mpbird 249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ≤ (♯‘(◡𝑄 “ {0}))) |
117 | 113, 36 | letri3d 10518 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘(◡𝑄 “ {0})) = 𝐷 ↔ ((♯‘(◡𝑄 “ {0})) ≤ 𝐷 ∧ 𝐷 ≤ (♯‘(◡𝑄 “ {0}))))) |
118 | 96, 116, 117 | mpbir2and 703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) = 𝐷) |
119 | 82, 118 | eqeq12d 2792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (♯‘(◡𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷)) |
120 | 42, 119 | syl5ib 236 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑧 ∈ (◡𝑄 “ {0}) → (𝐷 + 1) = 𝐷)) |
121 | 120 | necon3ad 2981 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (◡𝑄 “ {0}))) |
122 | 38, 121 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ¬ 𝑧 ∈ (◡𝑄 “ {0})) |
123 | | disjsn 4477 |
. . . . . 6
⊢ (((◡𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (◡𝑄 “ {0})) |
124 | 122, 123 | sylibr 226 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡𝑄 “ {0}) ∩ {𝑧}) = ∅) |
125 | 26, 124 | syl5eq 2825 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ({𝑧} ∩ (◡𝑄 “ {0})) = ∅) |
126 | 19 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 ∈ Fin) |
127 | 49 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 ⊆ ℂ) |
128 | 127 | sselda 3820 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ ℂ) |
129 | 125, 78, 126, 128 | fsumsplit 14878 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ 𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (◡𝑄 “ {0})𝑥)) |
130 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
131 | 130 | sumsn 14882 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
Σ𝑥 ∈ {𝑧}𝑥 = 𝑧) |
132 | 50, 50, 131 | syl2anc 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧) |
133 | 50 | negnegd 10725 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → --𝑧 = 𝑧) |
134 | 132, 133 | eqtr4d 2816 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧) |
135 | 118, 31 | eqtrd 2813 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) |
136 | | fveq2 6446 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄)) |
137 | 136 | eqeq2d 2787 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄))) |
138 | | cnveq 5541 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → ◡𝑓 = ◡𝑄) |
139 | 138 | imaeq1d 5719 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → (◡𝑓 “ {0}) = (◡𝑄 “ {0})) |
140 | 139 | fveq2d 6450 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (♯‘(◡𝑓 “ {0})) = (♯‘(◡𝑄 “ {0}))) |
141 | 140, 136 | eqeq12d 2792 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → ((♯‘(◡𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄))) |
142 | 137, 141 | anbi12d 624 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)))) |
143 | 139 | sumeq1d 14839 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = Σ𝑥 ∈ (◡𝑄 “ {0})𝑥) |
144 | | fveq2 6446 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄)) |
145 | 136 | oveq1d 6937 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1)) |
146 | 144, 145 | fveq12d 6453 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1))) |
147 | 144, 136 | fveq12d 6453 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄))) |
148 | 146, 147 | oveq12d 6940 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) /
((coeff‘𝑄)‘(deg‘𝑄)))) |
149 | 148 | negeqd 10616 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) /
((coeff‘𝑄)‘(deg‘𝑄)))) |
150 | 143, 149 | eqeq12d 2792 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → (Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))) |
151 | 142, 150 | imbi12d 336 |
. . . . . . 7
⊢ (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))) |
152 | 28 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
153 | 151, 152,
32 | rspcdva 3516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))) |
154 | 31, 135, 153 | mp2and 689 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
155 | 31 | fvoveq1d 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1))) |
156 | 61 | fveq2d 6450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘𝐹) = (coeff‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄))) |
157 | 27, 156 | syl5eq 2825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐴 = (coeff‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄))) |
158 | 61 | fveq2d 6450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝐹) = (deg‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄))) |
159 | 68 | simp2d 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) = 1) |
160 | | ax-1ne0 10341 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
161 | 160 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ≠ 0) |
162 | 159, 161 | eqnetrd 3035 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) ≠ 0) |
163 | | fveq2 6446 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘𝑓 − (ℂ
× {𝑧})) =
0𝑝 → (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) =
(deg‘0𝑝)) |
164 | 163, 12 | syl6eq 2829 |
. . . . . . . . . . . . . 14
⊢
((Xp ∘𝑓 − (ℂ
× {𝑧})) =
0𝑝 → (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) = 0) |
165 | 164 | necon3i 3000 |
. . . . . . . . . . . . 13
⊢
((deg‘(Xp ∘𝑓 −
(ℂ × {𝑧})))
≠ 0 → (Xp ∘𝑓 −
(ℂ × {𝑧})) ≠
0𝑝) |
166 | 162, 165 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘𝑓 − (ℂ × {𝑧})) ≠
0𝑝) |
167 | | eqid 2777 |
. . . . . . . . . . . . 13
⊢
(deg‘(Xp ∘𝑓 −
(ℂ × {𝑧}))) =
(deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) |
168 | | eqid 2777 |
. . . . . . . . . . . . 13
⊢
(deg‘𝑄) =
(deg‘𝑄) |
169 | 167, 168 | dgrmul 24463 |
. . . . . . . . . . . 12
⊢
((((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ (Xp ∘𝑓
− (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ)
∧ 𝑄 ≠
0𝑝)) → (deg‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄)) =
((deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) +
(deg‘𝑄))) |
170 | 69, 166, 32, 91, 169 | syl22anc 829 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄)) =
((deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) +
(deg‘𝑄))) |
171 | 158, 170 | eqtrd 2813 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝐹) = ((deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) |
172 | 9, 171 | syl5eq 2825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑁 = ((deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) |
173 | 157, 172 | fveq12d 6453 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) = ((coeff‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄))‘((deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄)))) |
174 | | eqid 2777 |
. . . . . . . . . 10
⊢
(coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧}))) =
(coeff‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) |
175 | | eqid 2777 |
. . . . . . . . . 10
⊢
(coeff‘𝑄) =
(coeff‘𝑄) |
176 | 174, 175,
167, 168 | coemulhi 24447 |
. . . . . . . . 9
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) →
((coeff‘((Xp ∘𝑓 −
(ℂ × {𝑧}))
∘𝑓 · 𝑄))‘((deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄)))) |
177 | 69, 32, 176 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
((coeff‘((Xp ∘𝑓 −
(ℂ × {𝑧}))
∘𝑓 · 𝑄))‘((deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄)))) |
178 | 159 | fveq2d 6450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) = ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1)) |
179 | | ssid 3841 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
180 | | plyid 24402 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
181 | 179, 101,
180 | mp2an 682 |
. . . . . . . . . . . . . 14
⊢
Xp ∈ (Poly‘ℂ) |
182 | | plyconst 24399 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ 𝑧
∈ ℂ) → (ℂ × {𝑧}) ∈
(Poly‘ℂ)) |
183 | 179, 50, 182 | sylancr 581 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (ℂ × {𝑧}) ∈
(Poly‘ℂ)) |
184 | | eqid 2777 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘Xp) =
(coeff‘Xp) |
185 | | eqid 2777 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧})) |
186 | 184, 185 | coesub 24450 |
. . . . . . . . . . . . . 14
⊢
((Xp ∈ (Poly‘ℂ) ∧ (ℂ
× {𝑧}) ∈
(Poly‘ℂ)) → (coeff‘(Xp
∘𝑓 − (ℂ × {𝑧}))) = ((coeff‘Xp)
∘𝑓 − (coeff‘(ℂ × {𝑧})))) |
187 | 181, 183,
186 | sylancr 581 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(Xp
∘𝑓 − (ℂ × {𝑧}))) = ((coeff‘Xp)
∘𝑓 − (coeff‘(ℂ × {𝑧})))) |
188 | 187 | fveq1d 6448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) =
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘1)) |
189 | | 1nn0 11660 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
190 | 184 | coef3 24425 |
. . . . . . . . . . . . . . . . 17
⊢
(Xp ∈ (Poly‘ℂ) →
(coeff‘Xp):ℕ0⟶ℂ) |
191 | | ffn 6291 |
. . . . . . . . . . . . . . . . 17
⊢
((coeff‘Xp):ℕ0⟶ℂ
→ (coeff‘Xp) Fn
ℕ0) |
192 | 181, 190,
191 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢
(coeff‘Xp) Fn
ℕ0 |
193 | 192 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘Xp)
Fn ℕ0) |
194 | 185 | coef3 24425 |
. . . . . . . . . . . . . . . 16
⊢ ((ℂ
× {𝑧}) ∈
(Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ) |
195 | | ffn 6291 |
. . . . . . . . . . . . . . . 16
⊢
((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ →
(coeff‘(ℂ × {𝑧})) Fn ℕ0) |
196 | 183, 194,
195 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(ℂ ×
{𝑧})) Fn
ℕ0) |
197 | | nn0ex 11649 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ℕ0 ∈
V) |
199 | | inidm 4042 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
200 | | coeidp 24456 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℕ0 → ((coeff‘Xp)‘1) = if(1
= 1, 1, 0)) |
201 | 200 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘Xp)‘1) = if(1 = 1, 1,
0)) |
202 | | eqid 2777 |
. . . . . . . . . . . . . . . . 17
⊢ 1 =
1 |
203 | 202 | iftruei 4313 |
. . . . . . . . . . . . . . . 16
⊢ if(1 = 1,
1, 0) = 1 |
204 | 201, 203 | syl6eq 2829 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘Xp)‘1) = 1) |
205 | | 0lt1 10897 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
1 |
206 | | 0re 10378 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
207 | | 1re 10376 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
208 | 206, 207 | ltnlei 10497 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 < 1
↔ ¬ 1 ≤ 0) |
209 | 205, 208 | mpbi 222 |
. . . . . . . . . . . . . . . . 17
⊢ ¬ 1
≤ 0 |
210 | 50 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
𝑧 ∈
ℂ) |
211 | | 0dgr 24438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℂ →
(deg‘(ℂ × {𝑧})) = 0) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(deg‘(ℂ × {𝑧})) = 0) |
213 | 212 | breq2d 4898 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0)) |
214 | 209, 213 | mtbiri 319 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
¬ 1 ≤ (deg‘(ℂ × {𝑧}))) |
215 | | eqid 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧})) |
216 | 185, 215 | dgrub 24427 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈
ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤
(deg‘(ℂ × {𝑧}))) |
217 | 216 | 3expia 1111 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈
ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤
(deg‘(ℂ × {𝑧})))) |
218 | 183, 217 | sylan 575 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤
(deg‘(ℂ × {𝑧})))) |
219 | 218 | necon1bd 2986 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ ×
{𝑧}))‘1) =
0)) |
220 | 214, 219 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘(ℂ × {𝑧}))‘1) = 0) |
221 | 193, 196,
198, 198, 199, 204, 220 | ofval 7183 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘1) = (1 −
0)) |
222 | 189, 221 | mpan2 681 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘1) = (1 −
0)) |
223 | | 1m0e1 11503 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
224 | 222, 223 | syl6eq 2829 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘1) = 1) |
225 | 188, 224 | eqtrd 2813 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) = 1) |
226 | 178, 225 | eqtrd 2813 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) = 1) |
227 | 226 | oveq1d 6937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 ·
((coeff‘𝑄)‘(deg‘𝑄)))) |
228 | 175 | coef3 24425 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ (Poly‘ℂ)
→ (coeff‘𝑄):ℕ0⟶ℂ) |
229 | 32, 228 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘𝑄):ℕ0⟶ℂ) |
230 | 229, 34 | ffvelrnd 6624 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ) |
231 | 230 | mulid2d 10395 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄))) |
232 | 227, 231 | eqtrd 2813 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘(deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄))) |
233 | 173, 177,
232 | 3eqtrd 2817 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) = ((coeff‘𝑄)‘(deg‘𝑄))) |
234 | 155, 233 | oveq12d 6940 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
235 | 234 | negeqd 10616 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
236 | 154, 235 | eqtr4d 2816 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) |
237 | 134, 236 | oveq12d 6940 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (◡𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
238 | 50 | negcld 10721 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -𝑧 ∈ ℂ) |
239 | | nnm1nn0 11685 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ → (𝐷 − 1) ∈
ℕ0) |
240 | 3, 239 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 − 1) ∈
ℕ0) |
241 | 240 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 − 1) ∈
ℕ0) |
242 | 229, 241 | ffvelrnd 6624 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈
ℂ) |
243 | 233, 230 | eqeltrd 2858 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) ∈ ℂ) |
244 | 9, 27 | dgreq0 24458 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
245 | 43, 244 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
246 | 245 | necon3bid 3012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴‘𝑁) ≠ 0)) |
247 | 83, 246 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) ≠ 0) |
248 | 242, 243,
247 | divcld 11151 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) ∈ ℂ) |
249 | 238, 248 | negdid 10747 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
250 | 238, 243 | mulcld 10397 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (-𝑧 · (𝐴‘𝑁)) ∈ ℂ) |
251 | 250, 242,
243, 247 | divdird 11189 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴‘𝑁)) = (((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
252 | | nnm1nn0 11685 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
253 | 5, 252 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
254 | 253 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈
ℕ0) |
255 | 174, 175 | coemul 24445 |
. . . . . . . . 9
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈
ℕ0) → ((coeff‘((Xp
∘𝑓 − (ℂ × {𝑧})) ∘𝑓 ·
𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
256 | 69, 32, 254, 255 | syl3anc 1439 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
((coeff‘((Xp ∘𝑓 −
(ℂ × {𝑧}))
∘𝑓 · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
257 | 157 | fveq1d 6448 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘(𝑁 − 1)) =
((coeff‘((Xp ∘𝑓 −
(ℂ × {𝑧}))
∘𝑓 · 𝑄))‘(𝑁 − 1))) |
258 | | 1e0p1 11888 |
. . . . . . . . . . . 12
⊢ 1 = (0 +
1) |
259 | 258 | oveq2i 6933 |
. . . . . . . . . . 11
⊢ (0...1) =
(0...(0 + 1)) |
260 | 259 | sumeq1i 14836 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 +
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) |
261 | | 0nn0 11659 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
262 | | nn0uz 12028 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
263 | 261, 262 | eleqtri 2856 |
. . . . . . . . . . . 12
⊢ 0 ∈
(ℤ≥‘0) |
264 | 263 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 0 ∈
(ℤ≥‘0)) |
265 | 259 | eleq2i 2850 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 +
1))) |
266 | 174 | coef3 24425 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) → (coeff‘(Xp
∘𝑓 − (ℂ × {𝑧}))):ℕ0⟶ℂ) |
267 | 69, 266 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(Xp
∘𝑓 − (ℂ × {𝑧}))):ℕ0⟶ℂ) |
268 | | elfznn0 12751 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...1) → 𝑘 ∈
ℕ0) |
269 | | ffvelrn 6621 |
. . . . . . . . . . . . . 14
⊢
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧}))):ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘𝑘) ∈ ℂ) |
270 | 267, 268,
269 | syl2an 589 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) →
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) ∈ ℂ) |
271 | 2 | oveq1d 6937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1)) |
272 | | pncan 10628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐷 + 1)
− 1) = 𝐷) |
273 | 102, 101,
272 | sylancl 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐷 + 1) − 1) = 𝐷) |
274 | 271, 273 | eqtr3d 2815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 − 1) = 𝐷) |
275 | 274 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) = 𝐷) |
276 | 3 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℕ) |
277 | 275, 276 | eqeltrd 2858 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈ ℕ) |
278 | | nnuz 12029 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
279 | 277, 278 | syl6eleq 2868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈
(ℤ≥‘1)) |
280 | | fzss2 12698 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈
(ℤ≥‘1) → (0...1) ⊆ (0...(𝑁 − 1))) |
281 | 279, 280 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (0...1) ⊆ (0...(𝑁 − 1))) |
282 | 281 | sselda 3820 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
283 | | fznn0sub 12690 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈
ℕ0) |
284 | | ffvelrn 6621 |
. . . . . . . . . . . . . . 15
⊢
(((coeff‘𝑄):ℕ0⟶ℂ ∧
((𝑁 − 1) −
𝑘) ∈
ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
285 | 229, 283,
284 | syl2an 589 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
286 | 282, 285 | syldan 585 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
287 | 270, 286 | mulcld 10397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ) |
288 | 265, 287 | sylan2br 588 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ) |
289 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (0 + 1) → 𝑘 = (0 + 1)) |
290 | 289, 258 | syl6eqr 2831 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (0 + 1) → 𝑘 = 1) |
291 | 290 | fveq2d 6450 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) →
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1)) |
292 | 290 | oveq2d 6938 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1)) |
293 | 292 | fveq2d 6450 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) →
((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1))) |
294 | 291, 293 | oveq12d 6940 |
. . . . . . . . . . 11
⊢ (𝑘 = (0 + 1) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) |
295 | 264, 288,
294 | fsump1 14892 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈ (0...(0 +
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))) |
296 | 260, 295 | syl5eq 2825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))) |
297 | | eldifn 3955 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬
𝑘 ∈
(0...1)) |
298 | 297 | adantl 475 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬
𝑘 ∈
(0...1)) |
299 | | eldifi 3954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
300 | | elfznn0 12751 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
301 | 299, 300 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈
ℕ0) |
302 | 174, 167 | dgrub 24427 |
. . . . . . . . . . . . . . . . 17
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xp
∘𝑓 − (ℂ × {𝑧})))) |
303 | 302 | 3expia 1111 |
. . . . . . . . . . . . . . . 16
⊢
(((Xp ∘𝑓 − (ℂ
× {𝑧})) ∈
(Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))))) |
304 | 69, 301, 303 | syl2an 589 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))))) |
305 | | elfzuz 12655 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈
(ℤ≥‘0)) |
306 | 299, 305 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈
(ℤ≥‘0)) |
307 | 306 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈
(ℤ≥‘0)) |
308 | | 1z 11759 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ |
309 | | elfz5 12651 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1)) |
310 | 307, 308,
309 | sylancl 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1)) |
311 | 159 | breq2d 4898 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑘 ≤ (deg‘(Xp
∘𝑓 − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1)) |
312 | 311 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤
(deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))) ↔ 𝑘 ≤ 1)) |
313 | 310, 312 | bitr4d 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤
(deg‘(Xp ∘𝑓 − (ℂ
× {𝑧}))))) |
314 | 304, 313 | sylibrd 251 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1))) |
315 | 314 | necon1bd 2986 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬
𝑘 ∈ (0...1) →
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) = 0)) |
316 | 298, 315 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) = 0) |
317 | 316 | oveq1d 6937 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
318 | 299, 285 | sylan2 586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
319 | 318 | mul02d 10574 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0
· ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0) |
320 | 317, 319 | eqtrd 2813 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0) |
321 | | fzfid 13091 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (0...(𝑁 − 1)) ∈ Fin) |
322 | 281, 287,
320, 321 | fsumss 14863 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
323 | | 0z 11739 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
324 | 187 | fveq1d 6448 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) =
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘0)) |
325 | | coeidp 24456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℕ0 → ((coeff‘Xp)‘0) = if(0
= 1, 1, 0)) |
326 | 160 | nesymi 3025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ¬ 0
= 1 |
327 | 326 | iffalsei 4316 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(0 = 1,
1, 0) = 0 |
328 | 325, 327 | syl6eq 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
ℕ0 → ((coeff‘Xp)‘0) =
0) |
329 | 328 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
((coeff‘Xp)‘0) = 0) |
330 | | 0cn 10368 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℂ |
331 | | vex 3400 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
332 | 331 | fvconst2 6741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℂ → ((ℂ × {𝑧})‘0) = 𝑧) |
333 | 330, 332 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℂ
× {𝑧})‘0) =
𝑧 |
334 | 185 | coefv0 24441 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
× {𝑧}) ∈
(Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ ×
{𝑧}))‘0)) |
335 | 183, 334 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((ℂ × {𝑧})‘0) =
((coeff‘(ℂ × {𝑧}))‘0)) |
336 | 333, 335 | syl5reqr 2828 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(ℂ ×
{𝑧}))‘0) = 𝑧) |
337 | 336 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
((coeff‘(ℂ × {𝑧}))‘0) = 𝑧) |
338 | 193, 196,
198, 198, 199, 329, 337 | ofval 7183 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧)) |
339 | 261, 338 | mpan2 681 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧)) |
340 | | df-neg 10609 |
. . . . . . . . . . . . . . . 16
⊢ -𝑧 = (0 − 𝑧) |
341 | 339, 340 | syl6eqr 2831 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘𝑓 −
(coeff‘(ℂ × {𝑧})))‘0) = -𝑧) |
342 | 324, 341 | eqtrd 2813 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) = -𝑧) |
343 | 275 | oveq1d 6937 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0)) |
344 | 103 | subid1d 10723 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 − 0) = 𝐷) |
345 | 343, 344,
31 | 3eqtrd 2817 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄)) |
346 | 345 | fveq2d 6450 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) =
((coeff‘𝑄)‘(deg‘𝑄))) |
347 | 346, 233 | eqtr4d 2816 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴‘𝑁)) |
348 | 342, 347 | oveq12d 6940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴‘𝑁))) |
349 | 348, 250 | eqeltrd 2858 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈
ℂ) |
350 | | fveq2 6446 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 →
((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0)) |
351 | | oveq2 6930 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0)) |
352 | 351 | fveq2d 6450 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0))) |
353 | 350, 352 | oveq12d 6940 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
354 | 353 | fsum1 14883 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
→ Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
355 | 323, 349,
354 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
356 | 355, 348 | eqtrd 2813 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴‘𝑁))) |
357 | 275 | fvoveq1d 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) =
((coeff‘𝑄)‘(𝐷 − 1))) |
358 | 225, 357 | oveq12d 6940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 ·
((coeff‘𝑄)‘(𝐷 − 1)))) |
359 | 242 | mulid2d 10395 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1))) |
360 | 358, 359 | eqtrd 2813 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) =
((coeff‘𝑄)‘(𝐷 − 1))) |
361 | 356, 360 | oveq12d 6940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1)))) |
362 | 296, 322,
361 | 3eqtr3rd 2822 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘𝑓 −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
363 | 256, 257,
362 | 3eqtr4rd 2824 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1))) |
364 | 363 | oveq1d 6937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴‘𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
365 | 238, 243,
247 | divcan4d 11157 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) = -𝑧) |
366 | 365 | oveq1d 6937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
367 | 251, 364,
366 | 3eqtr3rd 2822 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
368 | 367 | negeqd 10616 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
369 | 249, 368 | eqtr3d 2815 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
370 | 129, 237,
369 | 3eqtrd 2817 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
371 | 25, 370 | exlimddv 1978 |
1
⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |