MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem2 Structured version   Visualization version   GIF version

Theorem vieta1lem2 24503
Description: Lemma for vieta1 24504: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥𝑅𝑥 = -𝐴𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xp𝑓 − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem2 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . . . . 5 (𝜑 → (♯‘𝑅) = 𝑁)
2 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
3 vieta1lem.6 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
43peano2nnd 11393 . . . . . . 7 (𝜑 → (𝐷 + 1) ∈ ℕ)
52, 4eqeltrrd 2859 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnne0d 11425 . . . . 5 (𝜑𝑁 ≠ 0)
71, 6eqnetrd 3035 . . . 4 (𝜑 → (♯‘𝑅) ≠ 0)
8 vieta1.4 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
9 vieta1.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
109, 6syl5eqner 3043 . . . . . . . . 9 (𝜑 → (deg‘𝐹) ≠ 0)
11 fveq2 6446 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 24455 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12syl6eq 2829 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1413necon3i 3000 . . . . . . . . 9 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
1510, 14syl 17 . . . . . . . 8 (𝜑𝐹 ≠ 0𝑝)
16 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
1716fta1 24500 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
188, 15, 17syl2anc 579 . . . . . . 7 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
1918simpld 490 . . . . . 6 (𝜑𝑅 ∈ Fin)
20 hasheq0 13469 . . . . . 6 (𝑅 ∈ Fin → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2119, 20syl 17 . . . . 5 (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2221necon3bid 3012 . . . 4 (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅))
237, 22mpbid 224 . . 3 (𝜑𝑅 ≠ ∅)
24 n0 4158 . . 3 (𝑅 ≠ ∅ ↔ ∃𝑧 𝑧𝑅)
2523, 24sylib 210 . 2 (𝜑 → ∃𝑧 𝑧𝑅)
26 incom 4027 . . . . 5 ({𝑧} ∩ (𝑄 “ {0})) = ((𝑄 “ {0}) ∩ {𝑧})
27 vieta1.1 . . . . . . . . . . 11 𝐴 = (coeff‘𝐹)
28 vieta1lem.8 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
29 vieta1lem.9 . . . . . . . . . . 11 𝑄 = (𝐹 quot (Xp𝑓 − (ℂ × {𝑧})))
3027, 9, 16, 8, 1, 3, 2, 28, 29vieta1lem1 24502 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
3130simprd 491 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
3230simpld 490 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
33 dgrcl 24426 . . . . . . . . . . 11 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0red 11703 . . . . . . . . 9 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℝ)
3631, 35eqeltrd 2858 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 ∈ ℝ)
3736ltp1d 11308 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 < (𝐷 + 1))
3836, 37gtned 10511 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 + 1) ≠ 𝐷)
39 snssi 4570 . . . . . . . . . . 11 (𝑧 ∈ (𝑄 “ {0}) → {𝑧} ⊆ (𝑄 “ {0}))
40 ssequn1 4005 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑄 “ {0}) ↔ ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4139, 40sylib 210 . . . . . . . . . 10 (𝑧 ∈ (𝑄 “ {0}) → ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4241fveq2d 6450 . . . . . . . . 9 (𝑧 ∈ (𝑄 “ {0}) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})))
438adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
44 cnvimass 5739 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ {0}) ⊆ dom 𝐹
4516, 44eqsstri 3853 . . . . . . . . . . . . . . . . . . . 20 𝑅 ⊆ dom 𝐹
46 plyf 24391 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
47 fdm 6299 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → dom 𝐹 = ℂ)
488, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℂ)
4945, 48syl5sseq 3871 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ⊆ ℂ)
5049sselda 3820 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
5116eleq2i 2850 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
52 ffn 6291 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
53 fniniseg 6602 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
548, 46, 52, 534syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5551, 54syl5bb 275 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5655simplbda 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
57 eqid 2777 . . . . . . . . . . . . . . . . . . 19 (Xp𝑓 − (ℂ × {𝑧})) = (Xp𝑓 − (ℂ × {𝑧}))
5857facth 24498 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝑧})))))
5943, 50, 56, 58syl3anc 1439 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → 𝐹 = ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝑧})))))
6029oveq2i 6933 . . . . . . . . . . . . . . . . 17 ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) = ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝑧}))))
6159, 60syl6eqr 2831 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → 𝐹 = ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))
6261cnveqd 5543 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐹 = ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))
6362imaeq1d 5719 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝐹 “ {0}) = (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) “ {0}))
6416, 63syl5eq 2825 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 𝑅 = (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) “ {0}))
65 cnex 10353 . . . . . . . . . . . . . . 15 ℂ ∈ V
6665a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ℂ ∈ V)
6757plyremlem 24496 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ → ((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6850, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6968simp1d 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
70 plyf 24391 . . . . . . . . . . . . . . 15 ((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (Xp𝑓 − (ℂ × {𝑧})):ℂ⟶ℂ)
7169, 70syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (Xp𝑓 − (ℂ × {𝑧})):ℂ⟶ℂ)
72 plyf 24391 . . . . . . . . . . . . . . 15 (𝑄 ∈ (Poly‘ℂ) → 𝑄:ℂ⟶ℂ)
7332, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄:ℂ⟶ℂ)
74 ofmulrt 24474 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ (Xp𝑓 − (ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) → (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) “ {0}) = (((Xp𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7566, 71, 73, 74syl3anc 1439 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) “ {0}) = (((Xp𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7668simp3d 1135 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((Xp𝑓 − (ℂ × {𝑧})) “ {0}) = {𝑧})
7776uneq1d 3988 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xp𝑓 − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})) = ({𝑧} ∪ (𝑄 “ {0})))
7864, 75, 773eqtrd 2817 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → 𝑅 = ({𝑧} ∪ (𝑄 “ {0})))
7978fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (𝑄 “ {0}))))
801, 2eqtr4d 2816 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑅) = (𝐷 + 1))
8180adantr 474 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (𝐷 + 1))
8279, 81eqtr3d 2815 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (𝐷 + 1))
8315adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
8461, 83eqnetrrd 3036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) ≠ 0𝑝)
85 plymul0or 24473 . . . . . . . . . . . . . . . . . . 19 (((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) = 0𝑝 ↔ ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8669, 32, 85syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) = 0𝑝 ↔ ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8786necon3abid 3004 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8884, 87mpbid 224 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ¬ ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
89 neanior 3061 . . . . . . . . . . . . . . . 16 (((Xp𝑓 − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
9088, 89sylibr 226 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((Xp𝑓 − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
9190simprd 491 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
92 eqid 2777 . . . . . . . . . . . . . . 15 (𝑄 “ {0}) = (𝑄 “ {0})
9392fta1 24500 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9432, 91, 93syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9594simprd 491 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄))
9695, 31breqtrrd 4914 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ 𝐷)
97 snfi 8326 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
9894simpld 490 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝑄 “ {0}) ∈ Fin)
99 hashun2 13487 . . . . . . . . . . . . . 14 (({𝑧} ∈ Fin ∧ (𝑄 “ {0}) ∈ Fin) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
10097, 98, 99sylancr 581 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
101 ax-1cn 10330 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1023nncnd 11392 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
103102adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
104 addcom 10562 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
105101, 103, 104sylancr 581 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
10682, 105eqtr4d 2816 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (1 + 𝐷))
107 hashsng 13474 . . . . . . . . . . . . . . 15 (𝑧𝑅 → (♯‘{𝑧}) = 1)
108107adantl 475 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘{𝑧}) = 1)
109108oveq1d 6937 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))) = (1 + (♯‘(𝑄 “ {0}))))
110100, 106, 1093brtr3d 4917 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0}))))
111 hashcl 13462 . . . . . . . . . . . . . . 15 ((𝑄 “ {0}) ∈ Fin → (♯‘(𝑄 “ {0})) ∈ ℕ0)
11298, 111syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℕ0)
113112nn0red 11703 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℝ)
114 1red 10377 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 1 ∈ ℝ)
11536, 113, 114leadd2d 10970 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (𝐷 ≤ (♯‘(𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0})))))
116110, 115mpbird 249 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝐷 ≤ (♯‘(𝑄 “ {0})))
117113, 36letri3d 10518 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((♯‘(𝑄 “ {0})) = 𝐷 ↔ ((♯‘(𝑄 “ {0})) ≤ 𝐷𝐷 ≤ (♯‘(𝑄 “ {0})))))
11896, 116, 117mpbir2and 703 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = 𝐷)
11982, 118eqeq12d 2792 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷))
12042, 119syl5ib 236 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝑧 ∈ (𝑄 “ {0}) → (𝐷 + 1) = 𝐷))
121120necon3ad 2981 . . . . . . 7 ((𝜑𝑧𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (𝑄 “ {0})))
12238, 121mpd 15 . . . . . 6 ((𝜑𝑧𝑅) → ¬ 𝑧 ∈ (𝑄 “ {0}))
123 disjsn 4477 . . . . . 6 (((𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑄 “ {0}))
124122, 123sylibr 226 . . . . 5 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∩ {𝑧}) = ∅)
12526, 124syl5eq 2825 . . . 4 ((𝜑𝑧𝑅) → ({𝑧} ∩ (𝑄 “ {0})) = ∅)
12619adantr 474 . . . 4 ((𝜑𝑧𝑅) → 𝑅 ∈ Fin)
12749adantr 474 . . . . 5 ((𝜑𝑧𝑅) → 𝑅 ⊆ ℂ)
128127sselda 3820 . . . 4 (((𝜑𝑧𝑅) ∧ 𝑥𝑅) → 𝑥 ∈ ℂ)
129125, 78, 126, 128fsumsplit 14878 . . 3 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥))
130 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
131130sumsn 14882 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13250, 50, 131syl2anc 579 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13350negnegd 10725 . . . . 5 ((𝜑𝑧𝑅) → --𝑧 = 𝑧)
134132, 133eqtr4d 2816 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧)
135118, 31eqtrd 2813 . . . . . 6 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = (deg‘𝑄))
136 fveq2 6446 . . . . . . . . . 10 (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄))
137136eqeq2d 2787 . . . . . . . . 9 (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄)))
138 cnveq 5541 . . . . . . . . . . . 12 (𝑓 = 𝑄𝑓 = 𝑄)
139138imaeq1d 5719 . . . . . . . . . . 11 (𝑓 = 𝑄 → (𝑓 “ {0}) = (𝑄 “ {0}))
140139fveq2d 6450 . . . . . . . . . 10 (𝑓 = 𝑄 → (♯‘(𝑓 “ {0})) = (♯‘(𝑄 “ {0})))
141140, 136eqeq12d 2792 . . . . . . . . 9 (𝑓 = 𝑄 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(𝑄 “ {0})) = (deg‘𝑄)))
142137, 141anbi12d 624 . . . . . . . 8 (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄))))
143139sumeq1d 14839 . . . . . . . . 9 (𝑓 = 𝑄 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥 ∈ (𝑄 “ {0})𝑥)
144 fveq2 6446 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄))
145136oveq1d 6937 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1))
146144, 145fveq12d 6453 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
147144, 136fveq12d 6453 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄)))
148146, 147oveq12d 6940 . . . . . . . . . 10 (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
149148negeqd 10616 . . . . . . . . 9 (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
150143, 149eqeq12d 2792 . . . . . . . 8 (𝑓 = 𝑄 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
151142, 150imbi12d 336 . . . . . . 7 (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))))
15228adantr 474 . . . . . . 7 ((𝜑𝑧𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
153151, 152, 32rspcdva 3516 . . . . . 6 ((𝜑𝑧𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
15431, 135, 153mp2and 689 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
15531fvoveq1d 6944 . . . . . . 7 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
15661fveq2d 6450 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (coeff‘𝐹) = (coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄)))
15727, 156syl5eq 2825 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐴 = (coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄)))
15861fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄)))
15968simp2d 1134 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = 1)
160 ax-1ne0 10341 . . . . . . . . . . . . . . 15 1 ≠ 0
161160a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 1 ≠ 0)
162159, 161eqnetrd 3035 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (deg‘(Xp𝑓 − (ℂ × {𝑧}))) ≠ 0)
163 fveq2 6446 . . . . . . . . . . . . . . 15 ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = (deg‘0𝑝))
164163, 12syl6eq 2829 . . . . . . . . . . . . . 14 ((Xp𝑓 − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = 0)
165164necon3i 3000 . . . . . . . . . . . . 13 ((deg‘(Xp𝑓 − (ℂ × {𝑧}))) ≠ 0 → (Xp𝑓 − (ℂ × {𝑧})) ≠ 0𝑝)
166162, 165syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (Xp𝑓 − (ℂ × {𝑧})) ≠ 0𝑝)
167 eqid 2777 . . . . . . . . . . . . 13 (deg‘(Xp𝑓 − (ℂ × {𝑧}))) = (deg‘(Xp𝑓 − (ℂ × {𝑧})))
168 eqid 2777 . . . . . . . . . . . . 13 (deg‘𝑄) = (deg‘𝑄)
169167, 168dgrmul 24463 . . . . . . . . . . . 12 ((((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xp𝑓 − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄)) = ((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄)))
17069, 166, 32, 91, 169syl22anc 829 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄)) = ((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄)))
171158, 170eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝐹) = ((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄)))
1729, 171syl5eq 2825 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝑁 = ((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄)))
173157, 172fveq12d 6453 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))))
174 eqid 2777 . . . . . . . . . 10 (coeff‘(Xp𝑓 − (ℂ × {𝑧}))) = (coeff‘(Xp𝑓 − (ℂ × {𝑧})))
175 eqid 2777 . . . . . . . . . 10 (coeff‘𝑄) = (coeff‘𝑄)
176174, 175, 167, 168coemulhi 24447 . . . . . . . . 9 (((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
17769, 32, 176syl2anc 579 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘((deg‘(Xp𝑓 − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
178159fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) = ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1))
179 ssid 3841 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
180 plyid 24402 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
181179, 101, 180mp2an 682 . . . . . . . . . . . . . 14 Xp ∈ (Poly‘ℂ)
182 plyconst 24399 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
183179, 50, 182sylancr 581 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
184 eqid 2777 . . . . . . . . . . . . . . 15 (coeff‘Xp) = (coeff‘Xp)
185 eqid 2777 . . . . . . . . . . . . . . 15 (coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧}))
186184, 185coesub 24450 . . . . . . . . . . . . . 14 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝑧}) ∈ (Poly‘ℂ)) → (coeff‘(Xp𝑓 − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧}))))
187181, 183, 186sylancr 581 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (coeff‘(Xp𝑓 − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧}))))
188187fveq1d 6448 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) = (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘1))
189 1nn0 11660 . . . . . . . . . . . . . 14 1 ∈ ℕ0
190184coef3 24425 . . . . . . . . . . . . . . . . 17 (Xp ∈ (Poly‘ℂ) → (coeff‘Xp):ℕ0⟶ℂ)
191 ffn 6291 . . . . . . . . . . . . . . . . 17 ((coeff‘Xp):ℕ0⟶ℂ → (coeff‘Xp) Fn ℕ0)
192181, 190, 191mp2b 10 . . . . . . . . . . . . . . . 16 (coeff‘Xp) Fn ℕ0
193192a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘Xp) Fn ℕ0)
194185coef3 24425 . . . . . . . . . . . . . . . 16 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ)
195 ffn 6291 . . . . . . . . . . . . . . . 16 ((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
196183, 194, 1953syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
197 nn0ex 11649 . . . . . . . . . . . . . . . 16 0 ∈ V
198197a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ℕ0 ∈ V)
199 inidm 4042 . . . . . . . . . . . . . . 15 (ℕ0 ∩ ℕ0) = ℕ0
200 coeidp 24456 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ0 → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
201200adantl 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
202 eqid 2777 . . . . . . . . . . . . . . . . 17 1 = 1
203202iftruei 4313 . . . . . . . . . . . . . . . 16 if(1 = 1, 1, 0) = 1
204201, 203syl6eq 2829 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = 1)
205 0lt1 10897 . . . . . . . . . . . . . . . . . 18 0 < 1
206 0re 10378 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
207 1re 10376 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
208206, 207ltnlei 10497 . . . . . . . . . . . . . . . . . 18 (0 < 1 ↔ ¬ 1 ≤ 0)
209205, 208mpbi 222 . . . . . . . . . . . . . . . . 17 ¬ 1 ≤ 0
21050adantr 474 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → 𝑧 ∈ ℂ)
211 0dgr 24438 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (deg‘(ℂ × {𝑧})) = 0)
212210, 211syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (deg‘(ℂ × {𝑧})) = 0)
213212breq2d 4898 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0))
214209, 213mtbiri 319 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ¬ 1 ≤ (deg‘(ℂ × {𝑧})))
215 eqid 2777 . . . . . . . . . . . . . . . . . . . 20 (deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧}))
216185, 215dgrub 24427 . . . . . . . . . . . . . . . . . . 19 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤ (deg‘(ℂ × {𝑧})))
2172163expia 1111 . . . . . . . . . . . . . . . . . 18 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
218183, 217sylan 575 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
219218necon1bd 2986 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ × {𝑧}))‘1) = 0))
220214, 219mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘1) = 0)
221193, 196, 198, 198, 199, 204, 220ofval 7183 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
222189, 221mpan2 681 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
223 1m0e1 11503 . . . . . . . . . . . . 13 (1 − 0) = 1
224222, 223syl6eq 2829 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘1) = 1)
225188, 224eqtrd 2813 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) = 1)
226178, 225eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) = 1)
227226oveq1d 6937 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 · ((coeff‘𝑄)‘(deg‘𝑄))))
228175coef3 24425 . . . . . . . . . . . 12 (𝑄 ∈ (Poly‘ℂ) → (coeff‘𝑄):ℕ0⟶ℂ)
22932, 228syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (coeff‘𝑄):ℕ0⟶ℂ)
230229, 34ffvelrnd 6624 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ)
231230mulid2d 10395 . . . . . . . . 9 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
232227, 231eqtrd 2813 . . . . . . . 8 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘(deg‘(Xp𝑓 − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
233173, 177, 2323eqtrd 2817 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘𝑄)‘(deg‘𝑄)))
234155, 233oveq12d 6940 . . . . . 6 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
235234negeqd 10616 . . . . 5 ((𝜑𝑧𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
236154, 235eqtr4d 2816 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)))
237134, 236oveq12d 6940 . . 3 ((𝜑𝑧𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
23850negcld 10721 . . . . 5 ((𝜑𝑧𝑅) → -𝑧 ∈ ℂ)
239 nnm1nn0 11685 . . . . . . . . 9 (𝐷 ∈ ℕ → (𝐷 − 1) ∈ ℕ0)
2403, 239syl 17 . . . . . . . 8 (𝜑 → (𝐷 − 1) ∈ ℕ0)
241240adantr 474 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 − 1) ∈ ℕ0)
242229, 241ffvelrnd 6624 . . . . . 6 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈ ℂ)
243233, 230eqeltrd 2858 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ∈ ℂ)
2449, 27dgreq0 24458 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
24543, 244syl 17 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
246245necon3bid 3012 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴𝑁) ≠ 0))
24783, 246mpbid 224 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ≠ 0)
248242, 243, 247divcld 11151 . . . . 5 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) ∈ ℂ)
249238, 248negdid 10747 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
250238, 243mulcld 10397 . . . . . . 7 ((𝜑𝑧𝑅) → (-𝑧 · (𝐴𝑁)) ∈ ℂ)
251250, 242, 243, 247divdird 11189 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
252 nnm1nn0 11685 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2535, 252syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
254253adantr 474 . . . . . . . . 9 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ0)
255174, 175coemul 24445 . . . . . . . . 9 (((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
25669, 32, 254, 255syl3anc 1439 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
257157fveq1d 6448 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴‘(𝑁 − 1)) = ((coeff‘((Xp𝑓 − (ℂ × {𝑧})) ∘𝑓 · 𝑄))‘(𝑁 − 1)))
258 1e0p1 11888 . . . . . . . . . . . 12 1 = (0 + 1)
259258oveq2i 6933 . . . . . . . . . . 11 (0...1) = (0...(0 + 1))
260259sumeq1i 14836 . . . . . . . . . 10 Σ𝑘 ∈ (0...1)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))
261 0nn0 11659 . . . . . . . . . . . . 13 0 ∈ ℕ0
262 nn0uz 12028 . . . . . . . . . . . . 13 0 = (ℤ‘0)
263261, 262eleqtri 2856 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
264263a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 0 ∈ (ℤ‘0))
265259eleq2i 2850 . . . . . . . . . . . 12 (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 + 1)))
266174coef3 24425 . . . . . . . . . . . . . . 15 ((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (coeff‘(Xp𝑓 − (ℂ × {𝑧}))):ℕ0⟶ℂ)
26769, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (coeff‘(Xp𝑓 − (ℂ × {𝑧}))):ℕ0⟶ℂ)
268 elfznn0 12751 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
269 ffvelrn 6621 . . . . . . . . . . . . . 14 (((coeff‘(Xp𝑓 − (ℂ × {𝑧}))):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
270267, 268, 269syl2an 589 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
2712oveq1d 6937 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1))
272 pncan 10628 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐷 + 1) − 1) = 𝐷)
273102, 101, 272sylancl 580 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = 𝐷)
274271, 273eqtr3d 2815 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) = 𝐷)
275274adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝑁 − 1) = 𝐷)
2763adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐷 ∈ ℕ)
277275, 276eqeltrd 2858 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ)
278 nnuz 12029 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
279277, 278syl6eleq 2868 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ (ℤ‘1))
280 fzss2 12698 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ (ℤ‘1) → (0...1) ⊆ (0...(𝑁 − 1)))
281279, 280syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (0...1) ⊆ (0...(𝑁 − 1)))
282281sselda 3820 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
283 fznn0sub 12690 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈ ℕ0)
284 ffvelrn 6621 . . . . . . . . . . . . . . 15 (((coeff‘𝑄):ℕ0⟶ℂ ∧ ((𝑁 − 1) − 𝑘) ∈ ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
285229, 283, 284syl2an 589 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
286282, 285syldan 585 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
287270, 286mulcld 10397 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
288265, 287sylan2br 588 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
289 id 22 . . . . . . . . . . . . . 14 (𝑘 = (0 + 1) → 𝑘 = (0 + 1))
290289, 258syl6eqr 2831 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → 𝑘 = 1)
291290fveq2d 6450 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1))
292290oveq2d 6938 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1))
293292fveq2d 6450 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1)))
294291, 293oveq12d 6940 . . . . . . . . . . 11 (𝑘 = (0 + 1) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))
295264, 288, 294fsump1 14892 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
296260, 295syl5eq 2825 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
297 eldifn 3955 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬ 𝑘 ∈ (0...1))
298297adantl 475 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬ 𝑘 ∈ (0...1))
299 eldifi 3954 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
300 elfznn0 12751 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
301299, 300syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ ℕ0)
302174, 167dgrub 24427 . . . . . . . . . . . . . . . . 17 (((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧}))))
3033023expia 1111 . . . . . . . . . . . . . . . 16 (((Xp𝑓 − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧})))))
30469, 301, 303syl2an 589 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧})))))
305 elfzuz 12655 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ (ℤ‘0))
306299, 305syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (ℤ‘0))
307306adantl 475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈ (ℤ‘0))
308 1z 11759 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
309 elfz5 12651 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
310307, 308, 309sylancl 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
311159breq2d 4898 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
312311adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
313310, 312bitr4d 274 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ (deg‘(Xp𝑓 − (ℂ × {𝑧})))))
314304, 313sylibrd 251 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1)))
315314necon1bd 2986 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬ 𝑘 ∈ (0...1) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) = 0))
316298, 315mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) = 0)
317316oveq1d 6937 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
318299, 285sylan2 586 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
319318mul02d 10574 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
320317, 319eqtrd 2813 . . . . . . . . . 10 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
321 fzfid 13091 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (0...(𝑁 − 1)) ∈ Fin)
322281, 287, 320, 321fsumss 14863 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
323 0z 11739 . . . . . . . . . . . 12 0 ∈ ℤ
324187fveq1d 6448 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) = (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘0))
325 coeidp 24456 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = if(0 = 1, 1, 0))
326160nesymi 3025 . . . . . . . . . . . . . . . . . . . . 21 ¬ 0 = 1
327326iffalsei 4316 . . . . . . . . . . . . . . . . . . . 20 if(0 = 1, 1, 0) = 0
328325, 327syl6eq 2829 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = 0)
329328adantl 475 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘Xp)‘0) = 0)
330 0cn 10368 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
331 vex 3400 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
332331fvconst2 6741 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℂ → ((ℂ × {𝑧})‘0) = 𝑧)
333330, 332ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℂ × {𝑧})‘0) = 𝑧
334185coefv0 24441 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
335183, 334syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑅) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
336333, 335syl5reqr 2828 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑅) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
337336adantr 474 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
338193, 196, 198, 198, 199, 329, 337ofval 7183 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
339261, 338mpan2 681 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
340 df-neg 10609 . . . . . . . . . . . . . . . 16 -𝑧 = (0 − 𝑧)
341339, 340syl6eqr 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘𝑓 − (coeff‘(ℂ × {𝑧})))‘0) = -𝑧)
342324, 341eqtrd 2813 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) = -𝑧)
343275oveq1d 6937 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0))
344103subid1d 10723 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝐷 − 0) = 𝐷)
345343, 344, 313eqtrd 2817 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄))
346345fveq2d 6450 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = ((coeff‘𝑄)‘(deg‘𝑄)))
347346, 233eqtr4d 2816 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴𝑁))
348342, 347oveq12d 6940 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴𝑁)))
349348, 250eqeltrd 2858 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
350 fveq2 6446 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0))
351 oveq2 6930 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0))
352351fveq2d 6450 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0)))
353350, 352oveq12d 6940 . . . . . . . . . . . . 13 (𝑘 = 0 → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
354353fsum1 14883 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
355323, 349, 354sylancr 581 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
356355, 348eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴𝑁)))
357275fvoveq1d 6944 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) = ((coeff‘𝑄)‘(𝐷 − 1)))
358225, 357oveq12d 6940 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 · ((coeff‘𝑄)‘(𝐷 − 1))))
359242mulid2d 10395 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
360358, 359eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
361356, 360oveq12d 6940 . . . . . . . . 9 ((𝜑𝑧𝑅) → (Σ𝑘 ∈ (0...0)(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))))
362296, 322, 3613eqtr3rd 2822 . . . . . . . 8 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xp𝑓 − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
363256, 257, 3623eqtr4rd 2824 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1)))
364363oveq1d 6937 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
365238, 243, 247divcan4d 11157 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) = -𝑧)
366365oveq1d 6937 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
367251, 364, 3663eqtr3rd 2822 . . . . 5 ((𝜑𝑧𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
368367negeqd 10616 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
369249, 368eqtr3d 2815 . . 3 ((𝜑𝑧𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
370129, 237, 3693eqtrd 2817 . 2 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
37125, 370exlimddv 1978 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wex 1823  wcel 2106  wne 2968  wral 3089  Vcvv 3397  cdif 3788  cun 3789  cin 3790  wss 3791  c0 4140  ifcif 4306  {csn 4397   class class class wbr 4886   × cxp 5353  ccnv 5354  dom cdm 5355  cima 5358   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172  Fincfn 8241  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  0cn0 11642  cz 11728  cuz 11992  ...cfz 12643  chash 13435  Σcsu 14824  0𝑝c0p 23873  Polycply 24377  Xpcidp 24378  coeffccoe 24379  degcdgr 24380   quot cquot 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-idp 24382  df-coe 24383  df-dgr 24384  df-quot 24483
This theorem is referenced by:  vieta1  24504
  Copyright terms: Public domain W3C validator