MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem2 Structured version   Visualization version   GIF version

Theorem vieta1lem2 26246
Description: Lemma for vieta1 26247: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥𝑅𝑥 = -𝐴𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem2 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . . . . 5 (𝜑 → (♯‘𝑅) = 𝑁)
2 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
3 vieta1lem.6 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
43peano2nnd 12142 . . . . . . 7 (𝜑 → (𝐷 + 1) ∈ ℕ)
52, 4eqeltrrd 2832 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnne0d 12175 . . . . 5 (𝜑𝑁 ≠ 0)
71, 6eqnetrd 2995 . . . 4 (𝜑 → (♯‘𝑅) ≠ 0)
8 vieta1.4 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
9 vieta1.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
109, 6eqnetrrid 3003 . . . . . . . . 9 (𝜑 → (deg‘𝐹) ≠ 0)
11 fveq2 6822 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 26195 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2782 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1413necon3i 2960 . . . . . . . . 9 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
1510, 14syl 17 . . . . . . . 8 (𝜑𝐹 ≠ 0𝑝)
16 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
1716fta1 26243 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
188, 15, 17syl2anc 584 . . . . . . 7 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
1918simpld 494 . . . . . 6 (𝜑𝑅 ∈ Fin)
20 hasheq0 14270 . . . . . 6 (𝑅 ∈ Fin → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2119, 20syl 17 . . . . 5 (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2221necon3bid 2972 . . . 4 (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅))
237, 22mpbid 232 . . 3 (𝜑𝑅 ≠ ∅)
24 n0 4300 . . 3 (𝑅 ≠ ∅ ↔ ∃𝑧 𝑧𝑅)
2523, 24sylib 218 . 2 (𝜑 → ∃𝑧 𝑧𝑅)
26 incom 4156 . . . . 5 ({𝑧} ∩ (𝑄 “ {0})) = ((𝑄 “ {0}) ∩ {𝑧})
27 vieta1.1 . . . . . . . . . . 11 𝐴 = (coeff‘𝐹)
28 vieta1lem.8 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
29 vieta1lem.9 . . . . . . . . . . 11 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
3027, 9, 16, 8, 1, 3, 2, 28, 29vieta1lem1 26245 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
3130simprd 495 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
3230simpld 494 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
33 dgrcl 26165 . . . . . . . . . . 11 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0red 12443 . . . . . . . . 9 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℝ)
3631, 35eqeltrd 2831 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 ∈ ℝ)
3736ltp1d 12052 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 < (𝐷 + 1))
3836, 37gtned 11248 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 + 1) ≠ 𝐷)
39 snssi 4757 . . . . . . . . . . 11 (𝑧 ∈ (𝑄 “ {0}) → {𝑧} ⊆ (𝑄 “ {0}))
40 ssequn1 4133 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑄 “ {0}) ↔ ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4139, 40sylib 218 . . . . . . . . . 10 (𝑧 ∈ (𝑄 “ {0}) → ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4241fveq2d 6826 . . . . . . . . 9 (𝑧 ∈ (𝑄 “ {0}) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})))
438adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
44 cnvimass 6030 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ {0}) ⊆ dom 𝐹
4516, 44eqsstri 3976 . . . . . . . . . . . . . . . . . . . 20 𝑅 ⊆ dom 𝐹
46 plyf 26130 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
47 fdm 6660 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → dom 𝐹 = ℂ)
488, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℂ)
4945, 48sseqtrid 3972 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ⊆ ℂ)
5049sselda 3929 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
5116eleq2i 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
52 ffn 6651 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
53 fniniseg 6993 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
548, 46, 52, 534syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5551, 54bitrid 283 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5655simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
57 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
5857facth 26241 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
5943, 50, 56, 58syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
6029oveq2i 7357 . . . . . . . . . . . . . . . . 17 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
6159, 60eqtr4di 2784 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6261cnveqd 5814 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6362imaeq1d 6007 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
6416, 63eqtrid 2778 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 𝑅 = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
65 cnex 11087 . . . . . . . . . . . . . 14 ℂ ∈ V
6657plyremlem 26239 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6750, 66syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6867simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
69 plyf 26130 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
7068, 69syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
71 plyf 26130 . . . . . . . . . . . . . . 15 (𝑄 ∈ (Poly‘ℂ) → 𝑄:ℂ⟶ℂ)
7232, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄:ℂ⟶ℂ)
73 ofmulrt 26216 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7465, 70, 72, 73mp3an2i 1468 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7567simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧})
7675uneq1d 4114 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})) = ({𝑧} ∪ (𝑄 “ {0})))
7764, 74, 763eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → 𝑅 = ({𝑧} ∪ (𝑄 “ {0})))
7877fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (𝑄 “ {0}))))
791, 2eqtr4d 2769 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑅) = (𝐷 + 1))
8079adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (𝐷 + 1))
8178, 80eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (𝐷 + 1))
8215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
8361, 82eqnetrrd 2996 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
84 plymul0or 26215 . . . . . . . . . . . . . . . . . . 19 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8568, 32, 84syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8685necon3abid 2964 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
88 neanior 3021 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
8987, 88sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
9089simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
91 eqid 2731 . . . . . . . . . . . . . . 15 (𝑄 “ {0}) = (𝑄 “ {0})
9291fta1 26243 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9332, 90, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9493simprd 495 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄))
9594, 31breqtrrd 5117 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ 𝐷)
96 snfi 8965 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
9793simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝑄 “ {0}) ∈ Fin)
98 hashun2 14290 . . . . . . . . . . . . . 14 (({𝑧} ∈ Fin ∧ (𝑄 “ {0}) ∈ Fin) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
9996, 97, 98sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
100 ax-1cn 11064 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1013nncnd 12141 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
102101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
103 addcom 11299 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
104100, 102, 103sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
10581, 104eqtr4d 2769 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (1 + 𝐷))
106 hashsng 14276 . . . . . . . . . . . . . . 15 (𝑧𝑅 → (♯‘{𝑧}) = 1)
107106adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘{𝑧}) = 1)
108107oveq1d 7361 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))) = (1 + (♯‘(𝑄 “ {0}))))
10999, 105, 1083brtr3d 5120 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0}))))
110 hashcl 14263 . . . . . . . . . . . . . . 15 ((𝑄 “ {0}) ∈ Fin → (♯‘(𝑄 “ {0})) ∈ ℕ0)
11197, 110syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℕ0)
112111nn0red 12443 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℝ)
113 1red 11113 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 1 ∈ ℝ)
11436, 112, 113leadd2d 11712 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (𝐷 ≤ (♯‘(𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0})))))
115109, 114mpbird 257 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝐷 ≤ (♯‘(𝑄 “ {0})))
116112, 36letri3d 11255 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((♯‘(𝑄 “ {0})) = 𝐷 ↔ ((♯‘(𝑄 “ {0})) ≤ 𝐷𝐷 ≤ (♯‘(𝑄 “ {0})))))
11795, 115, 116mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = 𝐷)
11881, 117eqeq12d 2747 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷))
11942, 118imbitrid 244 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝑧 ∈ (𝑄 “ {0}) → (𝐷 + 1) = 𝐷))
120119necon3ad 2941 . . . . . . 7 ((𝜑𝑧𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (𝑄 “ {0})))
12138, 120mpd 15 . . . . . 6 ((𝜑𝑧𝑅) → ¬ 𝑧 ∈ (𝑄 “ {0}))
122 disjsn 4661 . . . . . 6 (((𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑄 “ {0}))
123121, 122sylibr 234 . . . . 5 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∩ {𝑧}) = ∅)
12426, 123eqtrid 2778 . . . 4 ((𝜑𝑧𝑅) → ({𝑧} ∩ (𝑄 “ {0})) = ∅)
12519adantr 480 . . . 4 ((𝜑𝑧𝑅) → 𝑅 ∈ Fin)
12649adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝑅 ⊆ ℂ)
127126sselda 3929 . . . 4 (((𝜑𝑧𝑅) ∧ 𝑥𝑅) → 𝑥 ∈ ℂ)
128124, 77, 125, 127fsumsplit 15648 . . 3 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥))
129 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
130129sumsn 15653 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13150, 50, 130syl2anc 584 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13250negnegd 11463 . . . . 5 ((𝜑𝑧𝑅) → --𝑧 = 𝑧)
133131, 132eqtr4d 2769 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧)
134117, 31eqtrd 2766 . . . . . 6 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = (deg‘𝑄))
135 fveq2 6822 . . . . . . . . . 10 (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄))
136135eqeq2d 2742 . . . . . . . . 9 (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄)))
137 cnveq 5812 . . . . . . . . . . . 12 (𝑓 = 𝑄𝑓 = 𝑄)
138137imaeq1d 6007 . . . . . . . . . . 11 (𝑓 = 𝑄 → (𝑓 “ {0}) = (𝑄 “ {0}))
139138fveq2d 6826 . . . . . . . . . 10 (𝑓 = 𝑄 → (♯‘(𝑓 “ {0})) = (♯‘(𝑄 “ {0})))
140139, 135eqeq12d 2747 . . . . . . . . 9 (𝑓 = 𝑄 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(𝑄 “ {0})) = (deg‘𝑄)))
141136, 140anbi12d 632 . . . . . . . 8 (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄))))
142138sumeq1d 15607 . . . . . . . . 9 (𝑓 = 𝑄 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥 ∈ (𝑄 “ {0})𝑥)
143 fveq2 6822 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄))
144135oveq1d 7361 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1))
145143, 144fveq12d 6829 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
146143, 135fveq12d 6829 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄)))
147145, 146oveq12d 7364 . . . . . . . . . 10 (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
148147negeqd 11354 . . . . . . . . 9 (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
149142, 148eqeq12d 2747 . . . . . . . 8 (𝑓 = 𝑄 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
150141, 149imbi12d 344 . . . . . . 7 (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))))
15128adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
152150, 151, 32rspcdva 3573 . . . . . 6 ((𝜑𝑧𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
15331, 134, 152mp2and 699 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
15431fvoveq1d 7368 . . . . . . 7 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
15561fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (coeff‘𝐹) = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15627, 155eqtrid 2778 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐴 = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15761fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15867simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
159 ax-1ne0 11075 . . . . . . . . . . . . . . 15 1 ≠ 0
160159a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 1 ≠ 0)
161158, 160eqnetrd 2995 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
162 fveq2 6822 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
163162, 12eqtrdi 2782 . . . . . . . . . . . . . 14 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
164163necon3i 2960 . . . . . . . . . . . . 13 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
165161, 164syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
166 eqid 2731 . . . . . . . . . . . . 13 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
167 eqid 2731 . . . . . . . . . . . . 13 (deg‘𝑄) = (deg‘𝑄)
168166, 167dgrmul 26203 . . . . . . . . . . . 12 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
16968, 165, 32, 90, 168syl22anc 838 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
170157, 169eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝐹) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
1719, 170eqtrid 2778 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝑁 = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
172156, 171fveq12d 6829 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))))
173 eqid 2731 . . . . . . . . . 10 (coeff‘(Xpf − (ℂ × {𝑧}))) = (coeff‘(Xpf − (ℂ × {𝑧})))
174 eqid 2731 . . . . . . . . . 10 (coeff‘𝑄) = (coeff‘𝑄)
175173, 174, 166, 167coemulhi 26186 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
17668, 32, 175syl2anc 584 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
177158fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
178 ssid 3952 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
179 plyid 26141 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
180178, 100, 179mp2an 692 . . . . . . . . . . . . . 14 Xp ∈ (Poly‘ℂ)
181 plyconst 26138 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
182178, 50, 181sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
183 eqid 2731 . . . . . . . . . . . . . . 15 (coeff‘Xp) = (coeff‘Xp)
184 eqid 2731 . . . . . . . . . . . . . . 15 (coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧}))
185183, 184coesub 26189 . . . . . . . . . . . . . 14 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝑧}) ∈ (Poly‘ℂ)) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
186180, 182, 185sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
187186fveq1d 6824 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1))
188 1nn0 12397 . . . . . . . . . . . . . 14 1 ∈ ℕ0
189183coef3 26164 . . . . . . . . . . . . . . . . 17 (Xp ∈ (Poly‘ℂ) → (coeff‘Xp):ℕ0⟶ℂ)
190 ffn 6651 . . . . . . . . . . . . . . . . 17 ((coeff‘Xp):ℕ0⟶ℂ → (coeff‘Xp) Fn ℕ0)
191180, 189, 190mp2b 10 . . . . . . . . . . . . . . . 16 (coeff‘Xp) Fn ℕ0
192191a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘Xp) Fn ℕ0)
193184coef3 26164 . . . . . . . . . . . . . . . 16 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ)
194 ffn 6651 . . . . . . . . . . . . . . . 16 ((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
195182, 193, 1943syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
196 nn0ex 12387 . . . . . . . . . . . . . . . 16 0 ∈ V
197196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ℕ0 ∈ V)
198 inidm 4174 . . . . . . . . . . . . . . 15 (ℕ0 ∩ ℕ0) = ℕ0
199 coeidp 26196 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ0 → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
200199adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
201 eqid 2731 . . . . . . . . . . . . . . . . 17 1 = 1
202201iftruei 4479 . . . . . . . . . . . . . . . 16 if(1 = 1, 1, 0) = 1
203200, 202eqtrdi 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = 1)
204 0lt1 11639 . . . . . . . . . . . . . . . . . 18 0 < 1
205 0re 11114 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
206 1re 11112 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
207205, 206ltnlei 11234 . . . . . . . . . . . . . . . . . 18 (0 < 1 ↔ ¬ 1 ≤ 0)
208204, 207mpbi 230 . . . . . . . . . . . . . . . . 17 ¬ 1 ≤ 0
20950adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → 𝑧 ∈ ℂ)
210 0dgr 26177 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (deg‘(ℂ × {𝑧})) = 0)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (deg‘(ℂ × {𝑧})) = 0)
212211breq2d 5101 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0))
213208, 212mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ¬ 1 ≤ (deg‘(ℂ × {𝑧})))
214 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧}))
215184, 214dgrub 26166 . . . . . . . . . . . . . . . . . . 19 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤ (deg‘(ℂ × {𝑧})))
2162153expia 1121 . . . . . . . . . . . . . . . . . 18 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
217182, 216sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
218217necon1bd 2946 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ × {𝑧}))‘1) = 0))
219213, 218mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘1) = 0)
220192, 195, 197, 197, 198, 203, 219ofval 7621 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
221188, 220mpan2 691 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
222 1m0e1 12241 . . . . . . . . . . . . 13 (1 − 0) = 1
223221, 222eqtrdi 2782 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = 1)
224187, 223eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = 1)
225177, 224eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = 1)
226225oveq1d 7361 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 · ((coeff‘𝑄)‘(deg‘𝑄))))
227174coef3 26164 . . . . . . . . . . . 12 (𝑄 ∈ (Poly‘ℂ) → (coeff‘𝑄):ℕ0⟶ℂ)
22832, 227syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (coeff‘𝑄):ℕ0⟶ℂ)
229228, 34ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ)
230229mullidd 11130 . . . . . . . . 9 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
231226, 230eqtrd 2766 . . . . . . . 8 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
232172, 176, 2313eqtrd 2770 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘𝑄)‘(deg‘𝑄)))
233154, 232oveq12d 7364 . . . . . 6 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
234233negeqd 11354 . . . . 5 ((𝜑𝑧𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
235153, 234eqtr4d 2769 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)))
236133, 235oveq12d 7364 . . 3 ((𝜑𝑧𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
23750negcld 11459 . . . . 5 ((𝜑𝑧𝑅) → -𝑧 ∈ ℂ)
238 nnm1nn0 12422 . . . . . . . . 9 (𝐷 ∈ ℕ → (𝐷 − 1) ∈ ℕ0)
2393, 238syl 17 . . . . . . . 8 (𝜑 → (𝐷 − 1) ∈ ℕ0)
240239adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 − 1) ∈ ℕ0)
241228, 240ffvelcdmd 7018 . . . . . 6 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈ ℂ)
242232, 229eqeltrd 2831 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ∈ ℂ)
2439, 27dgreq0 26198 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
24443, 243syl 17 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
245244necon3bid 2972 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴𝑁) ≠ 0))
24682, 245mpbid 232 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ≠ 0)
247241, 242, 246divcld 11897 . . . . 5 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) ∈ ℂ)
248237, 247negdid 11485 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
249237, 242mulcld 11132 . . . . . . 7 ((𝜑𝑧𝑅) → (-𝑧 · (𝐴𝑁)) ∈ ℂ)
250249, 241, 242, 246divdird 11935 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
251 nnm1nn0 12422 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2525, 251syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
253252adantr 480 . . . . . . . . 9 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ0)
254173, 174coemul 26184 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
25568, 32, 253, 254syl3anc 1373 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
256156fveq1d 6824 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴‘(𝑁 − 1)) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)))
257 1e0p1 12630 . . . . . . . . . . . 12 1 = (0 + 1)
258257oveq2i 7357 . . . . . . . . . . 11 (0...1) = (0...(0 + 1))
259258sumeq1i 15604 . . . . . . . . . 10 Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))
260 0nn0 12396 . . . . . . . . . . . . 13 0 ∈ ℕ0
261 nn0uz 12774 . . . . . . . . . . . . 13 0 = (ℤ‘0)
262260, 261eleqtri 2829 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
263262a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 0 ∈ (ℤ‘0))
264258eleq2i 2823 . . . . . . . . . . . 12 (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 + 1)))
265173coef3 26164 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
26668, 265syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
267 elfznn0 13520 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
268 ffvelcdm 7014 . . . . . . . . . . . . . 14 (((coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
269266, 267, 268syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
2702oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1))
271 pncan 11366 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐷 + 1) − 1) = 𝐷)
272101, 100, 271sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = 𝐷)
273270, 272eqtr3d 2768 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) = 𝐷)
274273adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝑁 − 1) = 𝐷)
2753adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐷 ∈ ℕ)
276274, 275eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ)
277 nnuz 12775 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
278276, 277eleqtrdi 2841 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ (ℤ‘1))
279 fzss2 13464 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ (ℤ‘1) → (0...1) ⊆ (0...(𝑁 − 1)))
280278, 279syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (0...1) ⊆ (0...(𝑁 − 1)))
281280sselda 3929 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
282 fznn0sub 13456 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈ ℕ0)
283 ffvelcdm 7014 . . . . . . . . . . . . . . 15 (((coeff‘𝑄):ℕ0⟶ℂ ∧ ((𝑁 − 1) − 𝑘) ∈ ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
284228, 282, 283syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
285281, 284syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
286269, 285mulcld 11132 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
287264, 286sylan2br 595 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
288 id 22 . . . . . . . . . . . . . 14 (𝑘 = (0 + 1) → 𝑘 = (0 + 1))
289288, 257eqtr4di 2784 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → 𝑘 = 1)
290289fveq2d 6826 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
291289oveq2d 7362 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1))
292291fveq2d 6826 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1)))
293290, 292oveq12d 7364 . . . . . . . . . . 11 (𝑘 = (0 + 1) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))
294263, 287, 293fsump1 15663 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
295259, 294eqtrid 2778 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
296 eldifn 4079 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬ 𝑘 ∈ (0...1))
297296adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬ 𝑘 ∈ (0...1))
298 eldifi 4078 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
299 elfznn0 13520 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
300298, 299syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ ℕ0)
301173, 166dgrub 26166 . . . . . . . . . . . . . . . . 17 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))))
3023013expia 1121 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
30368, 300, 302syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
304 elfzuz 13420 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ (ℤ‘0))
305298, 304syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (ℤ‘0))
306305adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈ (ℤ‘0))
307 1z 12502 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
308 elfz5 13416 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
309306, 307, 308sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
310158breq2d 5101 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
311310adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
312309, 311bitr4d 282 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
313303, 312sylibrd 259 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1)))
314313necon1bd 2946 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬ 𝑘 ∈ (0...1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0))
315297, 314mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0)
316315oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
317298, 284sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
318317mul02d 11311 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
319316, 318eqtrd 2766 . . . . . . . . . 10 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
320 fzfid 13880 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (0...(𝑁 − 1)) ∈ Fin)
321280, 286, 319, 320fsumss 15632 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
322 0z 12479 . . . . . . . . . . . 12 0 ∈ ℤ
323186fveq1d 6824 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0))
324 coeidp 26196 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = if(0 = 1, 1, 0))
325159nesymi 2985 . . . . . . . . . . . . . . . . . . . . 21 ¬ 0 = 1
326325iffalsei 4482 . . . . . . . . . . . . . . . . . . . 20 if(0 = 1, 1, 0) = 0
327324, 326eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = 0)
328327adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘Xp)‘0) = 0)
329184coefv0 26180 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
330182, 329syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑅) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
331 0cn 11104 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
332 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
333332fvconst2 7138 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℂ → ((ℂ × {𝑧})‘0) = 𝑧)
334331, 333ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℂ × {𝑧})‘0) = 𝑧
335330, 334eqtr3di 2781 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑅) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
336335adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
337192, 195, 197, 197, 198, 328, 336ofval 7621 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
338260, 337mpan2 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
339 df-neg 11347 . . . . . . . . . . . . . . . 16 -𝑧 = (0 − 𝑧)
340338, 339eqtr4di 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = -𝑧)
341323, 340eqtrd 2766 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = -𝑧)
342274oveq1d 7361 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0))
343102subid1d 11461 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝐷 − 0) = 𝐷)
344342, 343, 313eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄))
345344fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = ((coeff‘𝑄)‘(deg‘𝑄)))
346345, 232eqtr4d 2769 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴𝑁))
347341, 346oveq12d 7364 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴𝑁)))
348347, 249eqeltrd 2831 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
349 fveq2 6822 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘0))
350 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0))
351350fveq2d 6826 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0)))
352349, 351oveq12d 7364 . . . . . . . . . . . . 13 (𝑘 = 0 → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
353352fsum1 15654 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
354322, 348, 353sylancr 587 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
355354, 347eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴𝑁)))
356274fvoveq1d 7368 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) = ((coeff‘𝑄)‘(𝐷 − 1)))
357224, 356oveq12d 7364 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 · ((coeff‘𝑄)‘(𝐷 − 1))))
358241mullidd 11130 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
359357, 358eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
360355, 359oveq12d 7364 . . . . . . . . 9 ((𝜑𝑧𝑅) → (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))))
361295, 321, 3603eqtr3rd 2775 . . . . . . . 8 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
362255, 256, 3613eqtr4rd 2777 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1)))
363362oveq1d 7361 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
364237, 242, 246divcan4d 11903 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) = -𝑧)
365364oveq1d 7361 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
366250, 363, 3653eqtr3rd 2775 . . . . 5 ((𝜑𝑧𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
367366negeqd 11354 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
368248, 367eqtr3d 2768 . . 3 ((𝜑𝑧𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
369128, 236, 3683eqtrd 2770 . 2 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
37025, 369exlimddv 1936 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089   × cxp 5612  ccnv 5613  dom cdm 5614  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  chash 14237  Σcsu 15593  0𝑝c0p 25597  Polycply 26116  Xpcidp 26117  coeffccoe 26118  degcdgr 26119   quot cquot 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25598  df-ply 26120  df-idp 26121  df-coe 26122  df-dgr 26123  df-quot 26226
This theorem is referenced by:  vieta1  26247
  Copyright terms: Public domain W3C validator