MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem2 Structured version   Visualization version   GIF version

Theorem vieta1lem2 25671
Description: Lemma for vieta1 25672: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥𝑅𝑥 = -𝐴𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem2 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . . . . 5 (𝜑 → (♯‘𝑅) = 𝑁)
2 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
3 vieta1lem.6 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
43peano2nnd 12170 . . . . . . 7 (𝜑 → (𝐷 + 1) ∈ ℕ)
52, 4eqeltrrd 2839 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnne0d 12203 . . . . 5 (𝜑𝑁 ≠ 0)
71, 6eqnetrd 3011 . . . 4 (𝜑 → (♯‘𝑅) ≠ 0)
8 vieta1.4 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
9 vieta1.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
109, 6eqnetrrid 3019 . . . . . . . . 9 (𝜑 → (deg‘𝐹) ≠ 0)
11 fveq2 6842 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 25623 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2792 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1413necon3i 2976 . . . . . . . . 9 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
1510, 14syl 17 . . . . . . . 8 (𝜑𝐹 ≠ 0𝑝)
16 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
1716fta1 25668 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
188, 15, 17syl2anc 584 . . . . . . 7 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
1918simpld 495 . . . . . 6 (𝜑𝑅 ∈ Fin)
20 hasheq0 14263 . . . . . 6 (𝑅 ∈ Fin → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2119, 20syl 17 . . . . 5 (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2221necon3bid 2988 . . . 4 (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅))
237, 22mpbid 231 . . 3 (𝜑𝑅 ≠ ∅)
24 n0 4306 . . 3 (𝑅 ≠ ∅ ↔ ∃𝑧 𝑧𝑅)
2523, 24sylib 217 . 2 (𝜑 → ∃𝑧 𝑧𝑅)
26 incom 4161 . . . . 5 ({𝑧} ∩ (𝑄 “ {0})) = ((𝑄 “ {0}) ∩ {𝑧})
27 vieta1.1 . . . . . . . . . . 11 𝐴 = (coeff‘𝐹)
28 vieta1lem.8 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
29 vieta1lem.9 . . . . . . . . . . 11 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
3027, 9, 16, 8, 1, 3, 2, 28, 29vieta1lem1 25670 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
3130simprd 496 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
3230simpld 495 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
33 dgrcl 25594 . . . . . . . . . . 11 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0red 12474 . . . . . . . . 9 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℝ)
3631, 35eqeltrd 2838 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 ∈ ℝ)
3736ltp1d 12085 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 < (𝐷 + 1))
3836, 37gtned 11290 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 + 1) ≠ 𝐷)
39 snssi 4768 . . . . . . . . . . 11 (𝑧 ∈ (𝑄 “ {0}) → {𝑧} ⊆ (𝑄 “ {0}))
40 ssequn1 4140 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑄 “ {0}) ↔ ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4139, 40sylib 217 . . . . . . . . . 10 (𝑧 ∈ (𝑄 “ {0}) → ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4241fveq2d 6846 . . . . . . . . 9 (𝑧 ∈ (𝑄 “ {0}) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})))
438adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
44 cnvimass 6033 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ {0}) ⊆ dom 𝐹
4516, 44eqsstri 3978 . . . . . . . . . . . . . . . . . . . 20 𝑅 ⊆ dom 𝐹
46 plyf 25559 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
47 fdm 6677 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → dom 𝐹 = ℂ)
488, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℂ)
4945, 48sseqtrid 3996 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ⊆ ℂ)
5049sselda 3944 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
5116eleq2i 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
52 ffn 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
53 fniniseg 7010 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
548, 46, 52, 534syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5551, 54bitrid 282 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5655simplbda 500 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
57 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
5857facth 25666 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
5943, 50, 56, 58syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
6029oveq2i 7368 . . . . . . . . . . . . . . . . 17 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
6159, 60eqtr4di 2794 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6261cnveqd 5831 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6362imaeq1d 6012 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
6416, 63eqtrid 2788 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 𝑅 = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
65 cnex 11132 . . . . . . . . . . . . . 14 ℂ ∈ V
6657plyremlem 25664 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6750, 66syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6867simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
69 plyf 25559 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
7068, 69syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
71 plyf 25559 . . . . . . . . . . . . . . 15 (𝑄 ∈ (Poly‘ℂ) → 𝑄:ℂ⟶ℂ)
7232, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄:ℂ⟶ℂ)
73 ofmulrt 25642 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7465, 70, 72, 73mp3an2i 1466 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7567simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧})
7675uneq1d 4122 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})) = ({𝑧} ∪ (𝑄 “ {0})))
7764, 74, 763eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → 𝑅 = ({𝑧} ∪ (𝑄 “ {0})))
7877fveq2d 6846 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (𝑄 “ {0}))))
791, 2eqtr4d 2779 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑅) = (𝐷 + 1))
8079adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (𝐷 + 1))
8178, 80eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (𝐷 + 1))
8215adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
8361, 82eqnetrrd 3012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
84 plymul0or 25641 . . . . . . . . . . . . . . . . . . 19 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8568, 32, 84syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8685necon3abid 2980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8783, 86mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
88 neanior 3037 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
8987, 88sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
9089simprd 496 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
91 eqid 2736 . . . . . . . . . . . . . . 15 (𝑄 “ {0}) = (𝑄 “ {0})
9291fta1 25668 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9332, 90, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9493simprd 496 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄))
9594, 31breqtrrd 5133 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ 𝐷)
96 snfi 8988 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
9793simpld 495 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝑄 “ {0}) ∈ Fin)
98 hashun2 14283 . . . . . . . . . . . . . 14 (({𝑧} ∈ Fin ∧ (𝑄 “ {0}) ∈ Fin) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
9996, 97, 98sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
100 ax-1cn 11109 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1013nncnd 12169 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
102101adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
103 addcom 11341 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
104100, 102, 103sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
10581, 104eqtr4d 2779 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (1 + 𝐷))
106 hashsng 14269 . . . . . . . . . . . . . . 15 (𝑧𝑅 → (♯‘{𝑧}) = 1)
107106adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘{𝑧}) = 1)
108107oveq1d 7372 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))) = (1 + (♯‘(𝑄 “ {0}))))
10999, 105, 1083brtr3d 5136 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0}))))
110 hashcl 14256 . . . . . . . . . . . . . . 15 ((𝑄 “ {0}) ∈ Fin → (♯‘(𝑄 “ {0})) ∈ ℕ0)
11197, 110syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℕ0)
112111nn0red 12474 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℝ)
113 1red 11156 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 1 ∈ ℝ)
11436, 112, 113leadd2d 11750 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (𝐷 ≤ (♯‘(𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0})))))
115109, 114mpbird 256 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝐷 ≤ (♯‘(𝑄 “ {0})))
116112, 36letri3d 11297 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((♯‘(𝑄 “ {0})) = 𝐷 ↔ ((♯‘(𝑄 “ {0})) ≤ 𝐷𝐷 ≤ (♯‘(𝑄 “ {0})))))
11795, 115, 116mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = 𝐷)
11881, 117eqeq12d 2752 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷))
11942, 118imbitrid 243 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝑧 ∈ (𝑄 “ {0}) → (𝐷 + 1) = 𝐷))
120119necon3ad 2956 . . . . . . 7 ((𝜑𝑧𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (𝑄 “ {0})))
12138, 120mpd 15 . . . . . 6 ((𝜑𝑧𝑅) → ¬ 𝑧 ∈ (𝑄 “ {0}))
122 disjsn 4672 . . . . . 6 (((𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑄 “ {0}))
123121, 122sylibr 233 . . . . 5 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∩ {𝑧}) = ∅)
12426, 123eqtrid 2788 . . . 4 ((𝜑𝑧𝑅) → ({𝑧} ∩ (𝑄 “ {0})) = ∅)
12519adantr 481 . . . 4 ((𝜑𝑧𝑅) → 𝑅 ∈ Fin)
12649adantr 481 . . . . 5 ((𝜑𝑧𝑅) → 𝑅 ⊆ ℂ)
127126sselda 3944 . . . 4 (((𝜑𝑧𝑅) ∧ 𝑥𝑅) → 𝑥 ∈ ℂ)
128124, 77, 125, 127fsumsplit 15626 . . 3 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥))
129 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
130129sumsn 15631 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13150, 50, 130syl2anc 584 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13250negnegd 11503 . . . . 5 ((𝜑𝑧𝑅) → --𝑧 = 𝑧)
133131, 132eqtr4d 2779 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧)
134117, 31eqtrd 2776 . . . . . 6 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = (deg‘𝑄))
135 fveq2 6842 . . . . . . . . . 10 (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄))
136135eqeq2d 2747 . . . . . . . . 9 (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄)))
137 cnveq 5829 . . . . . . . . . . . 12 (𝑓 = 𝑄𝑓 = 𝑄)
138137imaeq1d 6012 . . . . . . . . . . 11 (𝑓 = 𝑄 → (𝑓 “ {0}) = (𝑄 “ {0}))
139138fveq2d 6846 . . . . . . . . . 10 (𝑓 = 𝑄 → (♯‘(𝑓 “ {0})) = (♯‘(𝑄 “ {0})))
140139, 135eqeq12d 2752 . . . . . . . . 9 (𝑓 = 𝑄 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(𝑄 “ {0})) = (deg‘𝑄)))
141136, 140anbi12d 631 . . . . . . . 8 (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄))))
142138sumeq1d 15586 . . . . . . . . 9 (𝑓 = 𝑄 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥 ∈ (𝑄 “ {0})𝑥)
143 fveq2 6842 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄))
144135oveq1d 7372 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1))
145143, 144fveq12d 6849 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
146143, 135fveq12d 6849 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄)))
147145, 146oveq12d 7375 . . . . . . . . . 10 (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
148147negeqd 11395 . . . . . . . . 9 (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
149142, 148eqeq12d 2752 . . . . . . . 8 (𝑓 = 𝑄 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
150141, 149imbi12d 344 . . . . . . 7 (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))))
15128adantr 481 . . . . . . 7 ((𝜑𝑧𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
152150, 151, 32rspcdva 3582 . . . . . 6 ((𝜑𝑧𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
15331, 134, 152mp2and 697 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
15431fvoveq1d 7379 . . . . . . 7 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
15561fveq2d 6846 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (coeff‘𝐹) = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15627, 155eqtrid 2788 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐴 = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15761fveq2d 6846 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15867simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
159 ax-1ne0 11120 . . . . . . . . . . . . . . 15 1 ≠ 0
160159a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 1 ≠ 0)
161158, 160eqnetrd 3011 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
162 fveq2 6842 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
163162, 12eqtrdi 2792 . . . . . . . . . . . . . 14 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
164163necon3i 2976 . . . . . . . . . . . . 13 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
165161, 164syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
166 eqid 2736 . . . . . . . . . . . . 13 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
167 eqid 2736 . . . . . . . . . . . . 13 (deg‘𝑄) = (deg‘𝑄)
168166, 167dgrmul 25631 . . . . . . . . . . . 12 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
16968, 165, 32, 90, 168syl22anc 837 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
170157, 169eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝐹) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
1719, 170eqtrid 2788 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝑁 = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
172156, 171fveq12d 6849 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))))
173 eqid 2736 . . . . . . . . . 10 (coeff‘(Xpf − (ℂ × {𝑧}))) = (coeff‘(Xpf − (ℂ × {𝑧})))
174 eqid 2736 . . . . . . . . . 10 (coeff‘𝑄) = (coeff‘𝑄)
175173, 174, 166, 167coemulhi 25615 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
17668, 32, 175syl2anc 584 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
177158fveq2d 6846 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
178 ssid 3966 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
179 plyid 25570 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
180178, 100, 179mp2an 690 . . . . . . . . . . . . . 14 Xp ∈ (Poly‘ℂ)
181 plyconst 25567 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
182178, 50, 181sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
183 eqid 2736 . . . . . . . . . . . . . . 15 (coeff‘Xp) = (coeff‘Xp)
184 eqid 2736 . . . . . . . . . . . . . . 15 (coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧}))
185183, 184coesub 25618 . . . . . . . . . . . . . 14 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝑧}) ∈ (Poly‘ℂ)) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
186180, 182, 185sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
187186fveq1d 6844 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1))
188 1nn0 12429 . . . . . . . . . . . . . 14 1 ∈ ℕ0
189183coef3 25593 . . . . . . . . . . . . . . . . 17 (Xp ∈ (Poly‘ℂ) → (coeff‘Xp):ℕ0⟶ℂ)
190 ffn 6668 . . . . . . . . . . . . . . . . 17 ((coeff‘Xp):ℕ0⟶ℂ → (coeff‘Xp) Fn ℕ0)
191180, 189, 190mp2b 10 . . . . . . . . . . . . . . . 16 (coeff‘Xp) Fn ℕ0
192191a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘Xp) Fn ℕ0)
193184coef3 25593 . . . . . . . . . . . . . . . 16 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ)
194 ffn 6668 . . . . . . . . . . . . . . . 16 ((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
195182, 193, 1943syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
196 nn0ex 12419 . . . . . . . . . . . . . . . 16 0 ∈ V
197196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ℕ0 ∈ V)
198 inidm 4178 . . . . . . . . . . . . . . 15 (ℕ0 ∩ ℕ0) = ℕ0
199 coeidp 25624 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ0 → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
200199adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
201 eqid 2736 . . . . . . . . . . . . . . . . 17 1 = 1
202201iftruei 4493 . . . . . . . . . . . . . . . 16 if(1 = 1, 1, 0) = 1
203200, 202eqtrdi 2792 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = 1)
204 0lt1 11677 . . . . . . . . . . . . . . . . . 18 0 < 1
205 0re 11157 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
206 1re 11155 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
207205, 206ltnlei 11276 . . . . . . . . . . . . . . . . . 18 (0 < 1 ↔ ¬ 1 ≤ 0)
208204, 207mpbi 229 . . . . . . . . . . . . . . . . 17 ¬ 1 ≤ 0
20950adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → 𝑧 ∈ ℂ)
210 0dgr 25606 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (deg‘(ℂ × {𝑧})) = 0)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (deg‘(ℂ × {𝑧})) = 0)
212211breq2d 5117 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0))
213208, 212mtbiri 326 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ¬ 1 ≤ (deg‘(ℂ × {𝑧})))
214 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧}))
215184, 214dgrub 25595 . . . . . . . . . . . . . . . . . . 19 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤ (deg‘(ℂ × {𝑧})))
2162153expia 1121 . . . . . . . . . . . . . . . . . 18 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
217182, 216sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
218217necon1bd 2961 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ × {𝑧}))‘1) = 0))
219213, 218mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘1) = 0)
220192, 195, 197, 197, 198, 203, 219ofval 7628 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
221188, 220mpan2 689 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
222 1m0e1 12274 . . . . . . . . . . . . 13 (1 − 0) = 1
223221, 222eqtrdi 2792 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = 1)
224187, 223eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = 1)
225177, 224eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = 1)
226225oveq1d 7372 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 · ((coeff‘𝑄)‘(deg‘𝑄))))
227174coef3 25593 . . . . . . . . . . . 12 (𝑄 ∈ (Poly‘ℂ) → (coeff‘𝑄):ℕ0⟶ℂ)
22832, 227syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (coeff‘𝑄):ℕ0⟶ℂ)
229228, 34ffvelcdmd 7036 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ)
230229mulid2d 11173 . . . . . . . . 9 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
231226, 230eqtrd 2776 . . . . . . . 8 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
232172, 176, 2313eqtrd 2780 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘𝑄)‘(deg‘𝑄)))
233154, 232oveq12d 7375 . . . . . 6 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
234233negeqd 11395 . . . . 5 ((𝜑𝑧𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
235153, 234eqtr4d 2779 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)))
236133, 235oveq12d 7375 . . 3 ((𝜑𝑧𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
23750negcld 11499 . . . . 5 ((𝜑𝑧𝑅) → -𝑧 ∈ ℂ)
238 nnm1nn0 12454 . . . . . . . . 9 (𝐷 ∈ ℕ → (𝐷 − 1) ∈ ℕ0)
2393, 238syl 17 . . . . . . . 8 (𝜑 → (𝐷 − 1) ∈ ℕ0)
240239adantr 481 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 − 1) ∈ ℕ0)
241228, 240ffvelcdmd 7036 . . . . . 6 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈ ℂ)
242232, 229eqeltrd 2838 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ∈ ℂ)
2439, 27dgreq0 25626 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
24443, 243syl 17 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
245244necon3bid 2988 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴𝑁) ≠ 0))
24682, 245mpbid 231 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ≠ 0)
247241, 242, 246divcld 11931 . . . . 5 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) ∈ ℂ)
248237, 247negdid 11525 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
249237, 242mulcld 11175 . . . . . . 7 ((𝜑𝑧𝑅) → (-𝑧 · (𝐴𝑁)) ∈ ℂ)
250249, 241, 242, 246divdird 11969 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
251 nnm1nn0 12454 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2525, 251syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
253252adantr 481 . . . . . . . . 9 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ0)
254173, 174coemul 25613 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
25568, 32, 253, 254syl3anc 1371 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
256156fveq1d 6844 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴‘(𝑁 − 1)) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)))
257 1e0p1 12660 . . . . . . . . . . . 12 1 = (0 + 1)
258257oveq2i 7368 . . . . . . . . . . 11 (0...1) = (0...(0 + 1))
259258sumeq1i 15583 . . . . . . . . . 10 Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))
260 0nn0 12428 . . . . . . . . . . . . 13 0 ∈ ℕ0
261 nn0uz 12805 . . . . . . . . . . . . 13 0 = (ℤ‘0)
262260, 261eleqtri 2836 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
263262a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 0 ∈ (ℤ‘0))
264258eleq2i 2829 . . . . . . . . . . . 12 (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 + 1)))
265173coef3 25593 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
26668, 265syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
267 elfznn0 13534 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
268 ffvelcdm 7032 . . . . . . . . . . . . . 14 (((coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
269266, 267, 268syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
2702oveq1d 7372 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1))
271 pncan 11407 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐷 + 1) − 1) = 𝐷)
272101, 100, 271sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = 𝐷)
273270, 272eqtr3d 2778 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) = 𝐷)
274273adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝑁 − 1) = 𝐷)
2753adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐷 ∈ ℕ)
276274, 275eqeltrd 2838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ)
277 nnuz 12806 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
278276, 277eleqtrdi 2848 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ (ℤ‘1))
279 fzss2 13481 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ (ℤ‘1) → (0...1) ⊆ (0...(𝑁 − 1)))
280278, 279syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (0...1) ⊆ (0...(𝑁 − 1)))
281280sselda 3944 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
282 fznn0sub 13473 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈ ℕ0)
283 ffvelcdm 7032 . . . . . . . . . . . . . . 15 (((coeff‘𝑄):ℕ0⟶ℂ ∧ ((𝑁 − 1) − 𝑘) ∈ ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
284228, 282, 283syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
285281, 284syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
286269, 285mulcld 11175 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
287264, 286sylan2br 595 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
288 id 22 . . . . . . . . . . . . . 14 (𝑘 = (0 + 1) → 𝑘 = (0 + 1))
289288, 257eqtr4di 2794 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → 𝑘 = 1)
290289fveq2d 6846 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
291289oveq2d 7373 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1))
292291fveq2d 6846 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1)))
293290, 292oveq12d 7375 . . . . . . . . . . 11 (𝑘 = (0 + 1) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))
294263, 287, 293fsump1 15641 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
295259, 294eqtrid 2788 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
296 eldifn 4087 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬ 𝑘 ∈ (0...1))
297296adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬ 𝑘 ∈ (0...1))
298 eldifi 4086 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
299 elfznn0 13534 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
300298, 299syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ ℕ0)
301173, 166dgrub 25595 . . . . . . . . . . . . . . . . 17 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))))
3023013expia 1121 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
30368, 300, 302syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
304 elfzuz 13437 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ (ℤ‘0))
305298, 304syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (ℤ‘0))
306305adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈ (ℤ‘0))
307 1z 12533 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
308 elfz5 13433 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
309306, 307, 308sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
310158breq2d 5117 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
311310adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
312309, 311bitr4d 281 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
313303, 312sylibrd 258 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1)))
314313necon1bd 2961 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬ 𝑘 ∈ (0...1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0))
315297, 314mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0)
316315oveq1d 7372 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
317298, 284sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
318317mul02d 11353 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
319316, 318eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
320 fzfid 13878 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (0...(𝑁 − 1)) ∈ Fin)
321280, 286, 319, 320fsumss 15610 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
322 0z 12510 . . . . . . . . . . . 12 0 ∈ ℤ
323186fveq1d 6844 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0))
324 coeidp 25624 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = if(0 = 1, 1, 0))
325159nesymi 3001 . . . . . . . . . . . . . . . . . . . . 21 ¬ 0 = 1
326325iffalsei 4496 . . . . . . . . . . . . . . . . . . . 20 if(0 = 1, 1, 0) = 0
327324, 326eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = 0)
328327adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘Xp)‘0) = 0)
329184coefv0 25609 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
330182, 329syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑅) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
331 0cn 11147 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
332 vex 3449 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
333332fvconst2 7153 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℂ → ((ℂ × {𝑧})‘0) = 𝑧)
334331, 333ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℂ × {𝑧})‘0) = 𝑧
335330, 334eqtr3di 2791 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑅) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
336335adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
337192, 195, 197, 197, 198, 328, 336ofval 7628 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
338260, 337mpan2 689 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
339 df-neg 11388 . . . . . . . . . . . . . . . 16 -𝑧 = (0 − 𝑧)
340338, 339eqtr4di 2794 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = -𝑧)
341323, 340eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = -𝑧)
342274oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0))
343102subid1d 11501 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝐷 − 0) = 𝐷)
344342, 343, 313eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄))
345344fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = ((coeff‘𝑄)‘(deg‘𝑄)))
346345, 232eqtr4d 2779 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴𝑁))
347341, 346oveq12d 7375 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴𝑁)))
348347, 249eqeltrd 2838 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
349 fveq2 6842 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘0))
350 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0))
351350fveq2d 6846 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0)))
352349, 351oveq12d 7375 . . . . . . . . . . . . 13 (𝑘 = 0 → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
353352fsum1 15632 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
354322, 348, 353sylancr 587 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
355354, 347eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴𝑁)))
356274fvoveq1d 7379 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) = ((coeff‘𝑄)‘(𝐷 − 1)))
357224, 356oveq12d 7375 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 · ((coeff‘𝑄)‘(𝐷 − 1))))
358241mulid2d 11173 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
359357, 358eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
360355, 359oveq12d 7375 . . . . . . . . 9 ((𝜑𝑧𝑅) → (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))))
361295, 321, 3603eqtr3rd 2785 . . . . . . . 8 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
362255, 256, 3613eqtr4rd 2787 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1)))
363362oveq1d 7372 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
364237, 242, 246divcan4d 11937 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) = -𝑧)
365364oveq1d 7372 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
366250, 363, 3653eqtr3rd 2785 . . . . 5 ((𝜑𝑧𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
367366negeqd 11395 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
368248, 367eqtr3d 2778 . . 3 ((𝜑𝑧𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
369128, 236, 3683eqtrd 2780 . 2 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
37025, 369exlimddv 1938 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586   class class class wbr 5105   × cxp 5631  ccnv 5632  dom cdm 5633  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  chash 14230  Σcsu 15570  0𝑝c0p 25033  Polycply 25545  Xpcidp 25546  coeffccoe 25547  degcdgr 25548   quot cquot 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-idp 25550  df-coe 25551  df-dgr 25552  df-quot 25651
This theorem is referenced by:  vieta1  25672
  Copyright terms: Public domain W3C validator