Step | Hyp | Ref
| Expression |
1 | | vieta1.5 |
. . . . 5
⊢ (𝜑 → (♯‘𝑅) = 𝑁) |
2 | | vieta1lem.7 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 1) = 𝑁) |
3 | | vieta1lem.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
4 | 3 | peano2nnd 11920 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 1) ∈ ℕ) |
5 | 2, 4 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnne0d 11953 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
7 | 1, 6 | eqnetrd 3010 |
. . . 4
⊢ (𝜑 → (♯‘𝑅) ≠ 0) |
8 | | vieta1.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
9 | | vieta1.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
10 | 9, 6 | eqnetrrid 3018 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘𝐹) ≠ 0) |
11 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
12 | | dgr0 25328 |
. . . . . . . . . . 11
⊢
(deg‘0𝑝) = 0 |
13 | 11, 12 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
14 | 13 | necon3i 2975 |
. . . . . . . . 9
⊢
((deg‘𝐹) ≠
0 → 𝐹 ≠
0𝑝) |
15 | 10, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ≠
0𝑝) |
16 | | vieta1.3 |
. . . . . . . . 9
⊢ 𝑅 = (◡𝐹 “ {0}) |
17 | 16 | fta1 25373 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧
(♯‘𝑅) ≤
(deg‘𝐹))) |
18 | 8, 15, 17 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) |
19 | 18 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Fin) |
20 | | hasheq0 14006 |
. . . . . 6
⊢ (𝑅 ∈ Fin →
((♯‘𝑅) = 0
↔ 𝑅 =
∅)) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅)) |
22 | 21 | necon3bid 2987 |
. . . 4
⊢ (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅)) |
23 | 7, 22 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝑅 ≠ ∅) |
24 | | n0 4277 |
. . 3
⊢ (𝑅 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝑅) |
25 | 23, 24 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑧 𝑧 ∈ 𝑅) |
26 | | incom 4131 |
. . . . 5
⊢ ({𝑧} ∩ (◡𝑄 “ {0})) = ((◡𝑄 “ {0}) ∩ {𝑧}) |
27 | | vieta1.1 |
. . . . . . . . . . 11
⊢ 𝐴 = (coeff‘𝐹) |
28 | | vieta1lem.8 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
29 | | vieta1lem.9 |
. . . . . . . . . . 11
⊢ 𝑄 = (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))) |
30 | 27, 9, 16, 8, 1, 3,
2, 28, 29 | vieta1lem1 25375 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) |
31 | 30 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 = (deg‘𝑄)) |
32 | 30 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ∈
(Poly‘ℂ)) |
33 | | dgrcl 25299 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ (Poly‘ℂ)
→ (deg‘𝑄) ∈
ℕ0) |
34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈
ℕ0) |
35 | 34 | nn0red 12224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈ ℝ) |
36 | 31, 35 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℝ) |
37 | 36 | ltp1d 11835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 < (𝐷 + 1)) |
38 | 36, 37 | gtned 11040 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 + 1) ≠ 𝐷) |
39 | | snssi 4738 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → {𝑧} ⊆ (◡𝑄 “ {0})) |
40 | | ssequn1 4110 |
. . . . . . . . . . 11
⊢ ({𝑧} ⊆ (◡𝑄 “ {0}) ↔ ({𝑧} ∪ (◡𝑄 “ {0})) = (◡𝑄 “ {0})) |
41 | 39, 40 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → ({𝑧} ∪ (◡𝑄 “ {0})) = (◡𝑄 “ {0})) |
42 | 41 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑧 ∈ (◡𝑄 “ {0}) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (♯‘(◡𝑄 “ {0}))) |
43 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ∈ (Poly‘𝑆)) |
44 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐹 “ {0}) ⊆ dom 𝐹 |
45 | 16, 44 | eqsstri 3951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑅 ⊆ dom 𝐹 |
46 | | plyf 25264 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
47 | | fdm 6593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℂ⟶ℂ →
dom 𝐹 =
ℂ) |
48 | 8, 46, 47 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = ℂ) |
49 | 45, 48 | sseqtrid 3969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑅 ⊆ ℂ) |
50 | 49 | sselda 3917 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ ℂ) |
51 | 16 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑅 ↔ 𝑧 ∈ (◡𝐹 “ {0})) |
52 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℂ⟶ℂ →
𝐹 Fn
ℂ) |
53 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℂ → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
54 | 8, 46, 52, 53 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
55 | 51, 54 | syl5bb 282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
56 | 55 | simplbda 499 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹‘𝑧) = 0) |
57 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Xp ∘f − (ℂ ×
{𝑧})) =
(Xp ∘f − (ℂ × {𝑧})) |
58 | 57 | facth 25371 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))))) |
59 | 43, 50, 56, 58 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))))) |
60 | 29 | oveq2i 7266 |
. . . . . . . . . . . . . . . . 17
⊢
((Xp ∘f − (ℂ ×
{𝑧})) ∘f
· 𝑄) =
((Xp ∘f − (ℂ × {𝑧})) ∘f ·
(𝐹 quot
(Xp ∘f − (ℂ × {𝑧})))) |
61 | 59, 60 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄)) |
62 | 61 | cnveqd 5773 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ◡𝐹 = ◡((Xp ∘f
− (ℂ × {𝑧})) ∘f · 𝑄)) |
63 | 62 | imaeq1d 5957 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡𝐹 “ {0}) = (◡((Xp ∘f
− (ℂ × {𝑧})) ∘f · 𝑄) “ {0})) |
64 | 16, 63 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 = (◡((Xp ∘f
− (ℂ × {𝑧})) ∘f · 𝑄) “ {0})) |
65 | | cnex 10883 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
66 | 57 | plyremlem 25369 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℂ →
((Xp ∘f − (ℂ × {𝑧})) ∈ (Poly‘ℂ)
∧ (deg‘(Xp ∘f − (ℂ
× {𝑧}))) = 1 ∧
(◡(Xp
∘f − (ℂ × {𝑧})) “ {0}) = {𝑧})) |
67 | 50, 66 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))) = 1 ∧ (◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) = {𝑧})) |
68 | 67 | simp1d 1140 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘f − (ℂ × {𝑧})) ∈
(Poly‘ℂ)) |
69 | | plyf 25264 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) → (Xp ∘f −
(ℂ × {𝑧})):ℂ⟶ℂ) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘f − (ℂ × {𝑧})):ℂ⟶ℂ) |
71 | | plyf 25264 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (Poly‘ℂ)
→ 𝑄:ℂ⟶ℂ) |
72 | 32, 71 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄:ℂ⟶ℂ) |
73 | | ofmulrt 25347 |
. . . . . . . . . . . . . 14
⊢ ((ℂ
∈ V ∧ (Xp ∘f − (ℂ
× {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) →
(◡((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = ((◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0}))) |
74 | 65, 70, 72, 73 | mp3an2i 1464 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡((Xp ∘f
− (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = ((◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0}))) |
75 | 67 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) = {𝑧}) |
76 | 75 | uneq1d 4092 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) ∪ (◡𝑄 “ {0})) = ({𝑧} ∪ (◡𝑄 “ {0}))) |
77 | 64, 74, 76 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 = ({𝑧} ∪ (◡𝑄 “ {0}))) |
78 | 77 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (◡𝑄 “ {0})))) |
79 | 1, 2 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑅) = (𝐷 + 1)) |
80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘𝑅) = (𝐷 + 1)) |
81 | 78, 80 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (𝐷 + 1)) |
82 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ≠
0𝑝) |
83 | 61, 82 | eqnetrrd 3011 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) ≠
0𝑝) |
84 | | plymul0or 25346 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) →
(((Xp ∘f − (ℂ × {𝑧})) ∘f ·
𝑄) = 0𝑝
↔ ((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
85 | 68, 32, 84 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔
((Xp ∘f − (ℂ × {𝑧})) = 0𝑝 ∨
𝑄 =
0𝑝))) |
86 | 85 | necon3abid 2979 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝
↔ ¬ ((Xp ∘f − (ℂ
× {𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
87 | 83, 86 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ¬ ((Xp
∘f − (ℂ × {𝑧})) = 0𝑝 ∨ 𝑄 =
0𝑝)) |
88 | | neanior 3036 |
. . . . . . . . . . . . . . . 16
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ≠
0𝑝 ∧ 𝑄 ≠ 0𝑝) ↔ ¬
((Xp ∘f − (ℂ × {𝑧})) = 0𝑝 ∨
𝑄 =
0𝑝)) |
89 | 87, 88 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ≠ 0𝑝 ∧ 𝑄 ≠
0𝑝)) |
90 | 89 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ≠
0𝑝) |
91 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (◡𝑄 “ {0}) = (◡𝑄 “ {0}) |
92 | 91 | fta1 25373 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (Poly‘ℂ)
∧ 𝑄 ≠
0𝑝) → ((◡𝑄 “ {0}) ∈ Fin ∧
(♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄))) |
93 | 32, 90, 92 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡𝑄 “ {0}) ∈ Fin ∧
(♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄))) |
94 | 93 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ≤ (deg‘𝑄)) |
95 | 94, 31 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ≤ 𝐷) |
96 | | snfi 8788 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ Fin |
97 | 93 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (◡𝑄 “ {0}) ∈ Fin) |
98 | | hashun2 14026 |
. . . . . . . . . . . . . 14
⊢ (({𝑧} ∈ Fin ∧ (◡𝑄 “ {0}) ∈ Fin) →
(♯‘({𝑧} ∪
(◡𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0})))) |
99 | 96, 97, 98 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0})))) |
100 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
101 | 3 | nncnd 11919 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ ℂ) |
102 | 101 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℂ) |
103 | | addcom 11091 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝐷
∈ ℂ) → (1 + 𝐷) = (𝐷 + 1)) |
104 | 100, 102,
103 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) = (𝐷 + 1)) |
105 | 81, 104 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (1 + 𝐷)) |
106 | | hashsng 14012 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑅 → (♯‘{𝑧}) = 1) |
107 | 106 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘{𝑧}) = 1) |
108 | 107 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘{𝑧}) + (♯‘(◡𝑄 “ {0}))) = (1 + (♯‘(◡𝑄 “ {0})))) |
109 | 99, 105, 108 | 3brtr3d 5101 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(◡𝑄 “ {0})))) |
110 | | hashcl 13999 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑄 “ {0}) ∈ Fin →
(♯‘(◡𝑄 “ {0})) ∈
ℕ0) |
111 | 97, 110 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ∈
ℕ0) |
112 | 111 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) ∈
ℝ) |
113 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ∈ ℝ) |
114 | 36, 112, 113 | leadd2d 11500 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 ≤ (♯‘(◡𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(◡𝑄 “ {0}))))) |
115 | 109, 114 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ≤ (♯‘(◡𝑄 “ {0}))) |
116 | 112, 36 | letri3d 11047 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘(◡𝑄 “ {0})) = 𝐷 ↔ ((♯‘(◡𝑄 “ {0})) ≤ 𝐷 ∧ 𝐷 ≤ (♯‘(◡𝑄 “ {0}))))) |
117 | 95, 115, 116 | mpbir2and 709 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) = 𝐷) |
118 | 81, 117 | eqeq12d 2754 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((♯‘({𝑧} ∪ (◡𝑄 “ {0}))) = (♯‘(◡𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷)) |
119 | 42, 118 | syl5ib 243 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑧 ∈ (◡𝑄 “ {0}) → (𝐷 + 1) = 𝐷)) |
120 | 119 | necon3ad 2955 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (◡𝑄 “ {0}))) |
121 | 38, 120 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ¬ 𝑧 ∈ (◡𝑄 “ {0})) |
122 | | disjsn 4644 |
. . . . . 6
⊢ (((◡𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (◡𝑄 “ {0})) |
123 | 121, 122 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((◡𝑄 “ {0}) ∩ {𝑧}) = ∅) |
124 | 26, 123 | syl5eq 2791 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ({𝑧} ∩ (◡𝑄 “ {0})) = ∅) |
125 | 19 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 ∈ Fin) |
126 | 49 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑅 ⊆ ℂ) |
127 | 126 | sselda 3917 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ ℂ) |
128 | 124, 77, 125, 127 | fsumsplit 15381 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ 𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (◡𝑄 “ {0})𝑥)) |
129 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
130 | 129 | sumsn 15386 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
Σ𝑥 ∈ {𝑧}𝑥 = 𝑧) |
131 | 50, 50, 130 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧) |
132 | 50 | negnegd 11253 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → --𝑧 = 𝑧) |
133 | 131, 132 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧) |
134 | 117, 31 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) |
135 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄)) |
136 | 135 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄))) |
137 | | cnveq 5771 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → ◡𝑓 = ◡𝑄) |
138 | 137 | imaeq1d 5957 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → (◡𝑓 “ {0}) = (◡𝑄 “ {0})) |
139 | 138 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (♯‘(◡𝑓 “ {0})) = (♯‘(◡𝑄 “ {0}))) |
140 | 139, 135 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → ((♯‘(◡𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄))) |
141 | 136, 140 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)))) |
142 | 138 | sumeq1d 15341 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = Σ𝑥 ∈ (◡𝑄 “ {0})𝑥) |
143 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄)) |
144 | 135 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1)) |
145 | 143, 144 | fveq12d 6763 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1))) |
146 | 143, 135 | fveq12d 6763 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄))) |
147 | 145, 146 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) /
((coeff‘𝑄)‘(deg‘𝑄)))) |
148 | 147 | negeqd 11145 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) /
((coeff‘𝑄)‘(deg‘𝑄)))) |
149 | 142, 148 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → (Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))) |
150 | 141, 149 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))) |
151 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) |
152 | 150, 151,
32 | rspcdva 3554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(◡𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))) |
153 | 31, 134, 152 | mp2and 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
154 | 31 | fvoveq1d 7277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1))) |
155 | 61 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘𝐹) = (coeff‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))) |
156 | 27, 155 | syl5eq 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐴 = (coeff‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))) |
157 | 61 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝐹) = (deg‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))) |
158 | 67 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘f − (ℂ × {𝑧}))) = 1) |
159 | | ax-1ne0 10871 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
160 | 159 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ≠ 0) |
161 | 158, 160 | eqnetrd 3010 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘f − (ℂ × {𝑧}))) ≠ 0) |
162 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 → (deg‘(Xp
∘f − (ℂ × {𝑧}))) =
(deg‘0𝑝)) |
163 | 162, 12 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢
((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 → (deg‘(Xp
∘f − (ℂ × {𝑧}))) = 0) |
164 | 163 | necon3i 2975 |
. . . . . . . . . . . . 13
⊢
((deg‘(Xp ∘f − (ℂ
× {𝑧}))) ≠ 0
→ (Xp ∘f − (ℂ ×
{𝑧})) ≠
0𝑝) |
165 | 161, 164 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘f − (ℂ × {𝑧})) ≠
0𝑝) |
166 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(deg‘(Xp ∘f − (ℂ
× {𝑧}))) =
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))) |
167 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(deg‘𝑄) =
(deg‘𝑄) |
168 | 166, 167 | dgrmul 25336 |
. . . . . . . . . . . 12
⊢
((((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ (Xp ∘f −
(ℂ × {𝑧})) ≠
0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝))
→ (deg‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄)) = ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) |
169 | 68, 165, 32, 90, 168 | syl22anc 835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄)) =
((deg‘(Xp ∘f − (ℂ ×
{𝑧}))) + (deg‘𝑄))) |
170 | 157, 169 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝐹) = ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) |
171 | 9, 170 | syl5eq 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑁 = ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) |
172 | 156, 171 | fveq12d 6763 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) = ((coeff‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄)))) |
173 | | eqid 2738 |
. . . . . . . . . 10
⊢
(coeff‘(Xp ∘f − (ℂ
× {𝑧}))) =
(coeff‘(Xp ∘f − (ℂ ×
{𝑧}))) |
174 | | eqid 2738 |
. . . . . . . . . 10
⊢
(coeff‘𝑄) =
(coeff‘𝑄) |
175 | 173, 174,
166, 167 | coemulhi 25320 |
. . . . . . . . 9
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) →
((coeff‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄))‘((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄)))) |
176 | 68, 32, 175 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
((coeff‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄))‘((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄)))) |
177 | 158 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) = ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1)) |
178 | | ssid 3939 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
179 | | plyid 25275 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
180 | 178, 100,
179 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢
Xp ∈ (Poly‘ℂ) |
181 | | plyconst 25272 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ 𝑧
∈ ℂ) → (ℂ × {𝑧}) ∈
(Poly‘ℂ)) |
182 | 178, 50, 181 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (ℂ × {𝑧}) ∈
(Poly‘ℂ)) |
183 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘Xp) =
(coeff‘Xp) |
184 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧})) |
185 | 183, 184 | coesub 25323 |
. . . . . . . . . . . . . 14
⊢
((Xp ∈ (Poly‘ℂ) ∧ (ℂ
× {𝑧}) ∈
(Poly‘ℂ)) → (coeff‘(Xp
∘f − (ℂ × {𝑧}))) = ((coeff‘Xp)
∘f − (coeff‘(ℂ × {𝑧})))) |
186 | 180, 182,
185 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(Xp
∘f − (ℂ × {𝑧}))) = ((coeff‘Xp)
∘f − (coeff‘(ℂ × {𝑧})))) |
187 | 186 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) =
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘1)) |
188 | | 1nn0 12179 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
189 | 183 | coef3 25298 |
. . . . . . . . . . . . . . . . 17
⊢
(Xp ∈ (Poly‘ℂ) →
(coeff‘Xp):ℕ0⟶ℂ) |
190 | | ffn 6584 |
. . . . . . . . . . . . . . . . 17
⊢
((coeff‘Xp):ℕ0⟶ℂ
→ (coeff‘Xp) Fn
ℕ0) |
191 | 180, 189,
190 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢
(coeff‘Xp) Fn
ℕ0 |
192 | 191 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘Xp)
Fn ℕ0) |
193 | 184 | coef3 25298 |
. . . . . . . . . . . . . . . 16
⊢ ((ℂ
× {𝑧}) ∈
(Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ) |
194 | | ffn 6584 |
. . . . . . . . . . . . . . . 16
⊢
((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ →
(coeff‘(ℂ × {𝑧})) Fn ℕ0) |
195 | 182, 193,
194 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(ℂ ×
{𝑧})) Fn
ℕ0) |
196 | | nn0ex 12169 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
197 | 196 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ℕ0 ∈
V) |
198 | | inidm 4149 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
199 | | coeidp 25329 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℕ0 → ((coeff‘Xp)‘1) = if(1
= 1, 1, 0)) |
200 | 199 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘Xp)‘1) = if(1 = 1, 1,
0)) |
201 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ 1 =
1 |
202 | 201 | iftruei 4463 |
. . . . . . . . . . . . . . . 16
⊢ if(1 = 1,
1, 0) = 1 |
203 | 200, 202 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘Xp)‘1) = 1) |
204 | | 0lt1 11427 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
1 |
205 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
206 | | 1re 10906 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
207 | 205, 206 | ltnlei 11026 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 < 1
↔ ¬ 1 ≤ 0) |
208 | 204, 207 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢ ¬ 1
≤ 0 |
209 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
𝑧 ∈
ℂ) |
210 | | 0dgr 25311 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℂ →
(deg‘(ℂ × {𝑧})) = 0) |
211 | 209, 210 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(deg‘(ℂ × {𝑧})) = 0) |
212 | 211 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0)) |
213 | 208, 212 | mtbiri 326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
¬ 1 ≤ (deg‘(ℂ × {𝑧}))) |
214 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧})) |
215 | 184, 214 | dgrub 25300 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈
ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤
(deg‘(ℂ × {𝑧}))) |
216 | 215 | 3expia 1119 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈
ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤
(deg‘(ℂ × {𝑧})))) |
217 | 182, 216 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤
(deg‘(ℂ × {𝑧})))) |
218 | 217 | necon1bd 2960 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ ×
{𝑧}))‘1) =
0)) |
219 | 213, 218 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
((coeff‘(ℂ × {𝑧}))‘1) = 0) |
220 | 192, 195,
197, 197, 198, 203, 219 | ofval 7522 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 1 ∈ ℕ0) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘1) = (1 −
0)) |
221 | 188, 220 | mpan2 687 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘1) = (1 −
0)) |
222 | | 1m0e1 12024 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
223 | 221, 222 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘1) = 1) |
224 | 187, 223 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) = 1) |
225 | 177, 224 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) = 1) |
226 | 225 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 ·
((coeff‘𝑄)‘(deg‘𝑄)))) |
227 | 174 | coef3 25298 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ (Poly‘ℂ)
→ (coeff‘𝑄):ℕ0⟶ℂ) |
228 | 32, 227 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘𝑄):ℕ0⟶ℂ) |
229 | 228, 34 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ) |
230 | 229 | mulid2d 10924 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄))) |
231 | 226, 230 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘(deg‘(Xp
∘f − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄))) |
232 | 172, 176,
231 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) = ((coeff‘𝑄)‘(deg‘𝑄))) |
233 | 154, 232 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
234 | 233 | negeqd 11145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))) |
235 | 153, 234 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ (◡𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) |
236 | 133, 235 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (◡𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
237 | 50 | negcld 11249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -𝑧 ∈ ℂ) |
238 | | nnm1nn0 12204 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ → (𝐷 − 1) ∈
ℕ0) |
239 | 3, 238 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 − 1) ∈
ℕ0) |
240 | 239 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 − 1) ∈
ℕ0) |
241 | 228, 240 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈
ℂ) |
242 | 232, 229 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) ∈ ℂ) |
243 | 9, 27 | dgreq0 25331 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
244 | 43, 243 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
245 | 244 | necon3bid 2987 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴‘𝑁) ≠ 0)) |
246 | 82, 245 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘𝑁) ≠ 0) |
247 | 241, 242,
246 | divcld 11681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)) ∈ ℂ) |
248 | 237, 247 | negdid 11275 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
249 | 237, 242 | mulcld 10926 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (-𝑧 · (𝐴‘𝑁)) ∈ ℂ) |
250 | 249, 241,
242, 246 | divdird 11719 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴‘𝑁)) = (((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
251 | | nnm1nn0 12204 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
252 | 5, 251 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
253 | 252 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈
ℕ0) |
254 | 173, 174 | coemul 25318 |
. . . . . . . . 9
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈
ℕ0) → ((coeff‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
255 | 68, 32, 253, 254 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
((coeff‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
256 | 156 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐴‘(𝑁 − 1)) =
((coeff‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄))‘(𝑁 − 1))) |
257 | | 1e0p1 12408 |
. . . . . . . . . . . 12
⊢ 1 = (0 +
1) |
258 | 257 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ (0...1) =
(0...(0 + 1)) |
259 | 258 | sumeq1i 15338 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 +
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) |
260 | | 0nn0 12178 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
261 | | nn0uz 12549 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
262 | 260, 261 | eleqtri 2837 |
. . . . . . . . . . . 12
⊢ 0 ∈
(ℤ≥‘0) |
263 | 262 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 0 ∈
(ℤ≥‘0)) |
264 | 258 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 +
1))) |
265 | 173 | coef3 25298 |
. . . . . . . . . . . . . . 15
⊢
((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) → (coeff‘(Xp
∘f − (ℂ × {𝑧}))):ℕ0⟶ℂ) |
266 | 68, 265 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (coeff‘(Xp
∘f − (ℂ × {𝑧}))):ℕ0⟶ℂ) |
267 | | elfznn0 13278 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...1) → 𝑘 ∈
ℕ0) |
268 | | ffvelrn 6941 |
. . . . . . . . . . . . . 14
⊢
(((coeff‘(Xp ∘f −
(ℂ × {𝑧}))):ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘𝑘) ∈ ℂ) |
269 | 266, 267,
268 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) →
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) ∈
ℂ) |
270 | 2 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1)) |
271 | | pncan 11157 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐷 + 1)
− 1) = 𝐷) |
272 | 101, 100,
271 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐷 + 1) − 1) = 𝐷) |
273 | 270, 272 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 − 1) = 𝐷) |
274 | 273 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) = 𝐷) |
275 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℕ) |
276 | 274, 275 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈ ℕ) |
277 | | nnuz 12550 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
278 | 276, 277 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑁 − 1) ∈
(ℤ≥‘1)) |
279 | | fzss2 13225 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈
(ℤ≥‘1) → (0...1) ⊆ (0...(𝑁 − 1))) |
280 | 278, 279 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (0...1) ⊆ (0...(𝑁 − 1))) |
281 | 280 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
282 | | fznn0sub 13217 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈
ℕ0) |
283 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢
(((coeff‘𝑄):ℕ0⟶ℂ ∧
((𝑁 − 1) −
𝑘) ∈
ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
284 | 228, 282,
283 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
285 | 281, 284 | syldan 590 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
286 | 269, 285 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...1)) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ) |
287 | 264, 286 | sylan2br 594 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ) |
288 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (0 + 1) → 𝑘 = (0 + 1)) |
289 | 288, 257 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (0 + 1) → 𝑘 = 1) |
290 | 289 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) →
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) =
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘1)) |
291 | 289 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1)) |
292 | 291 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) →
((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1))) |
293 | 290, 292 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑘 = (0 + 1) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) |
294 | 263, 287,
293 | fsump1 15396 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈ (0...(0 +
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))) |
295 | 259, 294 | syl5eq 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))) |
296 | | eldifn 4058 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬
𝑘 ∈
(0...1)) |
297 | 296 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬
𝑘 ∈
(0...1)) |
298 | | eldifi 4057 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
299 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
300 | 298, 299 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈
ℕ0) |
301 | 173, 166 | dgrub 25300 |
. . . . . . . . . . . . . . . . 17
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤
(deg‘(Xp ∘f − (ℂ ×
{𝑧})))) |
302 | 301 | 3expia 1119 |
. . . . . . . . . . . . . . . 16
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))))) |
303 | 68, 300, 302 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))))) |
304 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈
(ℤ≥‘0)) |
305 | 298, 304 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈
(ℤ≥‘0)) |
306 | 305 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈
(ℤ≥‘0)) |
307 | | 1z 12280 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ |
308 | | elfz5 13177 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1)) |
309 | 306, 307,
308 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1)) |
310 | 158 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑘 ≤ (deg‘(Xp
∘f − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1)) |
311 | 310 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))) ↔ 𝑘 ≤ 1)) |
312 | 309, 311 | bitr4d 281 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))))) |
313 | 303, 312 | sylibrd 258 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈
(0...1))) |
314 | 313 | necon1bd 2960 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬
𝑘 ∈ (0...1) →
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) = 0)) |
315 | 297, 314 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) = 0) |
316 | 315 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
317 | 298, 284 | sylan2 592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ) |
318 | 317 | mul02d 11103 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0
· ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0) |
319 | 316, 318 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0) |
320 | | fzfid 13621 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (0...(𝑁 − 1)) ∈ Fin) |
321 | 280, 286,
319, 320 | fsumss 15365 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...1)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
322 | | 0z 12260 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
323 | 186 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘0) =
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘0)) |
324 | | coeidp 25329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℕ0 → ((coeff‘Xp)‘0) = if(0
= 1, 1, 0)) |
325 | 159 | nesymi 3000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ¬ 0
= 1 |
326 | 325 | iffalsei 4466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(0 = 1,
1, 0) = 0 |
327 | 324, 326 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
ℕ0 → ((coeff‘Xp)‘0) =
0) |
328 | 327 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
((coeff‘Xp)‘0) = 0) |
329 | 184 | coefv0 25314 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
× {𝑧}) ∈
(Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ ×
{𝑧}))‘0)) |
330 | 182, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((ℂ × {𝑧})‘0) =
((coeff‘(ℂ × {𝑧}))‘0)) |
331 | | 0cn 10898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℂ |
332 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
333 | 332 | fvconst2 7061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℂ → ((ℂ × {𝑧})‘0) = 𝑧) |
334 | 331, 333 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℂ
× {𝑧})‘0) =
𝑧 |
335 | 330, 334 | eqtr3di 2794 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(ℂ ×
{𝑧}))‘0) = 𝑧) |
336 | 335 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
((coeff‘(ℂ × {𝑧}))‘0) = 𝑧) |
337 | 192, 195,
197, 197, 198, 328, 336 | ofval 7522 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑅) ∧ 0 ∈ ℕ0) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧)) |
338 | 260, 337 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧)) |
339 | | df-neg 11138 |
. . . . . . . . . . . . . . . 16
⊢ -𝑧 = (0 − 𝑧) |
340 | 338, 339 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘Xp) ∘f −
(coeff‘(ℂ × {𝑧})))‘0) = -𝑧) |
341 | 323, 340 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘0) = -𝑧) |
342 | 274 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0)) |
343 | 102 | subid1d 11251 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 − 0) = 𝐷) |
344 | 342, 343,
31 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄)) |
345 | 344 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) =
((coeff‘𝑄)‘(deg‘𝑄))) |
346 | 345, 232 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴‘𝑁)) |
347 | 341, 346 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘0)
· ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴‘𝑁))) |
348 | 347, 249 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘0)
· ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈
ℂ) |
349 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 →
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) =
((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘0)) |
350 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0)) |
351 | 350 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0))) |
352 | 349, 351 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
353 | 352 | fsum1 15387 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ (((coeff‘(Xp ∘f
− (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
→ Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
354 | 322, 348,
353 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0)))) |
355 | 354, 347 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴‘𝑁))) |
356 | 274 | fvoveq1d 7277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) =
((coeff‘𝑄)‘(𝐷 − 1))) |
357 | 224, 356 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘1)
· ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 ·
((coeff‘𝑄)‘(𝐷 − 1)))) |
358 | 241 | mulid2d 10924 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1))) |
359 | 357, 358 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) →
(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘1)
· ((coeff‘𝑄)‘((𝑁 − 1) − 1))) =
((coeff‘𝑄)‘(𝐷 − 1))) |
360 | 355, 359 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Σ𝑘 ∈
(0...0)(((coeff‘(Xp ∘f −
(ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xp
∘f − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1)))) |
361 | 295, 321,
360 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 −
1))(((coeff‘(Xp ∘f − (ℂ
× {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))) |
362 | 255, 256,
361 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1))) |
363 | 362 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴‘𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
364 | 237, 242,
246 | divcan4d 11687 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) = -𝑧) |
365 | 364 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((-𝑧 · (𝐴‘𝑁)) / (𝐴‘𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁)))) |
366 | 250, 363,
365 | 3eqtr3rd 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
367 | 366 | negeqd 11145 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
368 | 248, 367 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴‘𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
369 | 128, 236,
368 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |
370 | 25, 369 | exlimddv 1939 |
1
⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) |