MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem2 Structured version   Visualization version   GIF version

Theorem vieta1lem2 26269
Description: Lemma for vieta1 26270: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥𝑅𝑥 = -𝐴𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem2 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 vieta1.5 . . . . 5 (𝜑 → (♯‘𝑅) = 𝑁)
2 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
3 vieta1lem.6 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
43peano2nnd 12255 . . . . . . 7 (𝜑 → (𝐷 + 1) ∈ ℕ)
52, 4eqeltrrd 2835 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnne0d 12288 . . . . 5 (𝜑𝑁 ≠ 0)
71, 6eqnetrd 2999 . . . 4 (𝜑 → (♯‘𝑅) ≠ 0)
8 vieta1.4 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
9 vieta1.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
109, 6eqnetrrid 3007 . . . . . . . . 9 (𝜑 → (deg‘𝐹) ≠ 0)
11 fveq2 6875 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 26218 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2786 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1413necon3i 2964 . . . . . . . . 9 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
1510, 14syl 17 . . . . . . . 8 (𝜑𝐹 ≠ 0𝑝)
16 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
1716fta1 26266 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
188, 15, 17syl2anc 584 . . . . . . 7 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
1918simpld 494 . . . . . 6 (𝜑𝑅 ∈ Fin)
20 hasheq0 14379 . . . . . 6 (𝑅 ∈ Fin → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2119, 20syl 17 . . . . 5 (𝜑 → ((♯‘𝑅) = 0 ↔ 𝑅 = ∅))
2221necon3bid 2976 . . . 4 (𝜑 → ((♯‘𝑅) ≠ 0 ↔ 𝑅 ≠ ∅))
237, 22mpbid 232 . . 3 (𝜑𝑅 ≠ ∅)
24 n0 4328 . . 3 (𝑅 ≠ ∅ ↔ ∃𝑧 𝑧𝑅)
2523, 24sylib 218 . 2 (𝜑 → ∃𝑧 𝑧𝑅)
26 incom 4184 . . . . 5 ({𝑧} ∩ (𝑄 “ {0})) = ((𝑄 “ {0}) ∩ {𝑧})
27 vieta1.1 . . . . . . . . . . 11 𝐴 = (coeff‘𝐹)
28 vieta1lem.8 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
29 vieta1lem.9 . . . . . . . . . . 11 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
3027, 9, 16, 8, 1, 3, 2, 28, 29vieta1lem1 26268 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
3130simprd 495 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
3230simpld 494 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
33 dgrcl 26188 . . . . . . . . . . 11 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0red 12561 . . . . . . . . 9 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℝ)
3631, 35eqeltrd 2834 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 ∈ ℝ)
3736ltp1d 12170 . . . . . . . 8 ((𝜑𝑧𝑅) → 𝐷 < (𝐷 + 1))
3836, 37gtned 11368 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 + 1) ≠ 𝐷)
39 snssi 4784 . . . . . . . . . . 11 (𝑧 ∈ (𝑄 “ {0}) → {𝑧} ⊆ (𝑄 “ {0}))
40 ssequn1 4161 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑄 “ {0}) ↔ ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4139, 40sylib 218 . . . . . . . . . 10 (𝑧 ∈ (𝑄 “ {0}) → ({𝑧} ∪ (𝑄 “ {0})) = (𝑄 “ {0}))
4241fveq2d 6879 . . . . . . . . 9 (𝑧 ∈ (𝑄 “ {0}) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})))
438adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
44 cnvimass 6069 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ {0}) ⊆ dom 𝐹
4516, 44eqsstri 4005 . . . . . . . . . . . . . . . . . . . 20 𝑅 ⊆ dom 𝐹
46 plyf 26153 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
47 fdm 6714 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → dom 𝐹 = ℂ)
488, 46, 473syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℂ)
4945, 48sseqtrid 4001 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ⊆ ℂ)
5049sselda 3958 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
5116eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
52 ffn 6705 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
53 fniniseg 7049 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
548, 46, 52, 534syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5551, 54bitrid 283 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
5655simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
57 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
5857facth 26264 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
5943, 50, 56, 58syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
6029oveq2i 7414 . . . . . . . . . . . . . . . . 17 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
6159, 60eqtr4di 2788 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6261cnveqd 5855 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
6362imaeq1d 6046 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
6416, 63eqtrid 2782 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 𝑅 = (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}))
65 cnex 11208 . . . . . . . . . . . . . 14 ℂ ∈ V
6657plyremlem 26262 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6750, 66syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
6867simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
69 plyf 26153 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
7068, 69syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ)
71 plyf 26153 . . . . . . . . . . . . . . 15 (𝑄 ∈ (Poly‘ℂ) → 𝑄:ℂ⟶ℂ)
7232, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄:ℂ⟶ℂ)
73 ofmulrt 26239 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝑧})):ℂ⟶ℂ ∧ 𝑄:ℂ⟶ℂ) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7465, 70, 72, 73mp3an2i 1468 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) “ {0}) = (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})))
7567simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧})
7675uneq1d 4142 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) “ {0}) ∪ (𝑄 “ {0})) = ({𝑧} ∪ (𝑄 “ {0})))
7764, 74, 763eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → 𝑅 = ({𝑧} ∪ (𝑄 “ {0})))
7877fveq2d 6879 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (♯‘({𝑧} ∪ (𝑄 “ {0}))))
791, 2eqtr4d 2773 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑅) = (𝐷 + 1))
8079adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘𝑅) = (𝐷 + 1))
8178, 80eqtr3d 2772 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (𝐷 + 1))
8215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
8361, 82eqnetrrd 3000 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
84 plymul0or 26238 . . . . . . . . . . . . . . . . . . 19 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8568, 32, 84syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8685necon3abid 2968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
88 neanior 3025 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
8987, 88sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
9089simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
91 eqid 2735 . . . . . . . . . . . . . . 15 (𝑄 “ {0}) = (𝑄 “ {0})
9291fta1 26266 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9332, 90, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∈ Fin ∧ (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄)))
9493simprd 495 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ (deg‘𝑄))
9594, 31breqtrrd 5147 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ≤ 𝐷)
96 snfi 9055 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
9793simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (𝑄 “ {0}) ∈ Fin)
98 hashun2 14399 . . . . . . . . . . . . . 14 (({𝑧} ∈ Fin ∧ (𝑄 “ {0}) ∈ Fin) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
9996, 97, 98sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) ≤ ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))))
100 ax-1cn 11185 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1013nncnd 12254 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
102101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
103 addcom 11419 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
104100, 102, 103sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
10581, 104eqtr4d 2773 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘({𝑧} ∪ (𝑄 “ {0}))) = (1 + 𝐷))
106 hashsng 14385 . . . . . . . . . . . . . . 15 (𝑧𝑅 → (♯‘{𝑧}) = 1)
107106adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘{𝑧}) = 1)
108107oveq1d 7418 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → ((♯‘{𝑧}) + (♯‘(𝑄 “ {0}))) = (1 + (♯‘(𝑄 “ {0}))))
10999, 105, 1083brtr3d 5150 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0}))))
110 hashcl 14372 . . . . . . . . . . . . . . 15 ((𝑄 “ {0}) ∈ Fin → (♯‘(𝑄 “ {0})) ∈ ℕ0)
11197, 110syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℕ0)
112111nn0red 12561 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) ∈ ℝ)
113 1red 11234 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → 1 ∈ ℝ)
11436, 112, 113leadd2d 11830 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (𝐷 ≤ (♯‘(𝑄 “ {0})) ↔ (1 + 𝐷) ≤ (1 + (♯‘(𝑄 “ {0})))))
115109, 114mpbird 257 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 𝐷 ≤ (♯‘(𝑄 “ {0})))
116112, 36letri3d 11375 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((♯‘(𝑄 “ {0})) = 𝐷 ↔ ((♯‘(𝑄 “ {0})) ≤ 𝐷𝐷 ≤ (♯‘(𝑄 “ {0})))))
11795, 115, 116mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = 𝐷)
11881, 117eqeq12d 2751 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((♯‘({𝑧} ∪ (𝑄 “ {0}))) = (♯‘(𝑄 “ {0})) ↔ (𝐷 + 1) = 𝐷))
11942, 118imbitrid 244 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝑧 ∈ (𝑄 “ {0}) → (𝐷 + 1) = 𝐷))
120119necon3ad 2945 . . . . . . 7 ((𝜑𝑧𝑅) → ((𝐷 + 1) ≠ 𝐷 → ¬ 𝑧 ∈ (𝑄 “ {0})))
12138, 120mpd 15 . . . . . 6 ((𝜑𝑧𝑅) → ¬ 𝑧 ∈ (𝑄 “ {0}))
122 disjsn 4687 . . . . . 6 (((𝑄 “ {0}) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑄 “ {0}))
123121, 122sylibr 234 . . . . 5 ((𝜑𝑧𝑅) → ((𝑄 “ {0}) ∩ {𝑧}) = ∅)
12426, 123eqtrid 2782 . . . 4 ((𝜑𝑧𝑅) → ({𝑧} ∩ (𝑄 “ {0})) = ∅)
12519adantr 480 . . . 4 ((𝜑𝑧𝑅) → 𝑅 ∈ Fin)
12649adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝑅 ⊆ ℂ)
127126sselda 3958 . . . 4 (((𝜑𝑧𝑅) ∧ 𝑥𝑅) → 𝑥 ∈ ℂ)
128124, 77, 125, 127fsumsplit 15755 . . 3 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥))
129 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
130129sumsn 15760 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13150, 50, 130syl2anc 584 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = 𝑧)
13250negnegd 11583 . . . . 5 ((𝜑𝑧𝑅) → --𝑧 = 𝑧)
133131, 132eqtr4d 2773 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ {𝑧}𝑥 = --𝑧)
134117, 31eqtrd 2770 . . . . . 6 ((𝜑𝑧𝑅) → (♯‘(𝑄 “ {0})) = (deg‘𝑄))
135 fveq2 6875 . . . . . . . . . 10 (𝑓 = 𝑄 → (deg‘𝑓) = (deg‘𝑄))
136135eqeq2d 2746 . . . . . . . . 9 (𝑓 = 𝑄 → (𝐷 = (deg‘𝑓) ↔ 𝐷 = (deg‘𝑄)))
137 cnveq 5853 . . . . . . . . . . . 12 (𝑓 = 𝑄𝑓 = 𝑄)
138137imaeq1d 6046 . . . . . . . . . . 11 (𝑓 = 𝑄 → (𝑓 “ {0}) = (𝑄 “ {0}))
139138fveq2d 6879 . . . . . . . . . 10 (𝑓 = 𝑄 → (♯‘(𝑓 “ {0})) = (♯‘(𝑄 “ {0})))
140139, 135eqeq12d 2751 . . . . . . . . 9 (𝑓 = 𝑄 → ((♯‘(𝑓 “ {0})) = (deg‘𝑓) ↔ (♯‘(𝑄 “ {0})) = (deg‘𝑄)))
141136, 140anbi12d 632 . . . . . . . 8 (𝑓 = 𝑄 → ((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) ↔ (𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄))))
142138sumeq1d 15714 . . . . . . . . 9 (𝑓 = 𝑄 → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = Σ𝑥 ∈ (𝑄 “ {0})𝑥)
143 fveq2 6875 . . . . . . . . . . . 12 (𝑓 = 𝑄 → (coeff‘𝑓) = (coeff‘𝑄))
144135oveq1d 7418 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ((deg‘𝑓) − 1) = ((deg‘𝑄) − 1))
145143, 144fveq12d 6882 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘((deg‘𝑓) − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
146143, 135fveq12d 6882 . . . . . . . . . . 11 (𝑓 = 𝑄 → ((coeff‘𝑓)‘(deg‘𝑓)) = ((coeff‘𝑄)‘(deg‘𝑄)))
147145, 146oveq12d 7421 . . . . . . . . . 10 (𝑓 = 𝑄 → (((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
148147negeqd 11474 . . . . . . . . 9 (𝑓 = 𝑄 → -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
149142, 148eqeq12d 2751 . . . . . . . 8 (𝑓 = 𝑄 → (Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))) ↔ Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
150141, 149imbi12d 344 . . . . . . 7 (𝑓 = 𝑄 → (((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))) ↔ ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))))
15128adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
152150, 151, 32rspcdva 3602 . . . . . 6 ((𝜑𝑧𝑅) → ((𝐷 = (deg‘𝑄) ∧ (♯‘(𝑄 “ {0})) = (deg‘𝑄)) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄)))))
15331, 134, 152mp2and 699 . . . . 5 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
15431fvoveq1d 7425 . . . . . . 7 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) = ((coeff‘𝑄)‘((deg‘𝑄) − 1)))
15561fveq2d 6879 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (coeff‘𝐹) = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15627, 155eqtrid 2782 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝐴 = (coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15761fveq2d 6879 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
15867simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
159 ax-1ne0 11196 . . . . . . . . . . . . . . 15 1 ≠ 0
160159a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → 1 ≠ 0)
161158, 160eqnetrd 2999 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
162 fveq2 6875 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
163162, 12eqtrdi 2786 . . . . . . . . . . . . . 14 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
164163necon3i 2964 . . . . . . . . . . . . 13 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
165161, 164syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
166 eqid 2735 . . . . . . . . . . . . 13 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
167 eqid 2735 . . . . . . . . . . . . 13 (deg‘𝑄) = (deg‘𝑄)
168166, 167dgrmul 26226 . . . . . . . . . . . 12 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
16968, 165, 32, 90, 168syl22anc 838 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
170157, 169eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (deg‘𝐹) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
1719, 170eqtrid 2782 . . . . . . . . 9 ((𝜑𝑧𝑅) → 𝑁 = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
172156, 171fveq12d 6882 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))))
173 eqid 2735 . . . . . . . . . 10 (coeff‘(Xpf − (ℂ × {𝑧}))) = (coeff‘(Xpf − (ℂ × {𝑧})))
174 eqid 2735 . . . . . . . . . 10 (coeff‘𝑄) = (coeff‘𝑄)
175173, 174, 166, 167coemulhi 26209 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
17668, 32, 175syl2anc 584 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))))
177158fveq2d 6879 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
178 ssid 3981 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
179 plyid 26164 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
180178, 100, 179mp2an 692 . . . . . . . . . . . . . 14 Xp ∈ (Poly‘ℂ)
181 plyconst 26161 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
182178, 50, 181sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (ℂ × {𝑧}) ∈ (Poly‘ℂ))
183 eqid 2735 . . . . . . . . . . . . . . 15 (coeff‘Xp) = (coeff‘Xp)
184 eqid 2735 . . . . . . . . . . . . . . 15 (coeff‘(ℂ × {𝑧})) = (coeff‘(ℂ × {𝑧}))
185183, 184coesub 26212 . . . . . . . . . . . . . 14 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝑧}) ∈ (Poly‘ℂ)) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
186180, 182, 185sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))) = ((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧}))))
187186fveq1d 6877 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1))
188 1nn0 12515 . . . . . . . . . . . . . 14 1 ∈ ℕ0
189183coef3 26187 . . . . . . . . . . . . . . . . 17 (Xp ∈ (Poly‘ℂ) → (coeff‘Xp):ℕ0⟶ℂ)
190 ffn 6705 . . . . . . . . . . . . . . . . 17 ((coeff‘Xp):ℕ0⟶ℂ → (coeff‘Xp) Fn ℕ0)
191180, 189, 190mp2b 10 . . . . . . . . . . . . . . . 16 (coeff‘Xp) Fn ℕ0
192191a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘Xp) Fn ℕ0)
193184coef3 26187 . . . . . . . . . . . . . . . 16 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → (coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ)
194 ffn 6705 . . . . . . . . . . . . . . . 16 ((coeff‘(ℂ × {𝑧})):ℕ0⟶ℂ → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
195182, 193, 1943syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (coeff‘(ℂ × {𝑧})) Fn ℕ0)
196 nn0ex 12505 . . . . . . . . . . . . . . . 16 0 ∈ V
197196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ℕ0 ∈ V)
198 inidm 4202 . . . . . . . . . . . . . . 15 (ℕ0 ∩ ℕ0) = ℕ0
199 coeidp 26219 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ0 → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
200199adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = if(1 = 1, 1, 0))
201 eqid 2735 . . . . . . . . . . . . . . . . 17 1 = 1
202201iftruei 4507 . . . . . . . . . . . . . . . 16 if(1 = 1, 1, 0) = 1
203200, 202eqtrdi 2786 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘Xp)‘1) = 1)
204 0lt1 11757 . . . . . . . . . . . . . . . . . 18 0 < 1
205 0re 11235 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
206 1re 11233 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
207205, 206ltnlei 11354 . . . . . . . . . . . . . . . . . 18 (0 < 1 ↔ ¬ 1 ≤ 0)
208204, 207mpbi 230 . . . . . . . . . . . . . . . . 17 ¬ 1 ≤ 0
20950adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → 𝑧 ∈ ℂ)
210 0dgr 26200 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (deg‘(ℂ × {𝑧})) = 0)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (deg‘(ℂ × {𝑧})) = 0)
212211breq2d 5131 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (1 ≤ (deg‘(ℂ × {𝑧})) ↔ 1 ≤ 0))
213208, 212mtbiri 327 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ¬ 1 ≤ (deg‘(ℂ × {𝑧})))
214 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (deg‘(ℂ × {𝑧})) = (deg‘(ℂ × {𝑧}))
215184, 214dgrub 26189 . . . . . . . . . . . . . . . . . . 19 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝑧}))‘1) ≠ 0) → 1 ≤ (deg‘(ℂ × {𝑧})))
2162153expia 1121 . . . . . . . . . . . . . . . . . 18 (((ℂ × {𝑧}) ∈ (Poly‘ℂ) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
217182, 216sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘(ℂ × {𝑧}))‘1) ≠ 0 → 1 ≤ (deg‘(ℂ × {𝑧}))))
218217necon1bd 2950 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (¬ 1 ≤ (deg‘(ℂ × {𝑧})) → ((coeff‘(ℂ × {𝑧}))‘1) = 0))
219213, 218mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘1) = 0)
220192, 195, 197, 197, 198, 203, 219ofval 7680 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 1 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
221188, 220mpan2 691 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = (1 − 0))
222 1m0e1 12359 . . . . . . . . . . . . 13 (1 − 0) = 1
223221, 222eqtrdi 2786 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘1) = 1)
224187, 223eqtrd 2770 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘1) = 1)
225177, 224eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) = 1)
226225oveq1d 7418 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = (1 · ((coeff‘𝑄)‘(deg‘𝑄))))
227174coef3 26187 . . . . . . . . . . . 12 (𝑄 ∈ (Poly‘ℂ) → (coeff‘𝑄):ℕ0⟶ℂ)
22832, 227syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (coeff‘𝑄):ℕ0⟶ℂ)
229228, 34ffvelcdmd 7074 . . . . . . . . . 10 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(deg‘𝑄)) ∈ ℂ)
230229mullidd 11251 . . . . . . . . 9 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
231226, 230eqtrd 2770 . . . . . . . 8 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘(deg‘(Xpf − (ℂ × {𝑧})))) · ((coeff‘𝑄)‘(deg‘𝑄))) = ((coeff‘𝑄)‘(deg‘𝑄)))
232172, 176, 2313eqtrd 2774 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐴𝑁) = ((coeff‘𝑄)‘(deg‘𝑄)))
233154, 232oveq12d 7421 . . . . . 6 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = (((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
234233negeqd 11474 . . . . 5 ((𝜑𝑧𝑅) → -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) = -(((coeff‘𝑄)‘((deg‘𝑄) − 1)) / ((coeff‘𝑄)‘(deg‘𝑄))))
235153, 234eqtr4d 2773 . . . 4 ((𝜑𝑧𝑅) → Σ𝑥 ∈ (𝑄 “ {0})𝑥 = -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)))
236133, 235oveq12d 7421 . . 3 ((𝜑𝑧𝑅) → (Σ𝑥 ∈ {𝑧}𝑥 + Σ𝑥 ∈ (𝑄 “ {0})𝑥) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
23750negcld 11579 . . . . 5 ((𝜑𝑧𝑅) → -𝑧 ∈ ℂ)
238 nnm1nn0 12540 . . . . . . . . 9 (𝐷 ∈ ℕ → (𝐷 − 1) ∈ ℕ0)
2393, 238syl 17 . . . . . . . 8 (𝜑 → (𝐷 − 1) ∈ ℕ0)
240239adantr 480 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐷 − 1) ∈ ℕ0)
241228, 240ffvelcdmd 7074 . . . . . 6 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘(𝐷 − 1)) ∈ ℂ)
242232, 229eqeltrd 2834 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ∈ ℂ)
2439, 27dgreq0 26221 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
24443, 243syl 17 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
245244necon3bid 2976 . . . . . . 7 ((𝜑𝑧𝑅) → (𝐹 ≠ 0𝑝 ↔ (𝐴𝑁) ≠ 0))
24682, 245mpbid 232 . . . . . 6 ((𝜑𝑧𝑅) → (𝐴𝑁) ≠ 0)
247241, 242, 246divcld 12015 . . . . 5 ((𝜑𝑧𝑅) → (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁)) ∈ ℂ)
248237, 247negdid 11605 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
249237, 242mulcld 11253 . . . . . . 7 ((𝜑𝑧𝑅) → (-𝑧 · (𝐴𝑁)) ∈ ℂ)
250249, 241, 242, 246divdird 12053 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
251 nnm1nn0 12540 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2525, 251syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
253252adantr 480 . . . . . . . . 9 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ0)
254173, 174coemul 26207 . . . . . . . . 9 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
25568, 32, 253, 254syl3anc 1373 . . . . . . . 8 ((𝜑𝑧𝑅) → ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
256156fveq1d 6877 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐴‘(𝑁 − 1)) = ((coeff‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))‘(𝑁 − 1)))
257 1e0p1 12748 . . . . . . . . . . . 12 1 = (0 + 1)
258257oveq2i 7414 . . . . . . . . . . 11 (0...1) = (0...(0 + 1))
259258sumeq1i 15711 . . . . . . . . . 10 Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)))
260 0nn0 12514 . . . . . . . . . . . . 13 0 ∈ ℕ0
261 nn0uz 12892 . . . . . . . . . . . . 13 0 = (ℤ‘0)
262260, 261eleqtri 2832 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
263262a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → 0 ∈ (ℤ‘0))
264258eleq2i 2826 . . . . . . . . . . . 12 (𝑘 ∈ (0...1) ↔ 𝑘 ∈ (0...(0 + 1)))
265173coef3 26187 . . . . . . . . . . . . . . 15 ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
26668, 265syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → (coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ)
267 elfznn0 13635 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
268 ffvelcdm 7070 . . . . . . . . . . . . . 14 (((coeff‘(Xpf − (ℂ × {𝑧}))):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
269266, 267, 268syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ∈ ℂ)
2702oveq1d 7418 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = (𝑁 − 1))
271 pncan 11486 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐷 + 1) − 1) = 𝐷)
272101, 100, 271sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 + 1) − 1) = 𝐷)
273270, 272eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) = 𝐷)
274273adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → (𝑁 − 1) = 𝐷)
2753adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑅) → 𝐷 ∈ ℕ)
276274, 275eqeltrd 2834 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ ℕ)
277 nnuz 12893 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
278276, 277eleqtrdi 2844 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (𝑁 − 1) ∈ (ℤ‘1))
279 fzss2 13579 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ (ℤ‘1) → (0...1) ⊆ (0...(𝑁 − 1)))
280278, 279syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (0...1) ⊆ (0...(𝑁 − 1)))
281280sselda 3958 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
282 fznn0sub 13571 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) − 𝑘) ∈ ℕ0)
283 ffvelcdm 7070 . . . . . . . . . . . . . . 15 (((coeff‘𝑄):ℕ0⟶ℂ ∧ ((𝑁 − 1) − 𝑘) ∈ ℕ0) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
284228, 282, 283syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
285281, 284syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
286269, 285mulcld 11253 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...1)) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
287264, 286sylan2br 595 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ (0...(0 + 1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) ∈ ℂ)
288 id 22 . . . . . . . . . . . . . 14 (𝑘 = (0 + 1) → 𝑘 = (0 + 1))
289288, 257eqtr4di 2788 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → 𝑘 = 1)
290289fveq2d 6879 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘1))
291289oveq2d 7419 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 1))
292291fveq2d 6879 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 1)))
293290, 292oveq12d 7421 . . . . . . . . . . 11 (𝑘 = (0 + 1) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))))
294263, 287, 293fsump1 15770 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...(0 + 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
295259, 294eqtrid 2782 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))))
296 eldifn 4107 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → ¬ 𝑘 ∈ (0...1))
297296adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ¬ 𝑘 ∈ (0...1))
298 eldifi 4106 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (0...(𝑁 − 1)))
299 elfznn0 13635 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
300298, 299syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ ℕ0)
301173, 166dgrub 26189 . . . . . . . . . . . . . . . . 17 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))))
3023013expia 1121 . . . . . . . . . . . . . . . 16 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
30368, 300, 302syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
304 elfzuz 13535 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ (ℤ‘0))
305298, 304syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1)) → 𝑘 ∈ (ℤ‘0))
306305adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → 𝑘 ∈ (ℤ‘0))
307 1z 12620 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
308 elfz5 13531 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
309306, 307, 308sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ 1))
310158breq2d 5131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
311310adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧}))) ↔ 𝑘 ≤ 1))
312309, 311bitr4d 282 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (𝑘 ∈ (0...1) ↔ 𝑘 ≤ (deg‘(Xpf − (ℂ × {𝑧})))))
313303, 312sylibrd 259 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) ≠ 0 → 𝑘 ∈ (0...1)))
314313necon1bd 2950 . . . . . . . . . . . . 13 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (¬ 𝑘 ∈ (0...1) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0))
315297, 314mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = 0)
316315oveq1d 7418 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
317298, 284sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) ∈ ℂ)
318317mul02d 11431 . . . . . . . . . . 11 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (0 · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
319316, 318eqtrd 2770 . . . . . . . . . 10 (((𝜑𝑧𝑅) ∧ 𝑘 ∈ ((0...(𝑁 − 1)) ∖ (0...1))) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = 0)
320 fzfid 13989 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (0...(𝑁 − 1)) ∈ Fin)
321280, 286, 319, 320fsumss 15739 . . . . . . . . 9 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...1)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
322 0z 12597 . . . . . . . . . . . 12 0 ∈ ℤ
323186fveq1d 6877 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0))
324 coeidp 26219 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = if(0 = 1, 1, 0))
325159nesymi 2989 . . . . . . . . . . . . . . . . . . . . 21 ¬ 0 = 1
326325iffalsei 4510 . . . . . . . . . . . . . . . . . . . 20 if(0 = 1, 1, 0) = 0
327324, 326eqtrdi 2786 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℕ0 → ((coeff‘Xp)‘0) = 0)
328327adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘Xp)‘0) = 0)
329184coefv0 26203 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ × {𝑧}) ∈ (Poly‘ℂ) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
330182, 329syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑅) → ((ℂ × {𝑧})‘0) = ((coeff‘(ℂ × {𝑧}))‘0))
331 0cn 11225 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
332 vex 3463 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
333332fvconst2 7195 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℂ → ((ℂ × {𝑧})‘0) = 𝑧)
334331, 333ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℂ × {𝑧})‘0) = 𝑧
335330, 334eqtr3di 2785 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑅) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
336335adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → ((coeff‘(ℂ × {𝑧}))‘0) = 𝑧)
337192, 195, 197, 197, 198, 328, 336ofval 7680 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑅) ∧ 0 ∈ ℕ0) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
338260, 337mpan2 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = (0 − 𝑧))
339 df-neg 11467 . . . . . . . . . . . . . . . 16 -𝑧 = (0 − 𝑧)
340338, 339eqtr4di 2788 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → (((coeff‘Xp) ∘f − (coeff‘(ℂ × {𝑧})))‘0) = -𝑧)
341323, 340eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘(Xpf − (ℂ × {𝑧})))‘0) = -𝑧)
342274oveq1d 7418 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (𝐷 − 0))
343102subid1d 11581 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑅) → (𝐷 − 0) = 𝐷)
344342, 343, 313eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑅) → ((𝑁 − 1) − 0) = (deg‘𝑄))
345344fveq2d 6879 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = ((coeff‘𝑄)‘(deg‘𝑄)))
346345, 232eqtr4d 2773 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 0)) = (𝐴𝑁))
347341, 346oveq12d 7421 . . . . . . . . . . . . 13 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) = (-𝑧 · (𝐴𝑁)))
348347, 249eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ)
349 fveq2 6875 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) = ((coeff‘(Xpf − (ℂ × {𝑧})))‘0))
350 oveq2 7411 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑁 − 1) − 𝑘) = ((𝑁 − 1) − 0))
351350fveq2d 6879 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘)) = ((coeff‘𝑄)‘((𝑁 − 1) − 0)))
352349, 351oveq12d 7421 . . . . . . . . . . . . 13 (𝑘 = 0 → (((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
353352fsum1 15761 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
354322, 348, 353sylancr 587 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (((coeff‘(Xpf − (ℂ × {𝑧})))‘0) · ((coeff‘𝑄)‘((𝑁 − 1) − 0))))
355354, 347eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑧𝑅) → Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) = (-𝑧 · (𝐴𝑁)))
356274fvoveq1d 7425 . . . . . . . . . . . 12 ((𝜑𝑧𝑅) → ((coeff‘𝑄)‘((𝑁 − 1) − 1)) = ((coeff‘𝑄)‘(𝐷 − 1)))
357224, 356oveq12d 7421 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = (1 · ((coeff‘𝑄)‘(𝐷 − 1))))
358241mullidd 11251 . . . . . . . . . . 11 ((𝜑𝑧𝑅) → (1 · ((coeff‘𝑄)‘(𝐷 − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
359357, 358eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1))) = ((coeff‘𝑄)‘(𝐷 − 1)))
360355, 359oveq12d 7421 . . . . . . . . 9 ((𝜑𝑧𝑅) → (Σ𝑘 ∈ (0...0)(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))) + (((coeff‘(Xpf − (ℂ × {𝑧})))‘1) · ((coeff‘𝑄)‘((𝑁 − 1) − 1)))) = ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))))
361295, 321, 3603eqtr3rd 2779 . . . . . . . 8 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((coeff‘(Xpf − (ℂ × {𝑧})))‘𝑘) · ((coeff‘𝑄)‘((𝑁 − 1) − 𝑘))))
362255, 256, 3613eqtr4rd 2781 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) = (𝐴‘(𝑁 − 1)))
363362oveq1d 7418 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) + ((coeff‘𝑄)‘(𝐷 − 1))) / (𝐴𝑁)) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
364237, 242, 246divcan4d 12021 . . . . . . 7 ((𝜑𝑧𝑅) → ((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) = -𝑧)
365364oveq1d 7418 . . . . . 6 ((𝜑𝑧𝑅) → (((-𝑧 · (𝐴𝑁)) / (𝐴𝑁)) + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))))
366250, 363, 3653eqtr3rd 2779 . . . . 5 ((𝜑𝑧𝑅) → (-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = ((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
367366negeqd 11474 . . . 4 ((𝜑𝑧𝑅) → -(-𝑧 + (((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
368248, 367eqtr3d 2772 . . 3 ((𝜑𝑧𝑅) → (--𝑧 + -(((coeff‘𝑄)‘(𝐷 − 1)) / (𝐴𝑁))) = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
369128, 236, 3683eqtrd 2774 . 2 ((𝜑𝑧𝑅) → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
37025, 369exlimddv 1935 1 (𝜑 → Σ𝑥𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  ifcif 4500  {csn 4601   class class class wbr 5119   × cxp 5652  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  cn 12238  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  chash 14346  Σcsu 15700  0𝑝c0p 25620  Polycply 26139  Xpcidp 26140  coeffccoe 26141  degcdgr 26142   quot cquot 26248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-0p 25621  df-ply 26143  df-idp 26144  df-coe 26145  df-dgr 26146  df-quot 26249
This theorem is referenced by:  vieta1  26270
  Copyright terms: Public domain W3C validator