| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcoidgend | Structured version Visualization version GIF version | ||
| Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xpcoidgend.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) |
| Ref | Expression |
|---|---|
| xpcoidgend | ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4158 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | xpcoidgend.1 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) | |
| 3 | 1, 2 | eqnetrrid 3004 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
| 4 | 3 | xpcogend 14883 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2929 ∩ cin 3897 ∅c0 4282 × cxp 5617 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-co 5628 |
| This theorem is referenced by: xptrrel 14889 relexpxpnnidm 43820 |
| Copyright terms: Public domain | W3C validator |