Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcoidgend | Structured version Visualization version GIF version |
Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
xpcoidgend.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) |
Ref | Expression |
---|---|
xpcoidgend | ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | xpcoidgend.1 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) | |
3 | 1, 2 | eqnetrrid 3018 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
4 | 3 | xpcogend 14613 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 × cxp 5578 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-co 5589 |
This theorem is referenced by: xptrrel 14619 relexpxpnnidm 41200 |
Copyright terms: Public domain | W3C validator |