MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoidgend Structured version   Visualization version   GIF version

Theorem xpcoidgend 14538
Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcoidgend.1 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
xpcoidgend (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))

Proof of Theorem xpcoidgend
StepHypRef Expression
1 incom 4115 . . 3 (𝐴𝐵) = (𝐵𝐴)
2 xpcoidgend.1 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
31, 2eqnetrrid 3016 . 2 (𝜑 → (𝐵𝐴) ≠ ∅)
43xpcogend 14537 1 (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wne 2940  cin 3865  c0 4237   × cxp 5549  ccom 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-co 5560
This theorem is referenced by:  xptrrel  14543  relexpxpnnidm  40988
  Copyright terms: Public domain W3C validator