![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcoidgend | Structured version Visualization version GIF version |
Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
xpcoidgend.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) |
Ref | Expression |
---|---|
xpcoidgend | ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4202 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | xpcoidgend.1 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) | |
3 | 1, 2 | eqnetrrid 3015 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
4 | 3 | xpcogend 14926 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2939 ∩ cin 3948 ∅c0 4323 × cxp 5675 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-co 5686 |
This theorem is referenced by: xptrrel 14932 relexpxpnnidm 42757 |
Copyright terms: Public domain | W3C validator |