MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoidgend Structured version   Visualization version   GIF version

Theorem xpcoidgend 14330
Description: If two classes are not disjoint, then the composition of their cross-product with itself is idempotent. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcoidgend.1 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
xpcoidgend (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))

Proof of Theorem xpcoidgend
StepHypRef Expression
1 incom 4171 . . 3 (𝐴𝐵) = (𝐵𝐴)
2 xpcoidgend.1 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
31, 2eqnetrrid 3090 . 2 (𝜑 → (𝐵𝐴) ≠ ∅)
43xpcogend 14329 1 (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wne 3015  cin 3928  c0 4284   × cxp 5546  ccom 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-xp 5554  df-co 5557
This theorem is referenced by:  xptrrel  14335  relexpxpnnidm  40122
  Copyright terms: Public domain W3C validator