MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoidgend Structured version   Visualization version   GIF version

Theorem xpcoidgend 14884
Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcoidgend.1 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
xpcoidgend (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))

Proof of Theorem xpcoidgend
StepHypRef Expression
1 incom 4158 . . 3 (𝐴𝐵) = (𝐵𝐴)
2 xpcoidgend.1 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
31, 2eqnetrrid 3004 . 2 (𝜑 → (𝐵𝐴) ≠ ∅)
43xpcogend 14883 1 (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2929  cin 3897  c0 4282   × cxp 5617  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-co 5628
This theorem is referenced by:  xptrrel  14889  relexpxpnnidm  43820
  Copyright terms: Public domain W3C validator