| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcoidgend | Structured version Visualization version GIF version | ||
| Description: If two classes are not disjoint, then the composition of their Cartesian product with itself is idempotent. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xpcoidgend.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) |
| Ref | Expression |
|---|---|
| xpcoidgend | ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4175 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | xpcoidgend.1 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) | |
| 3 | 1, 2 | eqnetrrid 3001 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
| 4 | 3 | xpcogend 14947 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 × cxp 5639 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-co 5650 |
| This theorem is referenced by: xptrrel 14953 relexpxpnnidm 43699 |
| Copyright terms: Public domain | W3C validator |