MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Structured version   Visualization version   GIF version

Theorem intirr 6012
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Distinct variable group:   𝑥,𝑅

Proof of Theorem intirr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 incom 4131 . . . 4 (𝑅 ∩ I ) = ( I ∩ 𝑅)
21eqeq1i 2743 . . 3 ((𝑅 ∩ I ) = ∅ ↔ ( I ∩ 𝑅) = ∅)
3 disj2 4388 . . 3 (( I ∩ 𝑅) = ∅ ↔ I ⊆ (V ∖ 𝑅))
4 reli 5725 . . . 4 Rel I
5 ssrel 5683 . . . 4 (Rel I → ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))))
64, 5ax-mp 5 . . 3 ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
72, 3, 63bitri 296 . 2 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
8 equcom 2022 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
9 vex 3426 . . . . . 6 𝑦 ∈ V
109ideq 5750 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
11 df-br 5071 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
128, 10, 113bitr2i 298 . . . 4 (𝑦 = 𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
13 opex 5373 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
1413biantrur 530 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
15 eldif 3893 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1614, 15bitr4i 277 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
17 df-br 5071 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1816, 17xchnxbir 332 . . . 4 𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
1912, 18imbi12i 350 . . 3 ((𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
20192albii 1824 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
21 breq2 5074 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
2221notbid 317 . . . 4 (𝑦 = 𝑥 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑥))
2322equsalvw 2008 . . 3 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ¬ 𝑥𝑅𝑥)
2423albii 1823 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
257, 20, 243bitr2i 298 1 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  cop 4564   class class class wbr 5070   I cid 5479  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by:  hartogslem1  9231  hausdiag  22704
  Copyright terms: Public domain W3C validator