MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Structured version   Visualization version   GIF version

Theorem intirr 5945
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Distinct variable group:   𝑥,𝑅

Proof of Theorem intirr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 incom 4128 . . . 4 (𝑅 ∩ I ) = ( I ∩ 𝑅)
21eqeq1i 2803 . . 3 ((𝑅 ∩ I ) = ∅ ↔ ( I ∩ 𝑅) = ∅)
3 disj2 4365 . . 3 (( I ∩ 𝑅) = ∅ ↔ I ⊆ (V ∖ 𝑅))
4 reli 5662 . . . 4 Rel I
5 ssrel 5621 . . . 4 (Rel I → ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))))
64, 5ax-mp 5 . . 3 ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
72, 3, 63bitri 300 . 2 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
8 equcom 2025 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
9 vex 3444 . . . . . 6 𝑦 ∈ V
109ideq 5687 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
11 df-br 5031 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
128, 10, 113bitr2i 302 . . . 4 (𝑦 = 𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
13 opex 5321 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
1413biantrur 534 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
15 eldif 3891 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1614, 15bitr4i 281 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
17 df-br 5031 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1816, 17xchnxbir 336 . . . 4 𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
1912, 18imbi12i 354 . . 3 ((𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
20192albii 1822 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
21 breq2 5034 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
2221notbid 321 . . . 4 (𝑦 = 𝑥 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑥))
2322equsalvw 2010 . . 3 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ¬ 𝑥𝑅𝑥)
2423albii 1821 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
257, 20, 243bitr2i 302 1 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cin 3880  wss 3881  c0 4243  cop 4531   class class class wbr 5030   I cid 5424  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526
This theorem is referenced by:  hartogslem1  8990  hausdiag  22250
  Copyright terms: Public domain W3C validator