MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Structured version   Visualization version   GIF version

Theorem intirr 6072
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Distinct variable group:   𝑥,𝑅

Proof of Theorem intirr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 incom 4161 . . . 4 (𝑅 ∩ I ) = ( I ∩ 𝑅)
21eqeq1i 2741 . . 3 ((𝑅 ∩ I ) = ∅ ↔ ( I ∩ 𝑅) = ∅)
3 disj2 4417 . . 3 (( I ∩ 𝑅) = ∅ ↔ I ⊆ (V ∖ 𝑅))
4 reli 5782 . . . 4 Rel I
5 ssrel 5738 . . . 4 (Rel I → ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))))
64, 5ax-mp 5 . . 3 ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
72, 3, 63bitri 296 . 2 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
8 equcom 2021 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
9 vex 3449 . . . . . 6 𝑦 ∈ V
109ideq 5808 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
11 df-br 5106 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
128, 10, 113bitr2i 298 . . . 4 (𝑦 = 𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
13 opex 5421 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
1413biantrur 531 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
15 eldif 3920 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1614, 15bitr4i 277 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
17 df-br 5106 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1816, 17xchnxbir 332 . . . 4 𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
1912, 18imbi12i 350 . . 3 ((𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
20192albii 1822 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
21 breq2 5109 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
2221notbid 317 . . . 4 (𝑦 = 𝑥 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑥))
2322equsalvw 2007 . . 3 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ¬ 𝑥𝑅𝑥)
2423albii 1821 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
257, 20, 243bitr2i 298 1 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  cop 4592   class class class wbr 5105   I cid 5530  Rel wrel 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640
This theorem is referenced by:  hartogslem1  9478  hausdiag  22996
  Copyright terms: Public domain W3C validator