MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknrel Structured version   Visualization version   GIF version

Theorem erclwwlknrel 29788
Description: is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknrel Rel

Proof of Theorem erclwwlknrel
StepHypRef Expression
1 erclwwlkn.r . 2 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
21relopabi 5812 1 Rel
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  {copab 5200  Rel wrel 5671  (class class class)co 7401  0cc0 11106  ...cfz 13481   cyclShift ccsh 14735   ClWWalksN cclwwlkn 29746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-opab 5201  df-xp 5672  df-rel 5673
This theorem is referenced by:  erclwwlkn  29794
  Copyright terms: Public domain W3C validator