MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknrel Structured version   Visualization version   GIF version

Theorem erclwwlknrel 29059
Description: is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknrel Rel

Proof of Theorem erclwwlknrel
StepHypRef Expression
1 erclwwlkn.r . 2 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
21relopabi 5782 1 Rel
Colors of variables: wff setvar class
Syntax hints:  w3a 1088   = wceq 1542  wcel 2107  wrex 3070  {copab 5171  Rel wrel 5642  (class class class)co 7361  0cc0 11059  ...cfz 13433   cyclShift ccsh 14685   ClWWalksN cclwwlkn 29017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-opab 5172  df-xp 5643  df-rel 5644
This theorem is referenced by:  erclwwlkn  29065
  Copyright terms: Public domain W3C validator