MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkneq Structured version   Visualization version   GIF version

Theorem erclwwlkneq 30096
Description: Two classes are equivalent regarding if both are words of the same fixed length and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkneq ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑡,𝑁,𝑢   𝑇,𝑛,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡,𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑢,𝑡,𝑛)   𝑌(𝑢,𝑡,𝑛)

Proof of Theorem erclwwlkneq
StepHypRef Expression
1 eleq1 2827 . . . 4 (𝑡 = 𝑇 → (𝑡𝑊𝑇𝑊))
21adantr 480 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡𝑊𝑇𝑊))
3 eleq1 2827 . . . 4 (𝑢 = 𝑈 → (𝑢𝑊𝑈𝑊))
43adantl 481 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢𝑊𝑈𝑊))
5 simpl 482 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → 𝑡 = 𝑇)
6 oveq1 7438 . . . . . 6 (𝑢 = 𝑈 → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
76adantl 481 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
85, 7eqeq12d 2751 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 = (𝑢 cyclShift 𝑛) ↔ 𝑇 = (𝑈 cyclShift 𝑛)))
98rexbidv 3177 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))
102, 4, 93anbi123d 1435 . 2 ((𝑡 = 𝑇𝑢 = 𝑈) → ((𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛)) ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
11 erclwwlkn.r . 2 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
1210, 11brabga 5544 1 ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  {copab 5210  (class class class)co 7431  0cc0 11153  ...cfz 13544   cyclShift ccsh 14823   ClWWalksN cclwwlkn 30053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  erclwwlkneqlen  30097  erclwwlknref  30098  erclwwlknsym  30099  erclwwlkntr  30100  eclclwwlkn1  30104
  Copyright terms: Public domain W3C validator