![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkneq | Structured version Visualization version GIF version |
Description: Two classes are equivalent regarding ∼ if both are words of the same fixed length and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
erclwwlkn.r | ⊢ ∼ = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkneq | ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 ↔ (𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2815 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑡 ∈ 𝑊 ↔ 𝑇 ∈ 𝑊)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑡 ∈ 𝑊 ↔ 𝑇 ∈ 𝑊)) |
3 | eleq1 2815 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ 𝑊 ↔ 𝑈 ∈ 𝑊)) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑢 ∈ 𝑊 ↔ 𝑈 ∈ 𝑊)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → 𝑡 = 𝑇) | |
6 | oveq1 7412 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛)) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛)) |
8 | 5, 7 | eqeq12d 2742 | . . . 4 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑡 = (𝑢 cyclShift 𝑛) ↔ 𝑇 = (𝑈 cyclShift 𝑛))) |
9 | 8 | rexbidv 3172 | . . 3 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))) |
10 | 2, 4, 9 | 3anbi123d 1432 | . 2 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ((𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛)) ↔ (𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))) |
11 | erclwwlkn.r | . 2 ⊢ ∼ = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
12 | 10, 11 | brabga 5527 | 1 ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 ↔ (𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 class class class wbr 5141 {copab 5203 (class class class)co 7405 0cc0 11112 ...cfz 13490 cyclShift ccsh 14744 ClWWalksN cclwwlkn 29786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-iota 6489 df-fv 6545 df-ov 7408 |
This theorem is referenced by: erclwwlkneqlen 29830 erclwwlknref 29831 erclwwlknsym 29832 erclwwlkntr 29833 eclclwwlkn1 29837 |
Copyright terms: Public domain | W3C validator |