Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2cwwkdifex | Structured version Visualization version GIF version |
Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
umgr2cwwkdifex | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b2 12354 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
2 | 1nn0 11943 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ ℕ0) |
4 | simpl 487 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ) | |
5 | simpr 489 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 < 𝑁) | |
6 | elfzo0 13120 | . . . . 5 ⊢ (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
7 | 3, 4, 5, 6 | syl3anbrc 1341 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ (0..^𝑁)) |
8 | 1, 7 | sylbi 220 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ (0..^𝑁)) |
9 | 8 | 3ad2ant2 1132 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 1 ∈ (0..^𝑁)) |
10 | fveq2 6659 | . . . 4 ⊢ (𝑖 = 1 → (𝑊‘𝑖) = (𝑊‘1)) | |
11 | 10 | adantl 486 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → (𝑊‘𝑖) = (𝑊‘1)) |
12 | 11 | neeq1d 3011 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ (𝑊‘1) ≠ (𝑊‘0))) |
13 | umgr2cwwk2dif 27941 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) | |
14 | 9, 12, 13 | rspcedvd 3545 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 0cc0 10568 1c1 10569 < clt 10706 ℕcn 11667 2c2 11722 ℕ0cn0 11927 ℤ≥cuz 12275 ..^cfzo 13075 UMGraphcumgr 26966 ClWWalksN cclwwlkn 27901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-n0 11928 df-xnn0 12000 df-z 12014 df-uz 12276 df-fz 12933 df-fzo 13076 df-hash 13734 df-word 13907 df-edg 26933 df-umgr 26968 df-clwwlk 27859 df-clwwlkn 27902 |
This theorem is referenced by: umgrhashecclwwlk 27955 |
Copyright terms: Public domain | W3C validator |