![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2cwwkdifex | Structured version Visualization version GIF version |
Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
umgr2cwwkdifex | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b2 12900 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
2 | 1nn0 12483 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ ℕ0) |
4 | simpl 484 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ) | |
5 | simpr 486 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 < 𝑁) | |
6 | elfzo0 13668 | . . . . 5 ⊢ (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
7 | 3, 4, 5, 6 | syl3anbrc 1344 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ (0..^𝑁)) |
8 | 1, 7 | sylbi 216 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ (0..^𝑁)) |
9 | 8 | 3ad2ant2 1135 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 1 ∈ (0..^𝑁)) |
10 | fveq2 6887 | . . . 4 ⊢ (𝑖 = 1 → (𝑊‘𝑖) = (𝑊‘1)) | |
11 | 10 | adantl 483 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → (𝑊‘𝑖) = (𝑊‘1)) |
12 | 11 | neeq1d 3001 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ (𝑊‘1) ≠ (𝑊‘0))) |
13 | umgr2cwwk2dif 29296 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) | |
14 | 9, 12, 13 | rspcedvd 3613 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 class class class wbr 5146 ‘cfv 6539 (class class class)co 7403 0cc0 11105 1c1 11106 < clt 11243 ℕcn 12207 2c2 12262 ℕ0cn0 12467 ℤ≥cuz 12817 ..^cfzo 13622 UMGraphcumgr 28320 ClWWalksN cclwwlkn 29256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-oadd 8464 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-n0 12468 df-xnn0 12540 df-z 12554 df-uz 12818 df-fz 13480 df-fzo 13623 df-hash 14286 df-word 14460 df-edg 28287 df-umgr 28322 df-clwwlk 29214 df-clwwlkn 29257 |
This theorem is referenced by: umgrhashecclwwlk 29310 |
Copyright terms: Public domain | W3C validator |