MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2cwwkdifex Structured version   Visualization version   GIF version

Theorem umgr2cwwkdifex 27838
Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
umgr2cwwkdifex ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊𝑖) ≠ (𝑊‘0))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑁   𝑖,𝑊

Proof of Theorem umgr2cwwkdifex
StepHypRef Expression
1 eluz2b2 12315 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
2 1nn0 11907 . . . . . 6 1 ∈ ℕ0
32a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ ℕ0)
4 simpl 485 . . . . 5 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ)
5 simpr 487 . . . . 5 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 < 𝑁)
6 elfzo0 13072 . . . . 5 (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ ∧ 1 < 𝑁))
73, 4, 5, 6syl3anbrc 1339 . . . 4 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → 1 ∈ (0..^𝑁))
81, 7sylbi 219 . . 3 (𝑁 ∈ (ℤ‘2) → 1 ∈ (0..^𝑁))
983ad2ant2 1130 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 1 ∈ (0..^𝑁))
10 fveq2 6664 . . . 4 (𝑖 = 1 → (𝑊𝑖) = (𝑊‘1))
1110adantl 484 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → (𝑊𝑖) = (𝑊‘1))
1211neeq1d 3075 . 2 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑖 = 1) → ((𝑊𝑖) ≠ (𝑊‘0) ↔ (𝑊‘1) ≠ (𝑊‘0)))
13 umgr2cwwk2dif 27837 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
149, 12, 13rspcedvd 3625 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^𝑁)(𝑊𝑖) ≠ (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   < clt 10669  cn 11632  2c2 11686  0cn0 11891  cuz 12237  ..^cfzo 13027  UMGraphcumgr 26860   ClWWalksN cclwwlkn 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-edg 26827  df-umgr 26862  df-clwwlk 27754  df-clwwlkn 27797
This theorem is referenced by:  umgrhashecclwwlk  27851
  Copyright terms: Public domain W3C validator