MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkrel Structured version   Visualization version   GIF version

Theorem erclwwlkrel 29952
Description: is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkrel Rel

Proof of Theorem erclwwlkrel
StepHypRef Expression
1 erclwwlk.r . 2 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
21relopabi 5787 1 Rel
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {copab 5171  Rel wrel 5645  cfv 6513  (class class class)co 7389  0cc0 11074  ...cfz 13474  chash 14301   cyclShift ccsh 14759  ClWWalkscclwwlk 29916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5172  df-xp 5646  df-rel 5647
This theorem is referenced by:  erclwwlk  29958
  Copyright terms: Public domain W3C validator