![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkrel | Structured version Visualization version GIF version |
Description: ∼ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkrel | ⊢ Rel ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
2 | 1 | relopabi 5839 | 1 ⊢ Rel ∼ |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 {copab 5213 Rel wrel 5698 ‘cfv 6569 (class class class)co 7438 0cc0 11162 ...cfz 13553 ♯chash 14375 cyclShift ccsh 14832 ClWWalkscclwwlk 30026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-opab 5214 df-xp 5699 df-rel 5700 |
This theorem is referenced by: erclwwlk 30068 |
Copyright terms: Public domain | W3C validator |