![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkrel | Structured version Visualization version GIF version |
Description: βΌ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} |
Ref | Expression |
---|---|
erclwwlkrel | β’ Rel βΌ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . 2 β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} | |
2 | 1 | relopabi 5822 | 1 β’ Rel βΌ |
Colors of variables: wff setvar class |
Syntax hints: β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 {copab 5210 Rel wrel 5681 βcfv 6543 (class class class)co 7408 0cc0 11109 ...cfz 13483 β―chash 14289 cyclShift ccsh 14737 ClWWalkscclwwlk 29231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: erclwwlk 29273 |
Copyright terms: Public domain | W3C validator |