| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkrel | Structured version Visualization version GIF version | ||
| Description: ∼ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkrel | ⊢ Rel ∼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
| 2 | 1 | relopabi 5812 | 1 ⊢ Rel ∼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {copab 5185 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 0cc0 11137 ...cfz 13529 ♯chash 14351 cyclShift ccsh 14808 ClWWalkscclwwlk 29928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: erclwwlk 29970 |
| Copyright terms: Public domain | W3C validator |