![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkrel | Structured version Visualization version GIF version |
Description: βΌ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} |
Ref | Expression |
---|---|
erclwwlkrel | β’ Rel βΌ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . 2 β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} | |
2 | 1 | relopabi 5823 | 1 β’ Rel βΌ |
Colors of variables: wff setvar class |
Syntax hints: β§ w3a 1088 = wceq 1542 β wcel 2107 βwrex 3071 {copab 5211 Rel wrel 5682 βcfv 6544 (class class class)co 7409 0cc0 11110 ...cfz 13484 β―chash 14290 cyclShift ccsh 14738 ClWWalkscclwwlk 29234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: erclwwlk 29276 |
Copyright terms: Public domain | W3C validator |