![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkrel | Structured version Visualization version GIF version |
Description: ∼ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkrel | ⊢ Rel ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
2 | 1 | relopabi 5818 | 1 ⊢ Rel ∼ |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 {copab 5204 Rel wrel 5677 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ...cfz 13510 ♯chash 14315 cyclShift ccsh 14764 ClWWalkscclwwlk 29784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-rel 5679 |
This theorem is referenced by: erclwwlk 29826 |
Copyright terms: Public domain | W3C validator |