MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwsn Structured version   Visualization version   GIF version

Theorem clwwisshclwwsn 30035
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 29-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwsn ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwwsn
StepHypRef Expression
1 oveq2 7439 . . . 4 (𝑁 = (♯‘𝑊) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (♯‘𝑊)))
2 eqid 2737 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlkbp 30004 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
43simp2d 1144 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺))
5 cshwn 14835 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
64, 5syl 17 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
76adantr 480 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
81, 7sylan9eq 2797 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) = 𝑊)
9 simprl 771 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
108, 9eqeltrd 2841 . 2 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
11 simprl 771 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
12 df-ne 2941 . . . . . 6 (𝑁 ≠ (♯‘𝑊) ↔ ¬ 𝑁 = (♯‘𝑊))
13 fzofzim 13749 . . . . . . 7 ((𝑁 ≠ (♯‘𝑊) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0..^(♯‘𝑊)))
1413expcom 413 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 ≠ (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1512, 14biimtrrid 243 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1615adantl 481 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1716impcom 407 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑁 ∈ (0..^(♯‘𝑊)))
18 clwwisshclwws 30034 . . 3 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
1911, 17, 18syl2anc 584 . 2 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
2010, 19pm2.61ian 812 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  c0 4333  cfv 6561  (class class class)co 7431  0cc0 11155  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   cyclShift ccsh 14826  Vtxcvtx 29013  ClWWalkscclwwlk 30000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-clwwlk 30001
This theorem is referenced by:  clwwnisshclwwsn  30078
  Copyright terms: Public domain W3C validator