![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwisshclwwsn | Structured version Visualization version GIF version |
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
clwwisshclwwsn | ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7424 | . . . 4 ⊢ (𝑁 = (♯‘𝑊) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (♯‘𝑊))) | |
2 | eqid 2726 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 2 | clwwlkbp 29915 | . . . . . . 7 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅)) |
4 | 3 | simp2d 1140 | . . . . . 6 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)) |
5 | cshwn 14800 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
8 | 1, 7 | sylan9eq 2786 | . . 3 ⊢ ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) = 𝑊) |
9 | simprl 769 | . . 3 ⊢ ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺)) | |
10 | 8, 9 | eqeltrd 2826 | . 2 ⊢ ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) |
11 | simprl 769 | . . 3 ⊢ ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺)) | |
12 | df-ne 2931 | . . . . . 6 ⊢ (𝑁 ≠ (♯‘𝑊) ↔ ¬ 𝑁 = (♯‘𝑊)) | |
13 | fzofzim 13727 | . . . . . . 7 ⊢ ((𝑁 ≠ (♯‘𝑊) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0..^(♯‘𝑊))) | |
14 | 13 | expcom 412 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 ≠ (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊)))) |
15 | 12, 14 | biimtrrid 242 | . . . . 5 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊)))) |
16 | 15 | adantl 480 | . . . 4 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊)))) |
17 | 16 | impcom 406 | . . 3 ⊢ ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑁 ∈ (0..^(♯‘𝑊))) |
18 | clwwisshclwws 29945 | . . 3 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) | |
19 | 11, 17, 18 | syl2anc 582 | . 2 ⊢ ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) |
20 | 10, 19 | pm2.61ian 810 | 1 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 Vcvv 3462 ∅c0 4322 ‘cfv 6546 (class class class)co 7416 0cc0 11149 ...cfz 13532 ..^cfzo 13675 ♯chash 14342 Word cword 14517 cyclShift ccsh 14791 Vtxcvtx 28929 ClWWalkscclwwlk 29911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-ico 13378 df-fz 13533 df-fzo 13676 df-fl 13806 df-mod 13884 df-hash 14343 df-word 14518 df-lsw 14566 df-concat 14574 df-substr 14644 df-pfx 14674 df-csh 14792 df-clwwlk 29912 |
This theorem is referenced by: clwwnisshclwwsn 29989 |
Copyright terms: Public domain | W3C validator |