MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwsn Structured version   Visualization version   GIF version

Theorem clwwisshclwwsn 27790
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 29-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwsn ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwwsn
StepHypRef Expression
1 oveq2 7146 . . . 4 (𝑁 = (♯‘𝑊) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (♯‘𝑊)))
2 eqid 2824 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlkbp 27759 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
43simp2d 1140 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺))
5 cshwn 14148 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
64, 5syl 17 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
76adantr 484 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
81, 7sylan9eq 2879 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) = 𝑊)
9 simprl 770 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
108, 9eqeltrd 2916 . 2 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
11 simprl 770 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
12 df-ne 3014 . . . . . 6 (𝑁 ≠ (♯‘𝑊) ↔ ¬ 𝑁 = (♯‘𝑊))
13 fzofzim 13077 . . . . . . 7 ((𝑁 ≠ (♯‘𝑊) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0..^(♯‘𝑊)))
1413expcom 417 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 ≠ (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1512, 14syl5bir 246 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1615adantl 485 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1716impcom 411 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑁 ∈ (0..^(♯‘𝑊)))
18 clwwisshclwws 27789 . . 3 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
1911, 17, 18syl2anc 587 . 2 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
2010, 19pm2.61ian 811 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3013  Vcvv 3479  c0 4274  cfv 6336  (class class class)co 7138  0cc0 10522  ...cfz 12883  ..^cfzo 13026  chash 13684  Word cword 13855   cyclShift ccsh 14139  Vtxcvtx 26778  ClWWalkscclwwlk 27755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-ico 12730  df-fz 12884  df-fzo 13027  df-fl 13155  df-mod 13231  df-hash 13685  df-word 13856  df-lsw 13904  df-concat 13912  df-substr 13992  df-pfx 14022  df-csh 14140  df-clwwlk 27756
This theorem is referenced by:  clwwnisshclwwsn  27833
  Copyright terms: Public domain W3C validator