MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkeq Structured version   Visualization version   GIF version

Theorem erclwwlkeq 29947
Description: Two classes are equivalent regarding if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkeq ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))))
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑈,𝑛,𝑢,𝑤   𝑛,𝑊,𝑢,𝑤
Allowed substitution hints:   (𝑤,𝑢,𝑛)   𝑋(𝑤,𝑢,𝑛)   𝑌(𝑤,𝑢,𝑛)

Proof of Theorem erclwwlkeq
StepHypRef Expression
1 eleq1 2816 . . . 4 (𝑢 = 𝑈 → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺)))
21adantr 480 . . 3 ((𝑢 = 𝑈𝑤 = 𝑊) → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺)))
3 eleq1 2816 . . . 4 (𝑤 = 𝑊 → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
43adantl 481 . . 3 ((𝑢 = 𝑈𝑤 = 𝑊) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
5 fveq2 6858 . . . . . 6 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
65oveq2d 7403 . . . . 5 (𝑤 = 𝑊 → (0...(♯‘𝑤)) = (0...(♯‘𝑊)))
76adantl 481 . . . 4 ((𝑢 = 𝑈𝑤 = 𝑊) → (0...(♯‘𝑤)) = (0...(♯‘𝑊)))
8 simpl 482 . . . . 5 ((𝑢 = 𝑈𝑤 = 𝑊) → 𝑢 = 𝑈)
9 oveq1 7394 . . . . . 6 (𝑤 = 𝑊 → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛))
109adantl 481 . . . . 5 ((𝑢 = 𝑈𝑤 = 𝑊) → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛))
118, 10eqeq12d 2745 . . . 4 ((𝑢 = 𝑈𝑤 = 𝑊) → (𝑢 = (𝑤 cyclShift 𝑛) ↔ 𝑈 = (𝑊 cyclShift 𝑛)))
127, 11rexeqbidv 3320 . . 3 ((𝑢 = 𝑈𝑤 = 𝑊) → (∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))
132, 4, 123anbi123d 1438 . 2 ((𝑢 = 𝑈𝑤 = 𝑊) → ((𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛)) ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))))
14 erclwwlk.r . 2 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
1513, 14brabga 5494 1 ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  0cc0 11068  ...cfz 13468  chash 14295   cyclShift ccsh 14753  ClWWalkscclwwlk 29910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  erclwwlkeqlen  29948  erclwwlkref  29949  erclwwlksym  29950  erclwwlktr  29951
  Copyright terms: Public domain W3C validator