Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlkeq | Structured version Visualization version GIF version |
Description: Two classes are equivalent regarding ∼ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkeq | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) |
3 | eleq1 2826 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
5 | fveq2 6774 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
6 | 5 | oveq2d 7291 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
7 | 6 | adantl 482 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
8 | simpl 483 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → 𝑢 = 𝑈) | |
9 | oveq1 7282 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) | |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) |
11 | 8, 10 | eqeq12d 2754 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 = (𝑤 cyclShift 𝑛) ↔ 𝑈 = (𝑊 cyclShift 𝑛))) |
12 | 7, 11 | rexeqbidv 3337 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))) |
13 | 2, 4, 12 | 3anbi123d 1435 | . 2 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → ((𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛)) ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
14 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
15 | 13, 14 | brabga 5447 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 {copab 5136 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ...cfz 13239 ♯chash 14044 cyclShift ccsh 14501 ClWWalkscclwwlk 28345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: erclwwlkeqlen 28383 erclwwlkref 28384 erclwwlksym 28385 erclwwlktr 28386 |
Copyright terms: Public domain | W3C validator |