| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkeq | Structured version Visualization version GIF version | ||
| Description: Two classes are equivalent regarding ∼ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkeq | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) |
| 3 | eleq1 2816 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
| 5 | fveq2 6858 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 6 | 5 | oveq2d 7403 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → 𝑢 = 𝑈) | |
| 9 | oveq1 7394 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) |
| 11 | 8, 10 | eqeq12d 2745 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 = (𝑤 cyclShift 𝑛) ↔ 𝑈 = (𝑊 cyclShift 𝑛))) |
| 12 | 7, 11 | rexeqbidv 3320 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))) |
| 13 | 2, 4, 12 | 3anbi123d 1438 | . 2 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → ((𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛)) ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| 14 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
| 15 | 13, 14 | brabga 5494 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 {copab 5169 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ...cfz 13468 ♯chash 14295 cyclShift ccsh 14753 ClWWalkscclwwlk 29910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: erclwwlkeqlen 29948 erclwwlkref 29949 erclwwlksym 29950 erclwwlktr 29951 |
| Copyright terms: Public domain | W3C validator |