MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkeq Structured version   Visualization version   GIF version

Theorem erclwwlkeq 29011
Description: Two classes are equivalent regarding ∼ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkeq ((π‘ˆ ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (π‘ˆ ∼ π‘Š ↔ (π‘ˆ ∈ (ClWWalksβ€˜πΊ) ∧ π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘Š))π‘ˆ = (π‘Š cyclShift 𝑛))))
Distinct variable groups:   𝑛,𝐺,𝑒,𝑀   π‘ˆ,𝑛,𝑒,𝑀   𝑛,π‘Š,𝑒,𝑀
Allowed substitution hints:   ∼ (𝑀,𝑒,𝑛)   𝑋(𝑀,𝑒,𝑛)   π‘Œ(𝑀,𝑒,𝑛)

Proof of Theorem erclwwlkeq
StepHypRef Expression
1 eleq1 2822 . . . 4 (𝑒 = π‘ˆ β†’ (𝑒 ∈ (ClWWalksβ€˜πΊ) ↔ π‘ˆ ∈ (ClWWalksβ€˜πΊ)))
21adantr 482 . . 3 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (𝑒 ∈ (ClWWalksβ€˜πΊ) ↔ π‘ˆ ∈ (ClWWalksβ€˜πΊ)))
3 eleq1 2822 . . . 4 (𝑀 = π‘Š β†’ (𝑀 ∈ (ClWWalksβ€˜πΊ) ↔ π‘Š ∈ (ClWWalksβ€˜πΊ)))
43adantl 483 . . 3 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (𝑀 ∈ (ClWWalksβ€˜πΊ) ↔ π‘Š ∈ (ClWWalksβ€˜πΊ)))
5 fveq2 6846 . . . . . 6 (𝑀 = π‘Š β†’ (β™―β€˜π‘€) = (β™―β€˜π‘Š))
65oveq2d 7377 . . . . 5 (𝑀 = π‘Š β†’ (0...(β™―β€˜π‘€)) = (0...(β™―β€˜π‘Š)))
76adantl 483 . . . 4 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (0...(β™―β€˜π‘€)) = (0...(β™―β€˜π‘Š)))
8 simpl 484 . . . . 5 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ 𝑒 = π‘ˆ)
9 oveq1 7368 . . . . . 6 (𝑀 = π‘Š β†’ (𝑀 cyclShift 𝑛) = (π‘Š cyclShift 𝑛))
109adantl 483 . . . . 5 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (𝑀 cyclShift 𝑛) = (π‘Š cyclShift 𝑛))
118, 10eqeq12d 2749 . . . 4 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (𝑒 = (𝑀 cyclShift 𝑛) ↔ π‘ˆ = (π‘Š cyclShift 𝑛)))
127, 11rexeqbidv 3319 . . 3 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛) ↔ βˆƒπ‘› ∈ (0...(β™―β€˜π‘Š))π‘ˆ = (π‘Š cyclShift 𝑛)))
132, 4, 123anbi123d 1437 . 2 ((𝑒 = π‘ˆ ∧ 𝑀 = π‘Š) β†’ ((𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛)) ↔ (π‘ˆ ∈ (ClWWalksβ€˜πΊ) ∧ π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘Š))π‘ˆ = (π‘Š cyclShift 𝑛))))
14 erclwwlk.r . 2 ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
1513, 14brabga 5495 1 ((π‘ˆ ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (π‘ˆ ∼ π‘Š ↔ (π‘ˆ ∈ (ClWWalksβ€˜πΊ) ∧ π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘Š))π‘ˆ = (π‘Š cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3070   class class class wbr 5109  {copab 5171  β€˜cfv 6500  (class class class)co 7361  0cc0 11059  ...cfz 13433  β™―chash 14239   cyclShift ccsh 14685  ClWWalkscclwwlk 28974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-iota 6452  df-fv 6508  df-ov 7364
This theorem is referenced by:  erclwwlkeqlen  29012  erclwwlkref  29013  erclwwlksym  29014  erclwwlktr  29015
  Copyright terms: Public domain W3C validator