![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkeq | Structured version Visualization version GIF version |
Description: Two classes are equivalent regarding ∼ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkeq | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2814 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) |
3 | eleq1 2814 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) | |
4 | 3 | adantl 480 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
5 | fveq2 6893 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
6 | 5 | oveq2d 7432 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
7 | 6 | adantl 480 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (0...(♯‘𝑤)) = (0...(♯‘𝑊))) |
8 | simpl 481 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → 𝑢 = 𝑈) | |
9 | oveq1 7423 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) | |
10 | 9 | adantl 480 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) |
11 | 8, 10 | eqeq12d 2742 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 = (𝑤 cyclShift 𝑛) ↔ 𝑈 = (𝑊 cyclShift 𝑛))) |
12 | 7, 11 | rexeqbidv 3331 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))) |
13 | 2, 4, 12 | 3anbi123d 1433 | . 2 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → ((𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛)) ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
14 | erclwwlk.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
15 | 13, 14 | brabga 5532 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 class class class wbr 5145 {copab 5207 ‘cfv 6546 (class class class)co 7416 0cc0 11149 ...cfz 13532 ♯chash 14342 cyclShift ccsh 14791 ClWWalkscclwwlk 29911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-iota 6498 df-fv 6554 df-ov 7419 |
This theorem is referenced by: erclwwlkeqlen 29949 erclwwlkref 29950 erclwwlksym 29951 erclwwlktr 29952 |
Copyright terms: Public domain | W3C validator |