| Step | Hyp | Ref
| Expression |
| 1 | | eunex 5365 |
. . . . 5
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥 ¬ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 2 | | exnal 1827 |
. . . . 5
⊢
(∃𝑥 ¬
∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 3 | 1, 2 | sylib 218 |
. . . 4
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 4 | | rzal 4489 |
. . . . 5
⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 5 | 4 | alrimiv 1927 |
. . . 4
⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 6 | 3, 5 | nsyl3 138 |
. . 3
⊢ (𝐴 = ∅ → ¬
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 7 | 6 | pm2.21d 121 |
. 2
⊢ (𝐴 = ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 8 | | simpr 484 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | | nfra1 3270 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑧 = 𝐵 |
| 10 | | nfra1 3270 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑥 = 𝐵 |
| 11 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 12 | | rspa 3235 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) → 𝑧 = 𝐵) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑧 = 𝐵) |
| 14 | 11, 13 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝑧) |
| 15 | | eqeq1 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐵 ↔ 𝑧 = 𝐵)) |
| 16 | 15 | ralbidv 3164 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 = 𝐵)) |
| 17 | 16 | biimprcd 250 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 19 | 14, 18 | mpd 15 |
. . . . . . . . . . . 12
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 20 | 19 | exp31 419 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (𝑦 ∈ 𝐴 → (𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 21 | 9, 10, 20 | rexlimd 3253 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 23 | | r19.2z 4475 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 24 | 23 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 26 | 22, 25 | impbid 212 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 27 | 26 | eubidv 2586 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 28 | 27 | ex 412 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 29 | 28 | exlimdv 1933 |
. . . . 5
⊢ (𝐴 ≠ ∅ →
(∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 30 | | euex 2577 |
. . . . . 6
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 31 | 16 | cbvexvw 2037 |
. . . . . 6
⊢
(∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 32 | 30, 31 | sylib 218 |
. . . . 5
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 33 | 29, 32 | impel 505 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 34 | 8, 33 | mpbird 257 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 35 | 34 | ex 412 |
. 2
⊢ (𝐴 ≠ ∅ →
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 36 | 7, 35 | pm2.61ine 3016 |
1
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |