Step | Hyp | Ref
| Expression |
1 | | eunex 5316 |
. . . . 5
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥 ¬ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
2 | | exnal 1832 |
. . . . 5
⊢
(∃𝑥 ¬
∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
3 | 1, 2 | sylib 217 |
. . . 4
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
4 | | rzal 4444 |
. . . . 5
⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
5 | 4 | alrimiv 1933 |
. . . 4
⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
6 | 3, 5 | nsyl3 138 |
. . 3
⊢ (𝐴 = ∅ → ¬
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
7 | 6 | pm2.21d 121 |
. 2
⊢ (𝐴 = ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
8 | | simpr 484 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
9 | | nfra1 3144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑧 = 𝐵 |
10 | | nfra1 3144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑥 = 𝐵 |
11 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
12 | | rspa 3132 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) → 𝑧 = 𝐵) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑧 = 𝐵) |
14 | 11, 13 | eqtr4d 2782 |
. . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝑧) |
15 | | eqeq1 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐵 ↔ 𝑧 = 𝐵)) |
16 | 15 | ralbidv 3122 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 = 𝐵)) |
17 | 16 | biimprcd 249 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
18 | 17 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
19 | 14, 18 | mpd 15 |
. . . . . . . . . . . 12
⊢
(((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝐵) → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
20 | 19 | exp31 419 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (𝑦 ∈ 𝐴 → (𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
21 | 9, 10, 20 | rexlimd 3247 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 𝑧 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
23 | | r19.2z 4430 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
24 | 23 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
26 | 22, 25 | impbid 211 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
27 | 26 | eubidv 2587 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
28 | 27 | ex 412 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
29 | 28 | exlimdv 1939 |
. . . . 5
⊢ (𝐴 ≠ ∅ →
(∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
30 | | euex 2578 |
. . . . . 6
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
31 | 16 | cbvexvw 2043 |
. . . . . 6
⊢
(∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
32 | 30, 31 | sylib 217 |
. . . . 5
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
33 | 29, 32 | impel 505 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
34 | 8, 33 | mpbird 256 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
35 | 34 | ex 412 |
. 2
⊢ (𝐴 ≠ ∅ →
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
36 | 7, 35 | pm2.61ine 3029 |
1
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |