Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixcnv Structured version   Visualization version   GIF version

Theorem fixcnv 35889
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixcnv Fix 𝐴 = Fix 𝐴

Proof of Theorem fixcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . 4 𝑥 ∈ V
21, 1brcnv 5836 . . 3 (𝑥𝐴𝑥𝑥𝐴𝑥)
31elfix 35884 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
41elfix 35884 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
52, 3, 43bitr4ri 304 . 2 (𝑥 Fix 𝐴𝑥 Fix 𝐴)
65eqriv 2726 1 Fix 𝐴 = Fix 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   class class class wbr 5102  ccnv 5630   Fix cfix 35816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-fix 35840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator