Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixcnv Structured version   Visualization version   GIF version

Theorem fixcnv 34137
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixcnv Fix 𝐴 = Fix 𝐴

Proof of Theorem fixcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . 4 𝑥 ∈ V
21, 1brcnv 5780 . . 3 (𝑥𝐴𝑥𝑥𝐴𝑥)
31elfix 34132 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
41elfix 34132 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
52, 3, 43bitr4ri 303 . 2 (𝑥 Fix 𝐴𝑥 Fix 𝐴)
65eqriv 2735 1 Fix 𝐴 = Fix 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108   class class class wbr 5070  ccnv 5579   Fix cfix 34064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-fix 34088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator