Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixcnv Structured version   Visualization version   GIF version

Theorem fixcnv 35734
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixcnv Fix 𝐴 = Fix 𝐴

Proof of Theorem fixcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3466 . . . 4 𝑥 ∈ V
21, 1brcnv 5891 . . 3 (𝑥𝐴𝑥𝑥𝐴𝑥)
31elfix 35729 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
41elfix 35729 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
52, 3, 43bitr4ri 303 . 2 (𝑥 Fix 𝐴𝑥 Fix 𝐴)
65eqriv 2723 1 Fix 𝐴 = Fix 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099   class class class wbr 5155  ccnv 5683   Fix cfix 35661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-fix 35685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator