Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixcnv Structured version   Visualization version   GIF version

Theorem fixcnv 35350
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixcnv Fix 𝐴 = Fix 𝐴

Proof of Theorem fixcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3477 . . . 4 𝑥 ∈ V
21, 1brcnv 5882 . . 3 (𝑥𝐴𝑥𝑥𝐴𝑥)
31elfix 35345 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
41elfix 35345 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
52, 3, 43bitr4ri 304 . 2 (𝑥 Fix 𝐴𝑥 Fix 𝐴)
65eqriv 2728 1 Fix 𝐴 = Fix 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105   class class class wbr 5148  ccnv 5675   Fix cfix 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-fix 35301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator