MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frss Structured version   Visualization version   GIF version

Theorem frss 5518
Description: Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
frss (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem frss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3908 . . . . . 6 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
21com12 32 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
32anim1d 614 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥𝐵𝑥 ≠ ∅)))
43imim1d 82 . . 3 (𝐴𝐵 → (((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
54alimdv 1924 . 2 (𝐴𝐵 → (∀𝑥((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
6 df-fr 5509 . 2 (𝑅 Fr 𝐵 ↔ ∀𝑥((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
7 df-fr 5509 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
85, 6, 73imtr4g 299 1 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wal 1541  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237   class class class wbr 5053   Fr wfr 5506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-fr 5509
This theorem is referenced by:  freq2  5522  wess  5538  fprlem1  8041  frmin  9365  frrlem15  9373
  Copyright terms: Public domain W3C validator