![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frss | Structured version Visualization version GIF version |
Description: Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
frss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3952 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
2 | 1 | com12 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) |
3 | 2 | anim1d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅))) |
4 | 3 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) |
5 | 4 | alimdv 1920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) |
6 | df-fr 5589 | . 2 ⊢ (𝑅 Fr 𝐵 ↔ ∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
7 | df-fr 5589 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∀wal 1540 ≠ wne 2944 ∀wral 3065 ∃wrex 3074 ⊆ wss 3911 ∅c0 4283 class class class wbr 5106 Fr wfr 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3448 df-in 3918 df-ss 3928 df-fr 5589 |
This theorem is referenced by: freq2 5605 wess 5621 fprlem1 8232 frmin 9686 frrlem15 9694 |
Copyright terms: Public domain | W3C validator |