|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > frss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| frss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr2 3990 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 2 | 1 | com12 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | 
| 3 | 2 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅))) | 
| 4 | 3 | imim1d 82 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) | 
| 5 | 4 | alimdv 1916 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) | 
| 6 | df-fr 5637 | . 2 ⊢ (𝑅 Fr 𝐵 ↔ ∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
| 7 | df-fr 5637 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 Fr wfr 5634 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3968 df-fr 5637 | 
| This theorem is referenced by: freq2 5653 wess 5671 fprlem1 8325 frmin 9789 frrlem15 9797 tcfr 44980 | 
| Copyright terms: Public domain | W3C validator |