MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsn Structured version   Visualization version   GIF version

Theorem frsn 5603
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
frsn (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem frsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snprc 4613 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
2 fr0 5498 . . . . . . 7 𝑅 Fr ∅
3 freq2 5490 . . . . . . 7 ({𝐴} = ∅ → (𝑅 Fr {𝐴} ↔ 𝑅 Fr ∅))
42, 3mpbiri 261 . . . . . 6 ({𝐴} = ∅ → 𝑅 Fr {𝐴})
51, 4sylbi 220 . . . . 5 𝐴 ∈ V → 𝑅 Fr {𝐴})
65adantl 485 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Fr {𝐴})
7 brrelex1 5569 . . . . 5 ((Rel 𝑅𝐴𝑅𝐴) → 𝐴 ∈ V)
87stoic1a 1774 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴)
96, 82thd 268 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
109ex 416 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)))
11 df-fr 5478 . . . 4 (𝑅 Fr {𝐴} ↔ ∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
12 sssn 4719 . . . . . . . . . . 11 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
13 neor 3078 . . . . . . . . . . 11 ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ↔ (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1412, 13sylbb 222 . . . . . . . . . 10 (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1514imp 410 . . . . . . . . 9 ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴})
1615adantl 485 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴})
17 eqimss 3971 . . . . . . . . . 10 (𝑥 = {𝐴} → 𝑥 ⊆ {𝐴})
1817adantl 485 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴})
19 snnzg 4670 . . . . . . . . . . 11 (𝐴 ∈ V → {𝐴} ≠ ∅)
20 neeq1 3049 . . . . . . . . . . 11 (𝑥 = {𝐴} → (𝑥 ≠ ∅ ↔ {𝐴} ≠ ∅))
2119, 20syl5ibrcom 250 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 = {𝐴} → 𝑥 ≠ ∅))
2221imp 410 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ≠ ∅)
2318, 22jca 515 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅))
2416, 23impbida 800 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) ↔ 𝑥 = {𝐴}))
2524imbi1d 345 . . . . . 6 (𝐴 ∈ V → (((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
2625albidv 1921 . . . . 5 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
27 snex 5297 . . . . . 6 {𝐴} ∈ V
28 raleq 3358 . . . . . . 7 (𝑥 = {𝐴} → (∀𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
2928rexeqbi1dv 3357 . . . . . 6 (𝑥 = {𝐴} → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3027, 29ceqsalv 3479 . . . . 5 (∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)
3126, 30syl6bb 290 . . . 4 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3211, 31syl5bb 286 . . 3 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
33 breq2 5034 . . . . . 6 (𝑦 = 𝐴 → (𝑧𝑅𝑦𝑧𝑅𝐴))
3433notbid 321 . . . . 5 (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐴))
3534ralbidv 3162 . . . 4 (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
3635rexsng 4574 . . 3 (𝐴 ∈ V → (∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
37 breq1 5033 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑅𝐴𝐴𝑅𝐴))
3837notbid 321 . . . 4 (𝑧 = 𝐴 → (¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
3938ralsng 4573 . . 3 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
4032, 36, 393bitrd 308 . 2 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
4110, 40pm2.61d2 184 1 (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243  {csn 4525   class class class wbr 5030   Fr wfr 5475  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-fr 5478  df-xp 5525  df-rel 5526
This theorem is referenced by:  wesn  5604
  Copyright terms: Public domain W3C validator