Step | Hyp | Ref
| Expression |
1 | | snprc 4650 |
. . . . . 6
⊢ (¬
𝐴 ∈ V ↔ {𝐴} = ∅) |
2 | | fr0 5559 |
. . . . . . 7
⊢ 𝑅 Fr ∅ |
3 | | freq2 5551 |
. . . . . . 7
⊢ ({𝐴} = ∅ → (𝑅 Fr {𝐴} ↔ 𝑅 Fr ∅)) |
4 | 2, 3 | mpbiri 257 |
. . . . . 6
⊢ ({𝐴} = ∅ → 𝑅 Fr {𝐴}) |
5 | 1, 4 | sylbi 216 |
. . . . 5
⊢ (¬
𝐴 ∈ V → 𝑅 Fr {𝐴}) |
6 | 5 | adantl 481 |
. . . 4
⊢ ((Rel
𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Fr {𝐴}) |
7 | | brrelex1 5631 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝐴𝑅𝐴) → 𝐴 ∈ V) |
8 | 7 | stoic1a 1776 |
. . . 4
⊢ ((Rel
𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴) |
9 | 6, 8 | 2thd 264 |
. . 3
⊢ ((Rel
𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
10 | 9 | ex 412 |
. 2
⊢ (Rel
𝑅 → (¬ 𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))) |
11 | | df-fr 5535 |
. . . 4
⊢ (𝑅 Fr {𝐴} ↔ ∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
12 | | sssn 4756 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) |
13 | | neor 3035 |
. . . . . . . . . . 11
⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ↔ (𝑥 ≠ ∅ → 𝑥 = {𝐴})) |
14 | 12, 13 | sylbb 218 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 = {𝐴})) |
15 | 14 | imp 406 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴}) |
16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴}) |
17 | | eqimss 3973 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴} → 𝑥 ⊆ {𝐴}) |
18 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) |
19 | | snnzg 4707 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) |
20 | | neeq1 3005 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴} → (𝑥 ≠ ∅ ↔ {𝐴} ≠ ∅)) |
21 | 19, 20 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝑥 = {𝐴} → 𝑥 ≠ ∅)) |
22 | 21 | imp 406 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ≠ ∅) |
23 | 18, 22 | jca 511 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) |
24 | 16, 23 | impbida 797 |
. . . . . . 7
⊢ (𝐴 ∈ V → ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) ↔ 𝑥 = {𝐴})) |
25 | 24 | imbi1d 341 |
. . . . . 6
⊢ (𝐴 ∈ V → (((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 = {𝐴} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) |
26 | 25 | albidv 1924 |
. . . . 5
⊢ (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 = {𝐴} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦))) |
27 | | snex 5349 |
. . . . . 6
⊢ {𝐴} ∈ V |
28 | | raleq 3333 |
. . . . . . 7
⊢ (𝑥 = {𝐴} → (∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)) |
29 | 28 | rexeqbi1dv 3332 |
. . . . . 6
⊢ (𝑥 = {𝐴} → (∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)) |
30 | 27, 29 | ceqsalv 3457 |
. . . . 5
⊢
(∀𝑥(𝑥 = {𝐴} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦) |
31 | 26, 30 | bitrdi 286 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)) |
32 | 11, 31 | syl5bb 282 |
. . 3
⊢ (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)) |
33 | | breq2 5074 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝐴)) |
34 | 33 | notbid 317 |
. . . . 5
⊢ (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐴)) |
35 | 34 | ralbidv 3120 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴)) |
36 | 35 | rexsng 4607 |
. . 3
⊢ (𝐴 ∈ V → (∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴)) |
37 | | breq1 5073 |
. . . . 5
⊢ (𝑧 = 𝐴 → (𝑧𝑅𝐴 ↔ 𝐴𝑅𝐴)) |
38 | 37 | notbid 317 |
. . . 4
⊢ (𝑧 = 𝐴 → (¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴)) |
39 | 38 | ralsng 4606 |
. . 3
⊢ (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴)) |
40 | 32, 36, 39 | 3bitrd 304 |
. 2
⊢ (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
41 | 10, 40 | pm2.61d2 181 |
1
⊢ (Rel
𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |