MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsn Structured version   Visualization version   GIF version

Theorem frsn 5627
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
frsn (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem frsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snprc 4638 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
2 fr0 5522 . . . . . . 7 𝑅 Fr ∅
3 freq2 5514 . . . . . . 7 ({𝐴} = ∅ → (𝑅 Fr {𝐴} ↔ 𝑅 Fr ∅))
42, 3mpbiri 261 . . . . . 6 ({𝐴} = ∅ → 𝑅 Fr {𝐴})
51, 4sylbi 220 . . . . 5 𝐴 ∈ V → 𝑅 Fr {𝐴})
65adantl 485 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Fr {𝐴})
7 brrelex1 5593 . . . . 5 ((Rel 𝑅𝐴𝑅𝐴) → 𝐴 ∈ V)
87stoic1a 1774 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴)
96, 82thd 268 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
109ex 416 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)))
11 df-fr 5502 . . . 4 (𝑅 Fr {𝐴} ↔ ∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
12 sssn 4743 . . . . . . . . . . 11 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
13 neor 3105 . . . . . . . . . . 11 ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ↔ (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1412, 13sylbb 222 . . . . . . . . . 10 (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1514imp 410 . . . . . . . . 9 ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴})
1615adantl 485 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴})
17 eqimss 4009 . . . . . . . . . 10 (𝑥 = {𝐴} → 𝑥 ⊆ {𝐴})
1817adantl 485 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴})
19 snnzg 4695 . . . . . . . . . . 11 (𝐴 ∈ V → {𝐴} ≠ ∅)
20 neeq1 3076 . . . . . . . . . . 11 (𝑥 = {𝐴} → (𝑥 ≠ ∅ ↔ {𝐴} ≠ ∅))
2119, 20syl5ibrcom 250 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 = {𝐴} → 𝑥 ≠ ∅))
2221imp 410 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ≠ ∅)
2318, 22jca 515 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅))
2416, 23impbida 800 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) ↔ 𝑥 = {𝐴}))
2524imbi1d 345 . . . . . 6 (𝐴 ∈ V → (((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
2625albidv 1922 . . . . 5 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
27 snex 5320 . . . . . 6 {𝐴} ∈ V
28 raleq 3396 . . . . . . 7 (𝑥 = {𝐴} → (∀𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
2928rexeqbi1dv 3395 . . . . . 6 (𝑥 = {𝐴} → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3027, 29ceqsalv 3518 . . . . 5 (∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)
3126, 30syl6bb 290 . . . 4 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3211, 31syl5bb 286 . . 3 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
33 breq2 5057 . . . . . 6 (𝑦 = 𝐴 → (𝑧𝑅𝑦𝑧𝑅𝐴))
3433notbid 321 . . . . 5 (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐴))
3534ralbidv 3192 . . . 4 (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
3635rexsng 4599 . . 3 (𝐴 ∈ V → (∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
37 breq1 5056 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑅𝐴𝐴𝑅𝐴))
3837notbid 321 . . . 4 (𝑧 = 𝐴 → (¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
3938ralsng 4598 . . 3 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
4032, 36, 393bitrd 308 . 2 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
4110, 40pm2.61d2 184 1 (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  Vcvv 3480  wss 3919  c0 4276  {csn 4550   class class class wbr 5053   Fr wfr 5499  Rel wrel 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5054  df-opab 5116  df-fr 5502  df-xp 5549  df-rel 5550
This theorem is referenced by:  wesn  5628
  Copyright terms: Public domain W3C validator