Step | Hyp | Ref
| Expression |
1 | | f1ofo 6723 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
2 | | df-fo 6439 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
3 | | freq2 5560 |
. . . . . . 7
⊢ (ran
𝐹 = 𝐵 → (𝑆 Fr ran 𝐹 ↔ 𝑆 Fr 𝐵)) |
4 | 3 | biimprd 247 |
. . . . . 6
⊢ (ran
𝐹 = 𝐵 → (𝑆 Fr 𝐵 → 𝑆 Fr ran 𝐹)) |
5 | | df-fn 6436 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) |
6 | | df-fr 5544 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 Fr ran 𝐹 ↔ ∀𝑤((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) → ∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢)) |
7 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
8 | 7 | funimaex 6521 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
𝐹 → (𝐹 “ 𝑧) ∈ V) |
9 | | n0 4280 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑧) |
10 | | funfvima2 7107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝑤 ∈ 𝑧 → (𝐹‘𝑤) ∈ (𝐹 “ 𝑧))) |
11 | | ne0i 4268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑤) ∈ (𝐹 “ 𝑧) → (𝐹 “ 𝑧) ≠ ∅) |
12 | 10, 11 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝑤 ∈ 𝑧 → (𝐹 “ 𝑧) ≠ ∅)) |
13 | 12 | exlimdv 1936 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (∃𝑤 𝑤 ∈ 𝑧 → (𝐹 “ 𝑧) ≠ ∅)) |
14 | 9, 13 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝑧 ≠ ∅ → (𝐹 “ 𝑧) ≠ ∅)) |
15 | 14 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → (𝐹 “ 𝑧) ≠ ∅) |
16 | | imassrn 5980 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 “ 𝑧) ⊆ ran 𝐹 |
17 | 15, 16 | jctil 520 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → ((𝐹 “ 𝑧) ⊆ ran 𝐹 ∧ (𝐹 “ 𝑧) ≠ ∅)) |
18 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝐹 “ 𝑧) → (𝑤 ⊆ ran 𝐹 ↔ (𝐹 “ 𝑧) ⊆ ran 𝐹)) |
19 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝐹 “ 𝑧) → (𝑤 ≠ ∅ ↔ (𝐹 “ 𝑧) ≠ ∅)) |
20 | 18, 19 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝐹 “ 𝑧) → ((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) ↔ ((𝐹 “ 𝑧) ⊆ ran 𝐹 ∧ (𝐹 “ 𝑧) ≠ ∅))) |
21 | | raleq 3342 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝐹 “ 𝑧) → (∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢 ↔ ∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
22 | 21 | rexeqbi1dv 3341 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝐹 “ 𝑧) → (∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢 ↔ ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
23 | 20, 22 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝐹 “ 𝑧) → (((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) → ∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢) ↔ (((𝐹 “ 𝑧) ⊆ ran 𝐹 ∧ (𝐹 “ 𝑧) ≠ ∅) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
24 | 23 | spcgv 3535 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 “ 𝑧) ∈ V → (∀𝑤((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) → ∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢) → (((𝐹 “ 𝑧) ⊆ ran 𝐹 ∧ (𝐹 “ 𝑧) ≠ ∅) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
25 | 17, 24 | syl7 74 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 “ 𝑧) ∈ V → (∀𝑤((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) → ∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢) → (((Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
26 | 8, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝐹 → (∀𝑤((𝑤 ⊆ ran 𝐹 ∧ 𝑤 ≠ ∅) → ∃𝑢 ∈ 𝑤 ∀𝑓 ∈ 𝑤 ¬ 𝑓𝑆𝑢) → (((Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
27 | 6, 26 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
𝐹 → (𝑆 Fr ran 𝐹 → (((Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
28 | 27 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
𝐹 → (((Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹) ∧ 𝑧 ≠ ∅) → (𝑆 Fr ran 𝐹 → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
29 | 28 | expd 416 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝐹 → ((Fun 𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝑧 ≠ ∅ → (𝑆 Fr ran 𝐹 → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)))) |
30 | 29 | anabsi5 666 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝑧 ≠ ∅ → (𝑆 Fr ran 𝐹 → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢))) |
31 | 30 | impd 411 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → ((𝑧 ≠ ∅ ∧ 𝑆 Fr ran 𝐹) → ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
32 | | fores 6698 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧)) |
33 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑣 ∈ V |
34 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑤 ∈ V |
35 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑣 → (𝐹‘𝑥) = (𝐹‘𝑣)) |
36 | 35 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑣 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑣)𝑆(𝐹‘𝑦))) |
37 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
38 | 37 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑣)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑣)𝑆(𝐹‘𝑤))) |
39 | | f1oweALT.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} |
40 | 33, 34, 36, 38, 39 | brab 5456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣𝑅𝑤 ↔ (𝐹‘𝑣)𝑆(𝐹‘𝑤)) |
41 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ 𝑧 → ((𝐹 ↾ 𝑧)‘𝑣) = (𝐹‘𝑣)) |
42 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ 𝑧 → ((𝐹 ↾ 𝑧)‘𝑤) = (𝐹‘𝑤)) |
43 | 41, 42 | breqan12rd 5091 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → (((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ (𝐹‘𝑣)𝑆(𝐹‘𝑤))) |
44 | 40, 43 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → (𝑣𝑅𝑤 ↔ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
45 | 44 | notbid 318 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → (¬ 𝑣𝑅𝑤 ↔ ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
46 | 45 | ralbidva 3111 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ 𝑧 → (∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤 ↔ ∀𝑣 ∈ 𝑧 ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
47 | 46 | rexbiia 3180 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑤 ∈
𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤 ↔ ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤)) |
48 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ↾ 𝑧)‘𝑣) = 𝑓 → (((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
49 | 48 | notbid 318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ↾ 𝑧)‘𝑣) = 𝑓 → (¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
50 | 49 | cbvfo 7161 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧) → (∀𝑣 ∈ 𝑧 ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
51 | 50 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧) → (∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ∃𝑤 ∈ 𝑧 ∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤))) |
52 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ↾ 𝑧)‘𝑤) = 𝑢 → (𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ 𝑓𝑆𝑢)) |
53 | 52 | notbid 318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ↾ 𝑧)‘𝑤) = 𝑢 → (¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ¬ 𝑓𝑆𝑢)) |
54 | 53 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ↾ 𝑧)‘𝑤) = 𝑢 → (∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
55 | 54 | cbvexfo 7162 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧) → (∃𝑤 ∈ 𝑧 ∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
56 | 51, 55 | bitrd 278 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧) → (∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ ((𝐹 ↾ 𝑧)‘𝑣)𝑆((𝐹 ↾ 𝑧)‘𝑤) ↔ ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
57 | 47, 56 | bitrid 282 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ 𝑧):𝑧–onto→(𝐹 “ 𝑧) → (∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤 ↔ ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
58 | 32, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → (∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤 ↔ ∃𝑢 ∈ (𝐹 “ 𝑧)∀𝑓 ∈ (𝐹 “ 𝑧) ¬ 𝑓𝑆𝑢)) |
59 | 31, 58 | sylibrd 258 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑧 ⊆ dom 𝐹) → ((𝑧 ≠ ∅ ∧ 𝑆 Fr ran 𝐹) → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤)) |
60 | 59 | exp4b 431 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝑧 ⊆ dom 𝐹 → (𝑧 ≠ ∅ → (𝑆 Fr ran 𝐹 → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤)))) |
61 | 60 | com34 91 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (𝑧 ⊆ dom 𝐹 → (𝑆 Fr ran 𝐹 → (𝑧 ≠ ∅ → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤)))) |
62 | 61 | com23 86 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑆 Fr ran 𝐹 → (𝑧 ⊆ dom 𝐹 → (𝑧 ≠ ∅ → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤)))) |
63 | 62 | imp4a 423 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (𝑆 Fr ran 𝐹 → ((𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤))) |
64 | 63 | alrimdv 1932 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝑆 Fr ran 𝐹 → ∀𝑧((𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤))) |
65 | | df-fr 5544 |
. . . . . . . . 9
⊢ (𝑅 Fr dom 𝐹 ↔ ∀𝑧((𝑧 ⊆ dom 𝐹 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 ∀𝑣 ∈ 𝑧 ¬ 𝑣𝑅𝑤)) |
66 | 64, 65 | syl6ibr 251 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝑆 Fr ran 𝐹 → 𝑅 Fr dom 𝐹)) |
67 | | freq2 5560 |
. . . . . . . . 9
⊢ (dom
𝐹 = 𝐴 → (𝑅 Fr dom 𝐹 ↔ 𝑅 Fr 𝐴)) |
68 | 67 | biimpd 228 |
. . . . . . . 8
⊢ (dom
𝐹 = 𝐴 → (𝑅 Fr dom 𝐹 → 𝑅 Fr 𝐴)) |
69 | 66, 68 | sylan9 508 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ dom 𝐹 = 𝐴) → (𝑆 Fr ran 𝐹 → 𝑅 Fr 𝐴)) |
70 | 5, 69 | sylbi 216 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → (𝑆 Fr ran 𝐹 → 𝑅 Fr 𝐴)) |
71 | 4, 70 | sylan9r 509 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
72 | 2, 71 | sylbi 216 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
73 | 1, 72 | syl 17 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
74 | | df-f1o 6440 |
. . . . 5
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
75 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
76 | 75 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑦))) |
77 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
78 | 77 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑤)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑣))) |
79 | 34, 33, 76, 78, 39 | brab 5456 |
. . . . . . . . 9
⊢ (𝑤𝑅𝑣 ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑣)) |
80 | 79 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑤𝑅𝑣 ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑣))) |
81 | | f1fveq 7135 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹‘𝑤) = (𝐹‘𝑣) ↔ 𝑤 = 𝑣)) |
82 | 81 | bicomd 222 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑤 = 𝑣 ↔ (𝐹‘𝑤) = (𝐹‘𝑣))) |
83 | 40 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑣𝑅𝑤 ↔ (𝐹‘𝑣)𝑆(𝐹‘𝑤))) |
84 | 80, 82, 83 | 3orbi123d 1434 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤) ↔ ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)))) |
85 | 84 | 2ralbidva 3128 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤) ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)))) |
86 | | breq1 5077 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) = 𝑢 → ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ↔ 𝑢𝑆(𝐹‘𝑣))) |
87 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) = 𝑢 → ((𝐹‘𝑤) = (𝐹‘𝑣) ↔ 𝑢 = (𝐹‘𝑣))) |
88 | | breq2 5078 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) = 𝑢 → ((𝐹‘𝑣)𝑆(𝐹‘𝑤) ↔ (𝐹‘𝑣)𝑆𝑢)) |
89 | 86, 87, 88 | 3orbi123d 1434 |
. . . . . . . . 9
⊢ ((𝐹‘𝑤) = 𝑢 → (((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)) ↔ (𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢))) |
90 | 89 | ralbidv 3112 |
. . . . . . . 8
⊢ ((𝐹‘𝑤) = 𝑢 → (∀𝑣 ∈ 𝐴 ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)) ↔ ∀𝑣 ∈ 𝐴 (𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢))) |
91 | 90 | cbvfo 7161 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐴 (𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢))) |
92 | | breq2 5078 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑣) = 𝑓 → (𝑢𝑆(𝐹‘𝑣) ↔ 𝑢𝑆𝑓)) |
93 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑣) = 𝑓 → (𝑢 = (𝐹‘𝑣) ↔ 𝑢 = 𝑓)) |
94 | | breq1 5077 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑣) = 𝑓 → ((𝐹‘𝑣)𝑆𝑢 ↔ 𝑓𝑆𝑢)) |
95 | 92, 93, 94 | 3orbi123d 1434 |
. . . . . . . . 9
⊢ ((𝐹‘𝑣) = 𝑓 → ((𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢) ↔ (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
96 | 95 | cbvfo 7161 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑣 ∈ 𝐴 (𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢) ↔ ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
97 | 96 | ralbidv 3112 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐴 (𝑢𝑆(𝐹‘𝑣) ∨ 𝑢 = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆𝑢) ↔ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
98 | 91, 97 | bitrd 278 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ((𝐹‘𝑤)𝑆(𝐹‘𝑣) ∨ (𝐹‘𝑤) = (𝐹‘𝑣) ∨ (𝐹‘𝑣)𝑆(𝐹‘𝑤)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
99 | 85, 98 | sylan9bb 510 |
. . . . 5
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤) ↔ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
100 | 74, 99 | sylbi 216 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤) ↔ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
101 | 100 | biimprd 247 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢) → ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤))) |
102 | 73, 101 | anim12d 609 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝑆 Fr 𝐵 ∧ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢)) → (𝑅 Fr 𝐴 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤)))) |
103 | | dfwe2 7624 |
. 2
⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ ∀𝑢 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑢𝑆𝑓 ∨ 𝑢 = 𝑓 ∨ 𝑓𝑆𝑢))) |
104 | | dfwe2 7624 |
. 2
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑤𝑅𝑣 ∨ 𝑤 = 𝑣 ∨ 𝑣𝑅𝑤))) |
105 | 102, 103,
104 | 3imtr4g 296 |
1
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |