Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: gencbvex 3478 eusv2nf 5313 dfpo2 6188 trsuc 6335 fo00 6735 eqfnov2 7382 caovmo 7487 bropopvvv 7901 tz7.48lem 8242 tz7.48-1 8244 oewordri 8385 epfrs 9420 ordpipq 10629 ltexprlem4 10726 xrinfmsslem 12971 hashfzp1 14074 dfgcd2 16182 catpropd 17335 symg2bas 18915 psgndiflemB 20717 pmatcollpw2lem 21834 icccvx 24019 uspgr1v1eop 27519 esumcst 31931 ddemeas 32104 bnj600 32799 bnj852 32801 satfvsucsuc 33227 satffunlem2lem2 33268 satffunlem2 33270 bj-csbsnlem 35015 bj-elid6 35268 nzss 41824 iotasbc 41926 wallispilem3 43498 dfafv2 44511 nnsum3primes4 45128 idmgmhm 45230 |
Copyright terms: Public domain | W3C validator |