| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3498 eusv2nf 5337 dfpo2 6248 trsuc 6400 fo00 6804 eqfnov2 7483 caovmo 7590 bropopvvv 8030 tz7.48lem 8370 tz7.48-1 8372 oewordri 8517 epfrs 9646 ordpipq 10855 ltexprlem4 10952 xrinfmsslem 13229 hashfzp1 14357 dfgcd2 16476 catpropd 17634 idmgmhm 18594 symg2bas 19291 psgndiflemB 21526 pmatcollpw2lem 22681 icccvx 24865 uspgr1v1eop 29213 esumcst 34049 ddemeas 34222 bnj600 34905 bnj852 34907 satfvsucsuc 35357 satffunlem2lem2 35398 satffunlem2 35400 bj-csbsnlem 36896 bj-elid6 37163 aks6d1c6isolem3 42169 nzss 44310 iotasbc 44412 wallispilem3 46068 dfafv2 47136 nnsum3primes4 47792 |
| Copyright terms: Public domain | W3C validator |