| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3518 eusv2nf 5362 dfpo2 6282 trsuc 6437 fo00 6850 eqfnov2 7531 caovmo 7638 bropopvvv 8083 tz7.48lem 8449 tz7.48-1 8451 oewordri 8598 epfrs 9737 ordpipq 10948 ltexprlem4 11045 xrinfmsslem 13316 hashfzp1 14437 dfgcd2 16550 catpropd 17706 idmgmhm 18664 symg2bas 19359 psgndiflemB 21545 pmatcollpw2lem 22700 icccvx 24884 uspgr1v1eop 29160 esumcst 34002 ddemeas 34175 bnj600 34871 bnj852 34873 satfvsucsuc 35308 satffunlem2lem2 35349 satffunlem2 35351 bj-csbsnlem 36842 bj-elid6 37109 aks6d1c6isolem3 42111 nzss 44267 iotasbc 44369 wallispilem3 46026 dfafv2 47089 nnsum3primes4 47720 |
| Copyright terms: Public domain | W3C validator |