| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3520 eusv2nf 5365 dfpo2 6285 trsuc 6440 fo00 6853 eqfnov2 7535 caovmo 7642 bropopvvv 8087 tz7.48lem 8453 tz7.48-1 8455 oewordri 8602 epfrs 9743 ordpipq 10954 ltexprlem4 11051 xrinfmsslem 13322 hashfzp1 14447 dfgcd2 16563 catpropd 17719 idmgmhm 18677 symg2bas 19372 psgndiflemB 21558 pmatcollpw2lem 22713 icccvx 24897 uspgr1v1eop 29174 esumcst 34040 ddemeas 34213 bnj600 34896 bnj852 34898 satfvsucsuc 35333 satffunlem2lem2 35374 satffunlem2 35376 bj-csbsnlem 36867 bj-elid6 37134 aks6d1c6isolem3 42135 nzss 44289 iotasbc 44391 wallispilem3 46044 dfafv2 47109 nnsum3primes4 47750 |
| Copyright terms: Public domain | W3C validator |