| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3495 eusv2nf 5328 dfpo2 6238 trsuc 6390 fo00 6794 eqfnov2 7471 caovmo 7578 bropopvvv 8015 tz7.48lem 8355 tz7.48-1 8357 oewordri 8502 epfrs 9616 ordpipq 10828 ltexprlem4 10925 xrinfmsslem 13202 hashfzp1 14333 dfgcd2 16452 catpropd 17610 idmgmhm 18604 symg2bas 19300 psgndiflemB 21532 pmatcollpw2lem 22687 icccvx 24870 uspgr1v1eop 29222 esumcst 34068 ddemeas 34241 bnj600 34923 bnj852 34925 satfvsucsuc 35401 satffunlem2lem2 35442 satffunlem2 35444 bj-csbsnlem 36937 bj-elid6 37204 aks6d1c6isolem3 42209 nzss 44350 iotasbc 44452 wallispilem3 46105 dfafv2 47163 nnsum3primes4 47819 |
| Copyright terms: Public domain | W3C validator |