| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3510 eusv2nf 5353 dfpo2 6272 trsuc 6424 fo00 6839 eqfnov2 7522 caovmo 7629 bropopvvv 8072 tz7.48lem 8412 tz7.48-1 8414 oewordri 8559 epfrs 9691 ordpipq 10902 ltexprlem4 10999 xrinfmsslem 13275 hashfzp1 14403 dfgcd2 16523 catpropd 17677 idmgmhm 18635 symg2bas 19330 psgndiflemB 21516 pmatcollpw2lem 22671 icccvx 24855 uspgr1v1eop 29183 esumcst 34060 ddemeas 34233 bnj600 34916 bnj852 34918 satfvsucsuc 35359 satffunlem2lem2 35400 satffunlem2 35402 bj-csbsnlem 36898 bj-elid6 37165 aks6d1c6isolem3 42171 nzss 44313 iotasbc 44415 wallispilem3 46072 dfafv2 47137 nnsum3primes4 47793 |
| Copyright terms: Public domain | W3C validator |