| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3504 eusv2nf 5345 dfpo2 6257 trsuc 6409 fo00 6818 eqfnov2 7499 caovmo 7606 bropopvvv 8046 tz7.48lem 8386 tz7.48-1 8388 oewordri 8533 epfrs 9660 ordpipq 10871 ltexprlem4 10968 xrinfmsslem 13244 hashfzp1 14372 dfgcd2 16492 catpropd 17646 idmgmhm 18604 symg2bas 19299 psgndiflemB 21485 pmatcollpw2lem 22640 icccvx 24824 uspgr1v1eop 29152 esumcst 34026 ddemeas 34199 bnj600 34882 bnj852 34884 satfvsucsuc 35325 satffunlem2lem2 35366 satffunlem2 35368 bj-csbsnlem 36864 bj-elid6 37131 aks6d1c6isolem3 42137 nzss 44279 iotasbc 44381 wallispilem3 46038 dfafv2 47106 nnsum3primes4 47762 |
| Copyright terms: Public domain | W3C validator |