![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: gencbvex 3540 eusv2nf 5400 dfpo2 6317 trsuc 6472 fo00 6884 eqfnov2 7562 caovmo 7669 bropopvvv 8113 tz7.48lem 8479 tz7.48-1 8481 oewordri 8628 epfrs 9768 ordpipq 10979 ltexprlem4 11076 xrinfmsslem 13346 hashfzp1 14466 dfgcd2 16579 catpropd 17753 idmgmhm 18726 symg2bas 19424 psgndiflemB 21635 pmatcollpw2lem 22798 icccvx 24994 uspgr1v1eop 29280 esumcst 34043 ddemeas 34216 bnj600 34911 bnj852 34913 satfvsucsuc 35349 satffunlem2lem2 35390 satffunlem2 35392 bj-csbsnlem 36885 bj-elid6 37152 aks6d1c6isolem3 42157 nzss 44312 iotasbc 44414 wallispilem3 46022 dfafv2 47081 nnsum3primes4 47712 |
Copyright terms: Public domain | W3C validator |