![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: gencbvex 3532 eusv2nf 5389 dfpo2 6294 trsuc 6450 fo00 6869 eqfnov2 7545 caovmo 7652 bropopvvv 8089 tz7.48lem 8455 tz7.48-1 8457 oewordri 8606 epfrs 9748 ordpipq 10959 ltexprlem4 11056 xrinfmsslem 13313 hashfzp1 14416 dfgcd2 16515 catpropd 17682 idmgmhm 18654 symg2bas 19340 psgndiflemB 21525 pmatcollpw2lem 22672 icccvx 24868 uspgr1v1eop 29055 esumcst 33676 ddemeas 33849 bnj600 34544 bnj852 34546 satfvsucsuc 34969 satffunlem2lem2 35010 satffunlem2 35012 bj-csbsnlem 36375 bj-elid6 36643 aks6d1c6isolem3 41642 nzss 43748 iotasbc 43850 wallispilem3 45449 dfafv2 46506 nnsum3primes4 47122 |
Copyright terms: Public domain | W3C validator |