Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 512 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: gencbvex 3488 eusv2nf 5318 dfpo2 6199 trsuc 6350 fo00 6752 eqfnov2 7404 caovmo 7509 bropopvvv 7930 tz7.48lem 8272 tz7.48-1 8274 oewordri 8423 epfrs 9489 ordpipq 10698 ltexprlem4 10795 xrinfmsslem 13042 hashfzp1 14146 dfgcd2 16254 catpropd 17418 symg2bas 19000 psgndiflemB 20805 pmatcollpw2lem 21926 icccvx 24113 uspgr1v1eop 27616 esumcst 32031 ddemeas 32204 bnj600 32899 bnj852 32901 satfvsucsuc 33327 satffunlem2lem2 33368 satffunlem2 33370 bj-csbsnlem 35088 bj-elid6 35341 nzss 41935 iotasbc 42037 wallispilem3 43608 dfafv2 44624 nnsum3primes4 45240 idmgmhm 45342 |
Copyright terms: Public domain | W3C validator |