| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3496 eusv2nf 5337 dfpo2 6251 trsuc 6403 fo00 6807 eqfnov2 7485 caovmo 7592 bropopvvv 8029 tz7.48lem 8369 tz7.48-1 8371 oewordri 8516 epfrs 9632 ordpipq 10844 ltexprlem4 10941 xrinfmsslem 13214 hashfzp1 14345 dfgcd2 16464 catpropd 17623 idmgmhm 18617 symg2bas 19313 psgndiflemB 21546 pmatcollpw2lem 22712 icccvx 24895 uspgr1v1eop 29248 esumcst 34148 ddemeas 34321 bnj600 35003 bnj852 35005 satfvsucsuc 35481 satffunlem2lem2 35522 satffunlem2 35524 bj-csbsnlem 37020 bj-elid6 37287 aks6d1c6isolem3 42342 nzss 44474 iotasbc 44576 wallispilem3 46227 dfafv2 47294 nnsum3primes4 47950 |
| Copyright terms: Public domain | W3C validator |