![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 508 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: bamalipOLD 2761 gencbvex 3438 eusv2nf 5065 idrefOLD 5727 trsuc 6025 fo00 6391 eqfnov2 7001 caovmo 7105 bropopvvv 7492 tz7.48lem 7775 tz7.48-1 7777 oewordri 7912 epfrs 8857 ordpipq 10052 ltexprlem4 10149 xrinfmsslem 12387 hashfzp1 13467 swrdccat3aOLD 13804 dfgcd2 15598 catpropd 16683 idmhm 17659 symg2bas 18130 psgndiflemB 20268 pmatcollpw2lem 20910 icccvx 23077 uspgr1v1eop 26483 esumcst 30641 ddemeas 30815 bnj600 31506 bnj852 31508 dfpo2 32159 bj-csbsnlem 33389 bj-ismooredr2 33558 nzss 39298 iotasbc 39401 wallispilem3 41027 dfafv2 41986 nnsum3primes4 42458 idmgmhm 42587 |
Copyright terms: Public domain | W3C validator |