MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancri Structured version   Visualization version   GIF version

Theorem ancri 550
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Hypothesis
Ref Expression
ancri.1 (𝜑𝜓)
Assertion
Ref Expression
ancri (𝜑 → (𝜓𝜑))

Proof of Theorem ancri
StepHypRef Expression
1 ancri.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜑𝜑)
31, 2jca 512 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  gencbvex  3535  eusv2nf  5393  dfpo2  6295  trsuc  6451  fo00  6869  eqfnov2  7538  caovmo  7643  bropopvvv  8075  tz7.48lem  8440  tz7.48-1  8442  oewordri  8591  epfrs  9725  ordpipq  10936  ltexprlem4  11033  xrinfmsslem  13286  hashfzp1  14390  dfgcd2  16487  catpropd  17652  symg2bas  19259  psgndiflemB  21152  pmatcollpw2lem  22278  icccvx  24465  uspgr1v1eop  28503  esumcst  33056  ddemeas  33229  bnj600  33925  bnj852  33927  satfvsucsuc  34351  satffunlem2lem2  34392  satffunlem2  34394  bj-csbsnlem  35778  bj-elid6  36046  nzss  43066  iotasbc  43168  wallispilem3  44773  dfafv2  45830  nnsum3primes4  46446  idmgmhm  46548
  Copyright terms: Public domain W3C validator