| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: gencbvex 3507 eusv2nf 5350 dfpo2 6269 trsuc 6421 fo00 6836 eqfnov2 7519 caovmo 7626 bropopvvv 8069 tz7.48lem 8409 tz7.48-1 8411 oewordri 8556 epfrs 9684 ordpipq 10895 ltexprlem4 10992 xrinfmsslem 13268 hashfzp1 14396 dfgcd2 16516 catpropd 17670 idmgmhm 18628 symg2bas 19323 psgndiflemB 21509 pmatcollpw2lem 22664 icccvx 24848 uspgr1v1eop 29176 esumcst 34053 ddemeas 34226 bnj600 34909 bnj852 34911 satfvsucsuc 35352 satffunlem2lem2 35393 satffunlem2 35395 bj-csbsnlem 36891 bj-elid6 37158 aks6d1c6isolem3 42164 nzss 44306 iotasbc 44408 wallispilem3 46065 dfafv2 47133 nnsum3primes4 47789 |
| Copyright terms: Public domain | W3C validator |