MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancri Structured version   Visualization version   GIF version

Theorem ancri 549
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Hypothesis
Ref Expression
ancri.1 (𝜑𝜓)
Assertion
Ref Expression
ancri (𝜑 → (𝜓𝜑))

Proof of Theorem ancri
StepHypRef Expression
1 ancri.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜑𝜑)
31, 2jca 511 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  gencbvex  3510  eusv2nf  5353  dfpo2  6272  trsuc  6424  fo00  6839  eqfnov2  7522  caovmo  7629  bropopvvv  8072  tz7.48lem  8412  tz7.48-1  8414  oewordri  8559  epfrs  9691  ordpipq  10902  ltexprlem4  10999  xrinfmsslem  13275  hashfzp1  14403  dfgcd2  16523  catpropd  17677  idmgmhm  18635  symg2bas  19330  psgndiflemB  21516  pmatcollpw2lem  22671  icccvx  24855  uspgr1v1eop  29183  esumcst  34060  ddemeas  34233  bnj600  34916  bnj852  34918  satfvsucsuc  35359  satffunlem2lem2  35400  satffunlem2  35402  bj-csbsnlem  36898  bj-elid6  37165  aks6d1c6isolem3  42171  nzss  44313  iotasbc  44415  wallispilem3  46072  dfafv2  47137  nnsum3primes4  47793
  Copyright terms: Public domain W3C validator