Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gte-lte | Structured version Visualization version GIF version |
Description: Simple relationship between ≤ and ≥. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gte-lte | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte 46310 | . . 3 ⊢ ≥ = ◡ ≤ | |
2 | 1 | breqi 5076 | . 2 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐴◡ ≤ 𝐵) |
3 | brcnvg 5777 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴)) | |
4 | 2, 3 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ◡ccnv 5579 ≤ cle 10941 ≥ cge-real 46308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-gte 46310 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |