Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lte Structured version   Visualization version   GIF version

Theorem gte-lte 46097
Description: Simple relationship between and . (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
gte-lte ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gte-lte
StepHypRef Expression
1 df-gte 46095 . . 3 ≥ =
21breqi 5059 . 2 (𝐴𝐵𝐴𝐵)
3 brcnvg 5748 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))
42, 3syl5bb 286 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  Vcvv 3408   class class class wbr 5053  ccnv 5550  cle 10868  cge-real 46093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-cnv 5559  df-gte 46095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator