Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gte-lte | Structured version Visualization version GIF version |
Description: Simple relationship between ≤ and ≥. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gte-lte | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte 46464 | . . 3 ⊢ ≥ = ◡ ≤ | |
2 | 1 | breqi 5083 | . 2 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐴◡ ≤ 𝐵) |
3 | brcnvg 5792 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴)) | |
4 | 2, 3 | bitrid 282 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2101 Vcvv 3434 class class class wbr 5077 ◡ccnv 5590 ≤ cle 11038 ≥ cge-real 46462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-cnv 5599 df-gte 46464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |