Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lte Structured version   Visualization version   GIF version

Theorem gte-lte 46312
Description: Simple relationship between and . (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
gte-lte ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gte-lte
StepHypRef Expression
1 df-gte 46310 . . 3 ≥ =
21breqi 5076 . 2 (𝐴𝐵𝐴𝐵)
3 brcnvg 5777 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))
42, 3syl5bb 282 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422   class class class wbr 5070  ccnv 5579  cle 10941  cge-real 46308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-gte 46310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator