Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gt-lt Structured version   Visualization version   GIF version

Theorem gt-lt 49711
Description: Simple relationship between < and >. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
gt-lt ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 > 𝐵𝐵 < 𝐴))

Proof of Theorem gt-lt
StepHypRef Expression
1 df-gt 49709 . . 3 > = <
21breqi 5113 . 2 (𝐴 > 𝐵𝐴 < 𝐵)
3 brcnvg 5843 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 < 𝐵𝐵 < 𝐴))
42, 3bitrid 283 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 > 𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447   class class class wbr 5107  ccnv 5637   < clt 11208   > cgt 49707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-gt 49709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator