Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gt-lt Structured version   Visualization version   GIF version

Theorem gt-lt 46427
Description: Simple relationship between < and >. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
gt-lt ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 > 𝐵𝐵 < 𝐴))

Proof of Theorem gt-lt
StepHypRef Expression
1 df-gt 46425 . . 3 > = <
21breqi 5080 . 2 (𝐴 > 𝐵𝐴 < 𝐵)
3 brcnvg 5788 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 < 𝐵𝐵 < 𝐴))
42, 3syl5bb 283 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 > 𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432   class class class wbr 5074  ccnv 5588   < clt 11009   > cgt 46423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-gt 46425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator