Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zringfrac Structured version   Visualization version   GIF version

Theorem zringfrac 33532
Description: The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
zringfrac.1 𝑄 = (ℂflds ℚ)
zringfrac.2 = (ℤring ~RL (ℤ ∖ {0}))
zringfrac.3 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
Assertion
Ref Expression
zringfrac 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Distinct variable groups:   ,𝑞   𝐹,𝑞   𝑄,𝑞

Proof of Theorem zringfrac
Dummy variables 𝑎 𝑏 𝑧 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringfrac.1 . . . . . 6 𝑄 = (ℂflds ℚ)
21qdrng 27538 . . . . 5 𝑄 ∈ DivRing
3 drngring 20652 . . . . 5 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
42, 3ax-mp 5 . . . 4 𝑄 ∈ Ring
5 zringidom 33529 . . . . 5 ring ∈ IDomn
6 id 22 . . . . . . . 8 (ℤring ∈ IDomn → ℤring ∈ IDomn)
76fracfld 33265 . . . . . . 7 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Field)
87fldcrngd 20658 . . . . . 6 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ CRing)
98crngringd 20162 . . . . 5 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Ring)
105, 9ax-mp 5 . . . 4 ( Frac ‘ℤring) ∈ Ring
114, 10pm3.2i 470 . . 3 (𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring)
12 ringgrp 20154 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
134, 12ax-mp 5 . . . . . 6 𝑄 ∈ Grp
14 ringgrp 20154 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → ( Frac ‘ℤring) ∈ Grp)
1510, 14ax-mp 5 . . . . . 6 ( Frac ‘ℤring) ∈ Grp
1613, 15pm3.2i 470 . . . . 5 (𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp)
17 zringfrac.3 . . . . . . 7 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
18 qnumcl 16717 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
19 qdencl 16718 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2019nnzd 12563 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
2119nnne0d 12243 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
2220, 21eldifsnd 4754 . . . . . . . . . 10 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ (ℤ ∖ {0}))
2318, 22opelxpd 5680 . . . . . . . . 9 (𝑞 ∈ ℚ → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
24 zringfrac.2 . . . . . . . . . . 11 = (ℤring ~RL (ℤ ∖ {0}))
2524ovexi 7424 . . . . . . . . . 10 ∈ V
2625ecelqsi 8746 . . . . . . . . 9 (⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
2723, 26syl 17 . . . . . . . 8 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
28 zringbas 21370 . . . . . . . . . 10 ℤ = (Base‘ℤring)
29 zring0 21375 . . . . . . . . . 10 0 = (0g‘ℤring)
30 zringmulr 21374 . . . . . . . . . 10 · = (.r‘ℤring)
31 eqid 2730 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
32 eqid 2730 . . . . . . . . . 10 (ℤ × (ℤ ∖ {0})) = (ℤ × (ℤ ∖ {0}))
33 fracval 33261 . . . . . . . . . . 11 ( Frac ‘ℤring) = (ℤring RLocal (RLReg‘ℤring))
346idomdomd 20642 . . . . . . . . . . . . . . 15 (ℤring ∈ IDomn → ℤring ∈ Domn)
355, 34ax-mp 5 . . . . . . . . . . . . . 14 ring ∈ Domn
36 eqid 2730 . . . . . . . . . . . . . . 15 (RLReg‘ℤring) = (RLReg‘ℤring)
3728, 36, 29isdomn6 20630 . . . . . . . . . . . . . 14 (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring)))
3835, 37mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring))
3938simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) = (RLReg‘ℤring)
4039oveq2i 7401 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (RLReg‘ℤring))
4133, 40eqtr4i 2756 . . . . . . . . . 10 ( Frac ‘ℤring) = (ℤring RLocal (ℤ ∖ {0}))
425a1i 11 . . . . . . . . . 10 (⊤ → ℤring ∈ IDomn)
43 difssd 4103 . . . . . . . . . 10 (⊤ → (ℤ ∖ {0}) ⊆ ℤ)
4428, 29, 30, 31, 32, 41, 24, 42, 43rlocbas 33225 . . . . . . . . 9 (⊤ → ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring)))
4544mptru 1547 . . . . . . . 8 ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring))
4627, 45eleqtrdi 2839 . . . . . . 7 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)))
4717, 46fmpti 7087 . . . . . 6 𝐹:ℚ⟶(Base‘( Frac ‘ℤring))
48 ecexg 8678 . . . . . . . . . . . 12 ( ∈ V → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V)
4925, 48ax-mp 5 . . . . . . . . . . 11 [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V
5017fvmpt2 6982 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5149, 50mpan2 691 . . . . . . . . . 10 (𝑞 ∈ ℚ → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5251adantr 480 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
53 fveq2 6861 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (numer‘𝑞) = (numer‘𝑝))
54 fveq2 6861 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (denom‘𝑞) = (denom‘𝑝))
5553, 54opeq12d 4848 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑝), (denom‘𝑝)⟩)
5655eceq1d 8714 . . . . . . . . . . 11 (𝑞 = 𝑝 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5756, 17, 27fvmpt3 6975 . . . . . . . . . 10 (𝑝 ∈ ℚ → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5857adantl 481 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5952, 58oveq12d 7408 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
6041fveq2i 6864 . . . . . . . . . 10 (+g‘( Frac ‘ℤring)) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
6160oveqi 7403 . . . . . . . . 9 ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝))
6261a1i 11 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)))
63 fveq2 6861 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (numer‘𝑞) = (numer‘𝑢))
64 fveq2 6861 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (denom‘𝑞) = (denom‘𝑢))
6563, 64opeq12d 4848 . . . . . . . . . . . 12 (𝑞 = 𝑢 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑢), (denom‘𝑢)⟩)
6665eceq1d 8714 . . . . . . . . . . 11 (𝑞 = 𝑢 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6766cbvmptv 5214 . . . . . . . . . 10 (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ) = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6817, 67eqtri 2753 . . . . . . . . 9 𝐹 = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
69 zring1 21376 . . . . . . . . . . . . 13 1 = (1r‘ℤring)
705a1i 11 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ IDomn)
7170idomcringd 20643 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ CRing)
7235a1i 11 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ Domn)
73 eqid 2730 . . . . . . . . . . . . . . . 16 (mulGrp‘ℤring) = (mulGrp‘ℤring)
7428, 29, 73isdomn3 20631 . . . . . . . . . . . . . . 15 (ℤring ∈ Domn ↔ (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7572, 74sylib 218 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7675simprd 495 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
7728, 29, 69, 30, 31, 32, 24, 71, 76erler 33223 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → Er (ℤ × (ℤ ∖ {0})))
78 qcn 12929 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℚ → 𝑞 ∈ ℂ)
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑞 ∈ ℂ)
80 qcn 12929 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → 𝑝 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑝 ∈ ℂ)
8279, 81addcld 11200 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℂ)
83 qaddcl 12931 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℚ)
84 qdencl 16718 . . . . . . . . . . . . . . . . 17 ((𝑞 + 𝑝) ∈ ℚ → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8685nncnd 12209 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℂ)
8719adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
8887nncnd 12209 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℂ)
89 qdencl 16718 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℕ)
9089adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℕ)
9190nncnd 12209 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℂ)
9288, 91mulcld 11201 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℂ)
9382, 86, 92mul32d 11391 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))))
94 qmuldeneqnum 16724 . . . . . . . . . . . . . . . 16 ((𝑞 + 𝑝) ∈ ℚ → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9583, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9695oveq1d 7405 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
9779, 88, 91mulassd 11204 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = (𝑞 · ((denom‘𝑞) · (denom‘𝑝))))
98 qmuldeneqnum 16724 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℚ → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
9998adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
10099oveq1d 7405 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = ((numer‘𝑞) · (denom‘𝑝)))
10197, 100eqtr3d 2767 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑞) · (denom‘𝑝)))
10281, 91, 88mulassd 11204 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = (𝑝 · ((denom‘𝑝) · (denom‘𝑞))))
103 qmuldeneqnum 16724 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℚ → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
104103adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
105104oveq1d 7405 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = ((numer‘𝑝) · (denom‘𝑞)))
10691, 88mulcomd 11202 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑝) · (denom‘𝑞)) = ((denom‘𝑞) · (denom‘𝑝)))
107106oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑝) · (denom‘𝑞))) = (𝑝 · ((denom‘𝑞) · (denom‘𝑝))))
108102, 105, 1073eqtr3rd 2774 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑝) · (denom‘𝑞)))
109101, 108oveq12d 7408 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · ((denom‘𝑞) · (denom‘𝑝))) + (𝑝 · ((denom‘𝑞) · (denom‘𝑝)))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
11079, 92, 81, 109joinlmuladdmuld 11208 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
111110oveq1d 7405 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11293, 96, 1113eqtr3d 2773 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11339oveq2i 7401 . . . . . . . . . . . . . . 15 (ℤring ~RL (ℤ ∖ {0})) = (ℤring ~RL (RLReg‘ℤring))
11424, 113eqtri 2753 . . . . . . . . . . . . . 14 = (ℤring ~RL (RLReg‘ℤring))
115 qnumcl 16717 . . . . . . . . . . . . . . 15 ((𝑞 + 𝑝) ∈ ℚ → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11683, 115syl 17 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11718adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
11889nnzd 12563 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℤ)
119118adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℤ)
120117, 119zmulcld 12651 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (denom‘𝑝)) ∈ ℤ)
121 qnumcl 16717 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (numer‘𝑝) ∈ ℤ)
122121adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℤ)
12320adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
124122, 123zmulcld 12651 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑝) · (denom‘𝑞)) ∈ ℤ)
125120, 124zaddcld 12649 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) ∈ ℤ)
12685nnzd 12563 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℤ)
12785nnne0d 12243 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ≠ 0)
128126, 127eldifsnd 4754 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (ℤ ∖ {0}))
129128, 39eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (RLReg‘ℤring))
130123, 119zmulcld 12651 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℤ)
13187, 90nnmulcld 12246 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℕ)
132131nnne0d 12243 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ≠ 0)
133130, 132eldifsnd 4754 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (ℤ ∖ {0}))
134133, 39eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (RLReg‘ℤring))
13528, 30, 114, 71, 116, 125, 129, 134fracerl 33263 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩ ↔ ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝)))))
136112, 135mpbird 257 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩)
13777, 136erthi 8730 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
138137adantr 480 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
139 fveq2 6861 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (numer‘𝑢) = (numer‘(𝑞 + 𝑝)))
140 fveq2 6861 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (denom‘𝑢) = (denom‘(𝑞 + 𝑝)))
141139, 140opeq12d 4848 . . . . . . . . . . . 12 (𝑢 = (𝑞 + 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
143142eceq1d 8714 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] )
144 zringplusg 21371 . . . . . . . . . . 11 + = (+g‘ℤring)
145 eqid 2730 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (ℤ ∖ {0}))
146 zringcrng 21365 . . . . . . . . . . . 12 ring ∈ CRing
147146a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ℤring ∈ CRing)
14835, 74mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
149148simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))
150149a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
151117adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑞) ∈ ℤ)
152122adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑝) ∈ ℤ)
15322adantr 480 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
154153adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
15589nnne0d 12243 . . . . . . . . . . . . . 14 (𝑝 ∈ ℚ → (denom‘𝑝) ≠ 0)
156118, 155eldifsnd 4754 . . . . . . . . . . . . 13 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ (ℤ ∖ {0}))
157156adantl 481 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
158157adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
159 eqid 2730 . . . . . . . . . . 11 (+g‘(ℤring RLocal (ℤ ∖ {0}))) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
16028, 30, 144, 145, 24, 147, 150, 151, 152, 154, 158, 159rlocaddval 33226 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
161138, 143, 1603eqtr4d 2775 . . . . . . . . 9 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
162 ovexd 7425 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) ∈ V)
16368, 161, 83, 162fvmptd2 6979 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
16459, 62, 1633eqtr4rd 2776 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
165164rgen2 3178 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝))
16647, 165pm3.2i 470 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
1671qrngbas 27537 . . . . . 6 ℚ = (Base‘𝑄)
168 eqid 2730 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘( Frac ‘ℤring))
169 qex 12927 . . . . . . 7 ℚ ∈ V
170 cnfldadd 21277 . . . . . . . 8 + = (+g‘ℂfld)
1711, 170ressplusg 17261 . . . . . . 7 (ℚ ∈ V → + = (+g𝑄))
172169, 171ax-mp 5 . . . . . 6 + = (+g𝑄)
173 eqid 2730 . . . . . 6 (+g‘( Frac ‘ℤring)) = (+g‘( Frac ‘ℤring))
174167, 168, 172, 173isghm 19154 . . . . 5 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))))
17516, 166, 174mpbir2an 711 . . . 4 𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring))
176 eqid 2730 . . . . . . . 8 (mulGrp‘𝑄) = (mulGrp‘𝑄)
177176ringmgp 20155 . . . . . . 7 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
1784, 177ax-mp 5 . . . . . 6 (mulGrp‘𝑄) ∈ Mnd
179 eqid 2730 . . . . . . . 8 (mulGrp‘( Frac ‘ℤring)) = (mulGrp‘( Frac ‘ℤring))
180179ringmgp 20155 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
18110, 180ax-mp 5 . . . . . 6 (mulGrp‘( Frac ‘ℤring)) ∈ Mnd
182178, 181pm3.2i 470 . . . . 5 ((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
183 eqid 2730 . . . . . . . . . 10 (.r‘(ℤring RLocal (ℤ ∖ {0}))) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
18428, 30, 144, 145, 24, 71, 76, 117, 122, 153, 157, 183rlocmulval 33227 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] )
18579, 81mulcld 11201 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℂ)
186 qmulcl 12933 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℚ)
187 qdencl 16718 . . . . . . . . . . . . . . . 16 ((𝑞 · 𝑝) ∈ ℚ → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
188186, 187syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
189188nncnd 12209 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℂ)
190185, 189, 92mul32d 11391 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
19179, 81, 88, 91mul4d 11393 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))))
192191oveq1d 7405 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
193190, 192eqtrd 2765 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
194 qmuldeneqnum 16724 . . . . . . . . . . . . . 14 ((𝑞 · 𝑝) ∈ ℚ → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
195186, 194syl 17 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
196195oveq1d 7405 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
19799, 104oveq12d 7408 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) = ((numer‘𝑞) · (numer‘𝑝)))
198197oveq1d 7405 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))))
199193, 196, 1983eqtr3rd 2774 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
200117, 122zmulcld 12651 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (numer‘𝑝)) ∈ ℤ)
201 qnumcl 16717 . . . . . . . . . . . . 13 ((𝑞 · 𝑝) ∈ ℚ → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
202186, 201syl 17 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
203188nnzd 12563 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℤ)
204188nnne0d 12243 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ≠ 0)
205203, 204eldifsnd 4754 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (ℤ ∖ {0}))
206205, 39eleqtrdi 2839 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (RLReg‘ℤring))
20728, 30, 114, 71, 200, 202, 134, 206fracerl 33263 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩ ↔ (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))))
208199, 207mpbird 257 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
20977, 208erthi 8730 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
210184, 209eqtrd 2765 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
21141fveq2i 6864 . . . . . . . . . 10 (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
212211a1i 11 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0}))))
213212, 52, 58oveq123d 7411 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
214 fveq2 6861 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (numer‘𝑢) = (numer‘(𝑞 · 𝑝)))
215 fveq2 6861 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (denom‘𝑢) = (denom‘(𝑞 · 𝑝)))
216214, 215opeq12d 4848 . . . . . . . . . 10 (𝑢 = (𝑞 · 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
217216eceq1d 8714 . . . . . . . . 9 (𝑢 = (𝑞 · 𝑝) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
218 ecexg 8678 . . . . . . . . . 10 ( ∈ V → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
21925, 218mp1i 13 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
22068, 217, 186, 219fvmptd3 6994 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
221210, 213, 2203eqtr4rd 2776 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)))
222221rgen2 3178 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝))
223 zssq 12922 . . . . . . . 8 ℤ ⊆ ℚ
224 1z 12570 . . . . . . . 8 1 ∈ ℤ
225223, 224sselii 3946 . . . . . . 7 1 ∈ ℚ
226 fveq2 6861 . . . . . . . . . . 11 (𝑞 = 1 → (numer‘𝑞) = (numer‘1))
227 1zzd 12571 . . . . . . . . . . . . 13 (ℤring ∈ IDomn → 1 ∈ ℤ)
228227znumd 32744 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (numer‘1) = 1)
2295, 228ax-mp 5 . . . . . . . . . . 11 (numer‘1) = 1
230226, 229eqtrdi 2781 . . . . . . . . . 10 (𝑞 = 1 → (numer‘𝑞) = 1)
231 fveq2 6861 . . . . . . . . . . 11 (𝑞 = 1 → (denom‘𝑞) = (denom‘1))
232227zdend 32745 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (denom‘1) = 1)
2335, 232ax-mp 5 . . . . . . . . . . 11 (denom‘1) = 1
234231, 233eqtrdi 2781 . . . . . . . . . 10 (𝑞 = 1 → (denom‘𝑞) = 1)
235230, 234opeq12d 4848 . . . . . . . . 9 (𝑞 = 1 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨1, 1⟩)
236235eceq1d 8714 . . . . . . . 8 (𝑞 = 1 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨1, 1⟩] )
237236, 17, 49fvmpt3i 6976 . . . . . . 7 (1 ∈ ℚ → (𝐹‘1) = [⟨1, 1⟩] )
238225, 237ax-mp 5 . . . . . 6 (𝐹‘1) = [⟨1, 1⟩]
23947, 222, 2383pm3.2i 1340 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )
240176, 167mgpbas 20061 . . . . . 6 ℚ = (Base‘(mulGrp‘𝑄))
241179, 168mgpbas 20061 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘(mulGrp‘( Frac ‘ℤring)))
242 cnfldmul 21279 . . . . . . . . 9 · = (.r‘ℂfld)
2431, 242ressmulr 17277 . . . . . . . 8 (ℚ ∈ V → · = (.r𝑄))
244169, 243ax-mp 5 . . . . . . 7 · = (.r𝑄)
245176, 244mgpplusg 20060 . . . . . 6 · = (+g‘(mulGrp‘𝑄))
246 eqid 2730 . . . . . . 7 (.r‘( Frac ‘ℤring)) = (.r‘( Frac ‘ℤring))
247179, 246mgpplusg 20060 . . . . . 6 (.r‘( Frac ‘ℤring)) = (+g‘(mulGrp‘( Frac ‘ℤring)))
2481qrng1 27540 . . . . . . 7 1 = (1r𝑄)
249176, 248ringidval 20099 . . . . . 6 1 = (0g‘(mulGrp‘𝑄))
250146a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → ℤring ∈ CRing)
251149a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
252 eqid 2730 . . . . . . . . 9 [⟨1, 1⟩] = [⟨1, 1⟩]
25329, 69, 41, 24, 250, 251, 252rloc1r 33230 . . . . . . . 8 (ℤring ∈ IDomn → [⟨1, 1⟩] = (1r‘( Frac ‘ℤring)))
2545, 253ax-mp 5 . . . . . . 7 [⟨1, 1⟩] = (1r‘( Frac ‘ℤring))
255179, 254ringidval 20099 . . . . . 6 [⟨1, 1⟩] = (0g‘(mulGrp‘( Frac ‘ℤring)))
256240, 241, 245, 247, 249, 255ismhm 18719 . . . . 5 (𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))) ↔ (((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )))
257182, 239, 256mpbir2an 711 . . . 4 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring)))
258175, 257pm3.2i 470 . . 3 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))
259176, 179isrhm 20394 . . 3 (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring) ∧ (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))))
26011, 258, 259mpbir2an 711 . 2 𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring))
26146rgen 3047 . . . 4 𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring))
262117zcnd 12646 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℂ)
263122zcnd 12646 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℂ)
26421adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ≠ 0)
265155adantl 481 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ≠ 0)
266262, 88, 263, 91, 264, 265divmuleqd 12011 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)) ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
267153, 39eleqtrdi 2839 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (RLReg‘ℤring))
268157, 39eleqtrdi 2839 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (RLReg‘ℤring))
26928, 30, 114, 71, 117, 122, 267, 268fracerl 33263 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
27023adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
27177, 270erth 8728 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
272266, 269, 2713bitr2rd 308 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ↔ ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝))))
273272biimpa 476 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)))
274 qeqnumdivden 16723 . . . . . . . 8 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
275274ad2antrr 726 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
276 qeqnumdivden 16723 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
277276ad2antlr 727 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
278273, 275, 2773eqtr4d 2775 . . . . . 6 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = 𝑝)
279278ex 412 . . . . 5 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝))
280279rgen2 3178 . . . 4 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)
28117, 56f1mpt 7239 . . . 4 (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)))
282261, 280, 281mpbir2an 711 . . 3 𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring))
283 fveq2 6861 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (numer‘𝑞) = (numer‘(𝑎 / 𝑏)))
284 fveq2 6861 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (denom‘𝑞) = (denom‘(𝑎 / 𝑏)))
285283, 284opeq12d 4848 . . . . . . . . 9 (𝑞 = (𝑎 / 𝑏) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
286285eceq1d 8714 . . . . . . . 8 (𝑞 = (𝑎 / 𝑏) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
287286eqeq2d 2741 . . . . . . 7 (𝑞 = (𝑎 / 𝑏) → (𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] ))
288 simpllr 775 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℤ)
289223, 288sselid 3947 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℚ)
290 simplr 768 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (ℤ ∖ {0}))
291290eldifad 3929 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℤ)
292223, 291sselid 3947 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℚ)
293 eldifsni 4757 . . . . . . . . 9 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
294290, 293syl 17 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ≠ 0)
295 qdivcl 12936 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0) → (𝑎 / 𝑏) ∈ ℚ)
296289, 292, 294, 295syl3anc 1373 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (𝑎 / 𝑏) ∈ ℚ)
297 simpr 484 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨𝑎, 𝑏⟩] )
298146a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ℤring ∈ CRing)
299149a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
30028, 29, 69, 30, 31, 32, 24, 298, 299erler 33223 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → Er (ℤ × (ℤ ∖ {0})))
301 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℤ)
302301zcnd 12646 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℂ)
303 eldifi 4097 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
304303adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℤ)
305304zcnd 12646 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℂ)
306293adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ≠ 0)
307302, 305, 306divcld 11965 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℂ)
308223, 301sselid 3947 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℚ)
309223, 304sselid 3947 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℚ)
310308, 309, 306, 295syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℚ)
311 qdencl 16718 . . . . . . . . . . . . . . 15 ((𝑎 / 𝑏) ∈ ℚ → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
312310, 311syl 17 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
313312nncnd 12209 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℂ)
314307, 313, 305mul32d 11391 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))))
315 qmuldeneqnum 16724 . . . . . . . . . . . . . 14 ((𝑎 / 𝑏) ∈ ℚ → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
316310, 315syl 17 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
317316oveq1d 7405 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
318302, 305, 306divcan1d 11966 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · 𝑏) = 𝑎)
319318oveq1d 7405 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))) = (𝑎 · (denom‘(𝑎 / 𝑏))))
320314, 317, 3193eqtr3rd 2774 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
321146a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ℤring ∈ CRing)
322 qnumcl 16717 . . . . . . . . . . . . 13 ((𝑎 / 𝑏) ∈ ℚ → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
323310, 322syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
324 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (ℤ ∖ {0}))
325324, 39eleqtrdi 2839 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (RLReg‘ℤring))
326312nnzd 12563 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℤ)
327312nnne0d 12243 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ≠ 0)
328326, 327eldifsnd 4754 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (ℤ ∖ {0}))
329328, 39eleqtrdi 2839 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (RLReg‘ℤring))
33028, 30, 114, 321, 301, 323, 325, 329fracerl 33263 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩ ↔ (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏)))
331320, 330mpbird 257 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
332331ad4ant23 753 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
333300, 332erthi 8730 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → [⟨𝑎, 𝑏⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
334297, 333eqtrd 2765 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
335287, 296, 334rspcedvdw 3594 . . . . . 6 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
33645eleq2i 2821 . . . . . . . 8 (𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ) ↔ 𝑧 ∈ (Base‘( Frac ‘ℤring)))
337336biimpri 228 . . . . . . 7 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → 𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ))
338337elrlocbasi 33224 . . . . . 6 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ (ℤ ∖ {0})𝑧 = [⟨𝑎, 𝑏⟩] )
339335, 338r19.29vva 3198 . . . . 5 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
340339rgen 3047 . . . 4 𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩]
34117fompt 7093 . . . 4 (𝐹:ℚ–onto→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] ))
342261, 340, 341mpbir2an 711 . . 3 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))
343 df-f1o 6521 . . 3 (𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring)) ↔ (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ∧ 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))))
344282, 342, 343mpbir2an 711 . 2 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))
345167, 168isrim 20408 . 2 (𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring)) ↔ (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ∧ 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))))
346260, 344, 345mpbir2an 711 1 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   / cdiv 11842  cn 12193  cz 12536  cq 12914  numercnumer 16710  denomcdenom 16711  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Mndcmnd 18668   MndHom cmhm 18715  SubMndcsubmnd 18716  Grpcgrp 18872  -gcsg 18874   GrpHom cghm 19151  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385   RingIso crs 20386  NzRingcnzr 20428  RLRegcrlreg 20607  Domncdomn 20608  IDomncidom 20609  DivRingcdr 20645  fldccnfld 21271  ringczring 21363   ~RL cerl 33211   RLocal crloc 33212   Frac cfrac 33259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-rim 20389  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-cnfld 21272  df-zring 21364  df-erl 33213  df-rloc 33214  df-frac 33260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator