Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zringfrac Structured version   Visualization version   GIF version

Theorem zringfrac 33547
Description: The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
zringfrac.1 𝑄 = (ℂflds ℚ)
zringfrac.2 = (ℤring ~RL (ℤ ∖ {0}))
zringfrac.3 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
Assertion
Ref Expression
zringfrac 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Distinct variable groups:   ,𝑞   𝐹,𝑞   𝑄,𝑞

Proof of Theorem zringfrac
Dummy variables 𝑎 𝑏 𝑧 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringfrac.1 . . . . . 6 𝑄 = (ℂflds ℚ)
21qdrng 27682 . . . . 5 𝑄 ∈ DivRing
3 drngring 20758 . . . . 5 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
42, 3ax-mp 5 . . . 4 𝑄 ∈ Ring
5 zringidom 33544 . . . . 5 ring ∈ IDomn
6 id 22 . . . . . . . 8 (ℤring ∈ IDomn → ℤring ∈ IDomn)
76fracfld 33275 . . . . . . 7 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Field)
87fldcrngd 20764 . . . . . 6 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ CRing)
98crngringd 20273 . . . . 5 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Ring)
105, 9ax-mp 5 . . . 4 ( Frac ‘ℤring) ∈ Ring
114, 10pm3.2i 470 . . 3 (𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring)
12 ringgrp 20265 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
134, 12ax-mp 5 . . . . . 6 𝑄 ∈ Grp
14 ringgrp 20265 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → ( Frac ‘ℤring) ∈ Grp)
1510, 14ax-mp 5 . . . . . 6 ( Frac ‘ℤring) ∈ Grp
1613, 15pm3.2i 470 . . . . 5 (𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp)
17 zringfrac.3 . . . . . . 7 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
18 qnumcl 16787 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
19 qdencl 16788 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2019nnzd 12666 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
2119nnne0d 12343 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
2220, 21eldifsnd 4812 . . . . . . . . . 10 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ (ℤ ∖ {0}))
2318, 22opelxpd 5739 . . . . . . . . 9 (𝑞 ∈ ℚ → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
24 zringfrac.2 . . . . . . . . . . 11 = (ℤring ~RL (ℤ ∖ {0}))
2524ovexi 7482 . . . . . . . . . 10 ∈ V
2625ecelqsi 8831 . . . . . . . . 9 (⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
2723, 26syl 17 . . . . . . . 8 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
28 zringbas 21487 . . . . . . . . . 10 ℤ = (Base‘ℤring)
29 zring0 21492 . . . . . . . . . 10 0 = (0g‘ℤring)
30 zringmulr 21491 . . . . . . . . . 10 · = (.r‘ℤring)
31 eqid 2740 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
32 eqid 2740 . . . . . . . . . 10 (ℤ × (ℤ ∖ {0})) = (ℤ × (ℤ ∖ {0}))
33 fracval 33271 . . . . . . . . . . 11 ( Frac ‘ℤring) = (ℤring RLocal (RLReg‘ℤring))
346idomdomd 20748 . . . . . . . . . . . . . . 15 (ℤring ∈ IDomn → ℤring ∈ Domn)
355, 34ax-mp 5 . . . . . . . . . . . . . 14 ring ∈ Domn
36 eqid 2740 . . . . . . . . . . . . . . 15 (RLReg‘ℤring) = (RLReg‘ℤring)
3728, 36, 29isdomn6 20736 . . . . . . . . . . . . . 14 (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring)))
3835, 37mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring))
3938simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) = (RLReg‘ℤring)
4039oveq2i 7459 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (RLReg‘ℤring))
4133, 40eqtr4i 2771 . . . . . . . . . 10 ( Frac ‘ℤring) = (ℤring RLocal (ℤ ∖ {0}))
425a1i 11 . . . . . . . . . 10 (⊤ → ℤring ∈ IDomn)
43 difssd 4160 . . . . . . . . . 10 (⊤ → (ℤ ∖ {0}) ⊆ ℤ)
4428, 29, 30, 31, 32, 41, 24, 42, 43rlocbas 33239 . . . . . . . . 9 (⊤ → ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring)))
4544mptru 1544 . . . . . . . 8 ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring))
4627, 45eleqtrdi 2854 . . . . . . 7 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)))
4717, 46fmpti 7146 . . . . . 6 𝐹:ℚ⟶(Base‘( Frac ‘ℤring))
48 ecexg 8767 . . . . . . . . . . . 12 ( ∈ V → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V)
4925, 48ax-mp 5 . . . . . . . . . . 11 [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V
5017fvmpt2 7040 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5149, 50mpan2 690 . . . . . . . . . 10 (𝑞 ∈ ℚ → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5251adantr 480 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
53 fveq2 6920 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (numer‘𝑞) = (numer‘𝑝))
54 fveq2 6920 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (denom‘𝑞) = (denom‘𝑝))
5553, 54opeq12d 4905 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑝), (denom‘𝑝)⟩)
5655eceq1d 8803 . . . . . . . . . . 11 (𝑞 = 𝑝 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5756, 17, 27fvmpt3 7033 . . . . . . . . . 10 (𝑝 ∈ ℚ → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5857adantl 481 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5952, 58oveq12d 7466 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
6041fveq2i 6923 . . . . . . . . . 10 (+g‘( Frac ‘ℤring)) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
6160oveqi 7461 . . . . . . . . 9 ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝))
6261a1i 11 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)))
63 fveq2 6920 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (numer‘𝑞) = (numer‘𝑢))
64 fveq2 6920 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (denom‘𝑞) = (denom‘𝑢))
6563, 64opeq12d 4905 . . . . . . . . . . . 12 (𝑞 = 𝑢 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑢), (denom‘𝑢)⟩)
6665eceq1d 8803 . . . . . . . . . . 11 (𝑞 = 𝑢 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6766cbvmptv 5279 . . . . . . . . . 10 (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ) = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6817, 67eqtri 2768 . . . . . . . . 9 𝐹 = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
69 zring1 21493 . . . . . . . . . . . . 13 1 = (1r‘ℤring)
705a1i 11 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ IDomn)
7170idomcringd 20749 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ CRing)
7235a1i 11 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ Domn)
73 eqid 2740 . . . . . . . . . . . . . . . 16 (mulGrp‘ℤring) = (mulGrp‘ℤring)
7428, 29, 73isdomn3 20737 . . . . . . . . . . . . . . 15 (ℤring ∈ Domn ↔ (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7572, 74sylib 218 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7675simprd 495 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
7728, 29, 69, 30, 31, 32, 24, 71, 76erler 33237 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → Er (ℤ × (ℤ ∖ {0})))
78 qcn 13028 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℚ → 𝑞 ∈ ℂ)
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑞 ∈ ℂ)
80 qcn 13028 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → 𝑝 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑝 ∈ ℂ)
8279, 81addcld 11309 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℂ)
83 qaddcl 13030 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℚ)
84 qdencl 16788 . . . . . . . . . . . . . . . . 17 ((𝑞 + 𝑝) ∈ ℚ → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8685nncnd 12309 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℂ)
8719adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
8887nncnd 12309 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℂ)
89 qdencl 16788 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℕ)
9089adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℕ)
9190nncnd 12309 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℂ)
9288, 91mulcld 11310 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℂ)
9382, 86, 92mul32d 11500 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))))
94 qmuldeneqnum 16794 . . . . . . . . . . . . . . . 16 ((𝑞 + 𝑝) ∈ ℚ → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9583, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9695oveq1d 7463 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
9779, 88, 91mulassd 11313 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = (𝑞 · ((denom‘𝑞) · (denom‘𝑝))))
98 qmuldeneqnum 16794 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℚ → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
9998adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
10099oveq1d 7463 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = ((numer‘𝑞) · (denom‘𝑝)))
10197, 100eqtr3d 2782 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑞) · (denom‘𝑝)))
10281, 91, 88mulassd 11313 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = (𝑝 · ((denom‘𝑝) · (denom‘𝑞))))
103 qmuldeneqnum 16794 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℚ → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
104103adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
105104oveq1d 7463 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = ((numer‘𝑝) · (denom‘𝑞)))
10691, 88mulcomd 11311 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑝) · (denom‘𝑞)) = ((denom‘𝑞) · (denom‘𝑝)))
107106oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑝) · (denom‘𝑞))) = (𝑝 · ((denom‘𝑞) · (denom‘𝑝))))
108102, 105, 1073eqtr3rd 2789 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑝) · (denom‘𝑞)))
109101, 108oveq12d 7466 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · ((denom‘𝑞) · (denom‘𝑝))) + (𝑝 · ((denom‘𝑞) · (denom‘𝑝)))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
11079, 92, 81, 109joinlmuladdmuld 11317 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
111110oveq1d 7463 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11293, 96, 1113eqtr3d 2788 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11339oveq2i 7459 . . . . . . . . . . . . . . 15 (ℤring ~RL (ℤ ∖ {0})) = (ℤring ~RL (RLReg‘ℤring))
11424, 113eqtri 2768 . . . . . . . . . . . . . 14 = (ℤring ~RL (RLReg‘ℤring))
115 qnumcl 16787 . . . . . . . . . . . . . . 15 ((𝑞 + 𝑝) ∈ ℚ → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11683, 115syl 17 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11718adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
11889nnzd 12666 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℤ)
119118adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℤ)
120117, 119zmulcld 12753 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (denom‘𝑝)) ∈ ℤ)
121 qnumcl 16787 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (numer‘𝑝) ∈ ℤ)
122121adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℤ)
12320adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
124122, 123zmulcld 12753 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑝) · (denom‘𝑞)) ∈ ℤ)
125120, 124zaddcld 12751 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) ∈ ℤ)
12685nnzd 12666 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℤ)
12785nnne0d 12343 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ≠ 0)
128126, 127eldifsnd 4812 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (ℤ ∖ {0}))
129128, 39eleqtrdi 2854 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (RLReg‘ℤring))
130123, 119zmulcld 12753 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℤ)
13187, 90nnmulcld 12346 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℕ)
132131nnne0d 12343 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ≠ 0)
133130, 132eldifsnd 4812 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (ℤ ∖ {0}))
134133, 39eleqtrdi 2854 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (RLReg‘ℤring))
13528, 30, 114, 71, 116, 125, 129, 134fracerl 33273 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩ ↔ ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝)))))
136112, 135mpbird 257 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩)
13777, 136erthi 8816 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
138137adantr 480 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
139 fveq2 6920 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (numer‘𝑢) = (numer‘(𝑞 + 𝑝)))
140 fveq2 6920 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (denom‘𝑢) = (denom‘(𝑞 + 𝑝)))
141139, 140opeq12d 4905 . . . . . . . . . . . 12 (𝑢 = (𝑞 + 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
143142eceq1d 8803 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] )
144 zringplusg 21488 . . . . . . . . . . 11 + = (+g‘ℤring)
145 eqid 2740 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (ℤ ∖ {0}))
146 zringcrng 21482 . . . . . . . . . . . 12 ring ∈ CRing
147146a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ℤring ∈ CRing)
14835, 74mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
149148simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))
150149a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
151117adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑞) ∈ ℤ)
152122adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑝) ∈ ℤ)
15322adantr 480 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
154153adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
15589nnne0d 12343 . . . . . . . . . . . . . 14 (𝑝 ∈ ℚ → (denom‘𝑝) ≠ 0)
156118, 155eldifsnd 4812 . . . . . . . . . . . . 13 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ (ℤ ∖ {0}))
157156adantl 481 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
158157adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
159 eqid 2740 . . . . . . . . . . 11 (+g‘(ℤring RLocal (ℤ ∖ {0}))) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
16028, 30, 144, 145, 24, 147, 150, 151, 152, 154, 158, 159rlocaddval 33240 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
161138, 143, 1603eqtr4d 2790 . . . . . . . . 9 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
162 ovexd 7483 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) ∈ V)
16368, 161, 83, 162fvmptd2 7037 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
16459, 62, 1633eqtr4rd 2791 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
165164rgen2 3205 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝))
16647, 165pm3.2i 470 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
1671qrngbas 27681 . . . . . 6 ℚ = (Base‘𝑄)
168 eqid 2740 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘( Frac ‘ℤring))
169 qex 13026 . . . . . . 7 ℚ ∈ V
170 cnfldadd 21393 . . . . . . . 8 + = (+g‘ℂfld)
1711, 170ressplusg 17349 . . . . . . 7 (ℚ ∈ V → + = (+g𝑄))
172169, 171ax-mp 5 . . . . . 6 + = (+g𝑄)
173 eqid 2740 . . . . . 6 (+g‘( Frac ‘ℤring)) = (+g‘( Frac ‘ℤring))
174167, 168, 172, 173isghm 19255 . . . . 5 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))))
17516, 166, 174mpbir2an 710 . . . 4 𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring))
176 eqid 2740 . . . . . . . 8 (mulGrp‘𝑄) = (mulGrp‘𝑄)
177176ringmgp 20266 . . . . . . 7 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
1784, 177ax-mp 5 . . . . . 6 (mulGrp‘𝑄) ∈ Mnd
179 eqid 2740 . . . . . . . 8 (mulGrp‘( Frac ‘ℤring)) = (mulGrp‘( Frac ‘ℤring))
180179ringmgp 20266 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
18110, 180ax-mp 5 . . . . . 6 (mulGrp‘( Frac ‘ℤring)) ∈ Mnd
182178, 181pm3.2i 470 . . . . 5 ((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
183 eqid 2740 . . . . . . . . . 10 (.r‘(ℤring RLocal (ℤ ∖ {0}))) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
18428, 30, 144, 145, 24, 71, 76, 117, 122, 153, 157, 183rlocmulval 33241 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] )
18579, 81mulcld 11310 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℂ)
186 qmulcl 13032 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℚ)
187 qdencl 16788 . . . . . . . . . . . . . . . 16 ((𝑞 · 𝑝) ∈ ℚ → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
188186, 187syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
189188nncnd 12309 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℂ)
190185, 189, 92mul32d 11500 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
19179, 81, 88, 91mul4d 11502 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))))
192191oveq1d 7463 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
193190, 192eqtrd 2780 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
194 qmuldeneqnum 16794 . . . . . . . . . . . . . 14 ((𝑞 · 𝑝) ∈ ℚ → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
195186, 194syl 17 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
196195oveq1d 7463 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
19799, 104oveq12d 7466 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) = ((numer‘𝑞) · (numer‘𝑝)))
198197oveq1d 7463 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))))
199193, 196, 1983eqtr3rd 2789 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
200117, 122zmulcld 12753 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (numer‘𝑝)) ∈ ℤ)
201 qnumcl 16787 . . . . . . . . . . . . 13 ((𝑞 · 𝑝) ∈ ℚ → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
202186, 201syl 17 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
203188nnzd 12666 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℤ)
204188nnne0d 12343 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ≠ 0)
205203, 204eldifsnd 4812 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (ℤ ∖ {0}))
206205, 39eleqtrdi 2854 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (RLReg‘ℤring))
20728, 30, 114, 71, 200, 202, 134, 206fracerl 33273 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩ ↔ (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))))
208199, 207mpbird 257 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
20977, 208erthi 8816 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
210184, 209eqtrd 2780 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
21141fveq2i 6923 . . . . . . . . . 10 (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
212211a1i 11 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0}))))
213212, 52, 58oveq123d 7469 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
214 fveq2 6920 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (numer‘𝑢) = (numer‘(𝑞 · 𝑝)))
215 fveq2 6920 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (denom‘𝑢) = (denom‘(𝑞 · 𝑝)))
216214, 215opeq12d 4905 . . . . . . . . . 10 (𝑢 = (𝑞 · 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
217216eceq1d 8803 . . . . . . . . 9 (𝑢 = (𝑞 · 𝑝) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
218 ecexg 8767 . . . . . . . . . 10 ( ∈ V → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
21925, 218mp1i 13 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
22068, 217, 186, 219fvmptd3 7052 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
221210, 213, 2203eqtr4rd 2791 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)))
222221rgen2 3205 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝))
223 zssq 13021 . . . . . . . 8 ℤ ⊆ ℚ
224 1z 12673 . . . . . . . 8 1 ∈ ℤ
225223, 224sselii 4005 . . . . . . 7 1 ∈ ℚ
226 fveq2 6920 . . . . . . . . . . 11 (𝑞 = 1 → (numer‘𝑞) = (numer‘1))
227 1zzd 12674 . . . . . . . . . . . . 13 (ℤring ∈ IDomn → 1 ∈ ℤ)
228227znumd 32816 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (numer‘1) = 1)
2295, 228ax-mp 5 . . . . . . . . . . 11 (numer‘1) = 1
230226, 229eqtrdi 2796 . . . . . . . . . 10 (𝑞 = 1 → (numer‘𝑞) = 1)
231 fveq2 6920 . . . . . . . . . . 11 (𝑞 = 1 → (denom‘𝑞) = (denom‘1))
232227zdend 32817 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (denom‘1) = 1)
2335, 232ax-mp 5 . . . . . . . . . . 11 (denom‘1) = 1
234231, 233eqtrdi 2796 . . . . . . . . . 10 (𝑞 = 1 → (denom‘𝑞) = 1)
235230, 234opeq12d 4905 . . . . . . . . 9 (𝑞 = 1 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨1, 1⟩)
236235eceq1d 8803 . . . . . . . 8 (𝑞 = 1 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨1, 1⟩] )
237236, 17, 49fvmpt3i 7034 . . . . . . 7 (1 ∈ ℚ → (𝐹‘1) = [⟨1, 1⟩] )
238225, 237ax-mp 5 . . . . . 6 (𝐹‘1) = [⟨1, 1⟩]
23947, 222, 2383pm3.2i 1339 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )
240176, 167mgpbas 20167 . . . . . 6 ℚ = (Base‘(mulGrp‘𝑄))
241179, 168mgpbas 20167 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘(mulGrp‘( Frac ‘ℤring)))
242 cnfldmul 21395 . . . . . . . . 9 · = (.r‘ℂfld)
2431, 242ressmulr 17366 . . . . . . . 8 (ℚ ∈ V → · = (.r𝑄))
244169, 243ax-mp 5 . . . . . . 7 · = (.r𝑄)
245176, 244mgpplusg 20165 . . . . . 6 · = (+g‘(mulGrp‘𝑄))
246 eqid 2740 . . . . . . 7 (.r‘( Frac ‘ℤring)) = (.r‘( Frac ‘ℤring))
247179, 246mgpplusg 20165 . . . . . 6 (.r‘( Frac ‘ℤring)) = (+g‘(mulGrp‘( Frac ‘ℤring)))
2481qrng1 27684 . . . . . . 7 1 = (1r𝑄)
249176, 248ringidval 20210 . . . . . 6 1 = (0g‘(mulGrp‘𝑄))
250146a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → ℤring ∈ CRing)
251149a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
252 eqid 2740 . . . . . . . . 9 [⟨1, 1⟩] = [⟨1, 1⟩]
25329, 69, 41, 24, 250, 251, 252rloc1r 33244 . . . . . . . 8 (ℤring ∈ IDomn → [⟨1, 1⟩] = (1r‘( Frac ‘ℤring)))
2545, 253ax-mp 5 . . . . . . 7 [⟨1, 1⟩] = (1r‘( Frac ‘ℤring))
255179, 254ringidval 20210 . . . . . 6 [⟨1, 1⟩] = (0g‘(mulGrp‘( Frac ‘ℤring)))
256240, 241, 245, 247, 249, 255ismhm 18820 . . . . 5 (𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))) ↔ (((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )))
257182, 239, 256mpbir2an 710 . . . 4 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring)))
258175, 257pm3.2i 470 . . 3 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))
259176, 179isrhm 20504 . . 3 (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring) ∧ (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))))
26011, 258, 259mpbir2an 710 . 2 𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring))
26146rgen 3069 . . . 4 𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring))
262117zcnd 12748 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℂ)
263122zcnd 12748 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℂ)
26421adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ≠ 0)
265155adantl 481 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ≠ 0)
266262, 88, 263, 91, 264, 265divmuleqd 12116 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)) ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
267153, 39eleqtrdi 2854 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (RLReg‘ℤring))
268157, 39eleqtrdi 2854 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (RLReg‘ℤring))
26928, 30, 114, 71, 117, 122, 267, 268fracerl 33273 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
27023adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
27177, 270erth 8814 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
272266, 269, 2713bitr2rd 308 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ↔ ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝))))
273272biimpa 476 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)))
274 qeqnumdivden 16793 . . . . . . . 8 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
275274ad2antrr 725 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
276 qeqnumdivden 16793 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
277276ad2antlr 726 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
278273, 275, 2773eqtr4d 2790 . . . . . 6 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = 𝑝)
279278ex 412 . . . . 5 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝))
280279rgen2 3205 . . . 4 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)
28117, 56f1mpt 7298 . . . 4 (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)))
282261, 280, 281mpbir2an 710 . . 3 𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring))
283 fveq2 6920 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (numer‘𝑞) = (numer‘(𝑎 / 𝑏)))
284 fveq2 6920 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (denom‘𝑞) = (denom‘(𝑎 / 𝑏)))
285283, 284opeq12d 4905 . . . . . . . . 9 (𝑞 = (𝑎 / 𝑏) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
286285eceq1d 8803 . . . . . . . 8 (𝑞 = (𝑎 / 𝑏) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
287286eqeq2d 2751 . . . . . . 7 (𝑞 = (𝑎 / 𝑏) → (𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] ))
288 simpllr 775 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℤ)
289223, 288sselid 4006 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℚ)
290 simplr 768 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (ℤ ∖ {0}))
291290eldifad 3988 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℤ)
292223, 291sselid 4006 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℚ)
293 eldifsni 4815 . . . . . . . . 9 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
294290, 293syl 17 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ≠ 0)
295 qdivcl 13035 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0) → (𝑎 / 𝑏) ∈ ℚ)
296289, 292, 294, 295syl3anc 1371 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (𝑎 / 𝑏) ∈ ℚ)
297 simpr 484 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨𝑎, 𝑏⟩] )
298146a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ℤring ∈ CRing)
299149a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
30028, 29, 69, 30, 31, 32, 24, 298, 299erler 33237 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → Er (ℤ × (ℤ ∖ {0})))
301 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℤ)
302301zcnd 12748 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℂ)
303 eldifi 4154 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
304303adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℤ)
305304zcnd 12748 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℂ)
306293adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ≠ 0)
307302, 305, 306divcld 12070 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℂ)
308223, 301sselid 4006 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℚ)
309223, 304sselid 4006 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℚ)
310308, 309, 306, 295syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℚ)
311 qdencl 16788 . . . . . . . . . . . . . . 15 ((𝑎 / 𝑏) ∈ ℚ → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
312310, 311syl 17 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
313312nncnd 12309 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℂ)
314307, 313, 305mul32d 11500 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))))
315 qmuldeneqnum 16794 . . . . . . . . . . . . . 14 ((𝑎 / 𝑏) ∈ ℚ → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
316310, 315syl 17 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
317316oveq1d 7463 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
318302, 305, 306divcan1d 12071 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · 𝑏) = 𝑎)
319318oveq1d 7463 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))) = (𝑎 · (denom‘(𝑎 / 𝑏))))
320314, 317, 3193eqtr3rd 2789 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
321146a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ℤring ∈ CRing)
322 qnumcl 16787 . . . . . . . . . . . . 13 ((𝑎 / 𝑏) ∈ ℚ → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
323310, 322syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
324 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (ℤ ∖ {0}))
325324, 39eleqtrdi 2854 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (RLReg‘ℤring))
326312nnzd 12666 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℤ)
327312nnne0d 12343 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ≠ 0)
328326, 327eldifsnd 4812 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (ℤ ∖ {0}))
329328, 39eleqtrdi 2854 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (RLReg‘ℤring))
33028, 30, 114, 321, 301, 323, 325, 329fracerl 33273 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩ ↔ (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏)))
331320, 330mpbird 257 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
332331ad4ant23 752 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
333300, 332erthi 8816 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → [⟨𝑎, 𝑏⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
334297, 333eqtrd 2780 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
335287, 296, 334rspcedvdw 3638 . . . . . 6 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
33645eleq2i 2836 . . . . . . . 8 (𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ) ↔ 𝑧 ∈ (Base‘( Frac ‘ℤring)))
337336biimpri 228 . . . . . . 7 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → 𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ))
338337elrlocbasi 33238 . . . . . 6 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ (ℤ ∖ {0})𝑧 = [⟨𝑎, 𝑏⟩] )
339335, 338r19.29vva 3222 . . . . 5 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
340339rgen 3069 . . . 4 𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩]
34117fompt 7152 . . . 4 (𝐹:ℚ–onto→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] ))
342261, 340, 341mpbir2an 710 . . 3 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))
343 df-f1o 6580 . . 3 (𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring)) ↔ (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ∧ 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))))
344282, 342, 343mpbir2an 710 . 2 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))
345167, 168isrim 20518 . 2 (𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring)) ↔ (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ∧ 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))))
346260, 344, 345mpbir2an 710 1 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   / cdiv 11947  cn 12293  cz 12639  cq 13013  numercnumer 16780  denomcdenom 16781  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  Mndcmnd 18772   MndHom cmhm 18816  SubMndcsubmnd 18817  Grpcgrp 18973  -gcsg 18975   GrpHom cghm 19252  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495   RingIso crs 20496  NzRingcnzr 20538  RLRegcrlreg 20713  Domncdomn 20714  IDomncidom 20715  DivRingcdr 20751  fldccnfld 21387  ringczring 21480   ~RL cerl 33225   RLocal crloc 33226   Frac cfrac 33269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-rim 20499  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-cnfld 21388  df-zring 21481  df-erl 33227  df-rloc 33228  df-frac 33270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator