Step | Hyp | Ref
| Expression |
1 | | zringfrac.1 |
. . . . . 6
⊢ 𝑄 = (ℂfld
↾s ℚ) |
2 | 1 | qdrng 27598 |
. . . . 5
⊢ 𝑄 ∈ DivRing |
3 | | drngring 20643 |
. . . . 5
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ Ring) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ 𝑄 ∈ Ring |
5 | | zringidom 33366 |
. . . . 5
⊢
ℤring ∈ IDomn |
6 | | id 22 |
. . . . . . . 8
⊢
(ℤring ∈ IDomn → ℤring
∈ IDomn) |
7 | 6 | fracfld 33094 |
. . . . . . 7
⊢
(ℤring ∈ IDomn → ( Frac
‘ℤring) ∈ Field) |
8 | 7 | fldcrngd 20649 |
. . . . . 6
⊢
(ℤring ∈ IDomn → ( Frac
‘ℤring) ∈ CRing) |
9 | 8 | crngringd 20198 |
. . . . 5
⊢
(ℤring ∈ IDomn → ( Frac
‘ℤring) ∈ Ring) |
10 | 5, 9 | ax-mp 5 |
. . . 4
⊢ ( Frac
‘ℤring) ∈ Ring |
11 | 4, 10 | pm3.2i 469 |
. . 3
⊢ (𝑄 ∈ Ring ∧ ( Frac
‘ℤring) ∈ Ring) |
12 | | ringgrp 20190 |
. . . . . . 7
⊢ (𝑄 ∈ Ring → 𝑄 ∈ Grp) |
13 | 4, 12 | ax-mp 5 |
. . . . . 6
⊢ 𝑄 ∈ Grp |
14 | | ringgrp 20190 |
. . . . . . 7
⊢ (( Frac
‘ℤring) ∈ Ring → ( Frac
‘ℤring) ∈ Grp) |
15 | 10, 14 | ax-mp 5 |
. . . . . 6
⊢ ( Frac
‘ℤring) ∈ Grp |
16 | 13, 15 | pm3.2i 469 |
. . . . 5
⊢ (𝑄 ∈ Grp ∧ ( Frac
‘ℤring) ∈ Grp) |
17 | | zringfrac.3 |
. . . . . . 7
⊢ 𝐹 = (𝑞 ∈ ℚ ↦
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
) |
18 | | qnumcl 16715 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ℚ →
(numer‘𝑞) ∈
ℤ) |
19 | | qdencl 16716 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ∈
ℕ) |
20 | 19 | nnzd 12618 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ∈
ℤ) |
21 | 19 | nnne0d 12295 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ≠
0) |
22 | 20, 21 | eldifsnd 32393 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ∈
(ℤ ∖ {0})) |
23 | 18, 22 | opelxpd 5717 |
. . . . . . . . 9
⊢ (𝑞 ∈ ℚ →
〈(numer‘𝑞),
(denom‘𝑞)〉
∈ (ℤ × (ℤ ∖ {0}))) |
24 | | zringfrac.2 |
. . . . . . . . . . 11
⊢ ∼ =
(ℤring ~RL (ℤ ∖
{0})) |
25 | 24 | ovexi 7453 |
. . . . . . . . . 10
⊢ ∼ ∈
V |
26 | 25 | ecelqsi 8792 |
. . . . . . . . 9
⊢
(〈(numer‘𝑞), (denom‘𝑞)〉 ∈ (ℤ × (ℤ
∖ {0})) → [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈ ((ℤ
× (ℤ ∖ {0})) / ∼ )) |
27 | 23, 26 | syl 17 |
. . . . . . . 8
⊢ (𝑞 ∈ ℚ →
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
∈ ((ℤ × (ℤ ∖ {0})) / ∼ )) |
28 | | zringbas 21396 |
. . . . . . . . . 10
⊢ ℤ =
(Base‘ℤring) |
29 | | zring0 21401 |
. . . . . . . . . 10
⊢ 0 =
(0g‘ℤring) |
30 | | zringmulr 21400 |
. . . . . . . . . 10
⊢ ·
= (.r‘ℤring) |
31 | | eqid 2725 |
. . . . . . . . . 10
⊢
(-g‘ℤring) =
(-g‘ℤring) |
32 | | eqid 2725 |
. . . . . . . . . 10
⊢ (ℤ
× (ℤ ∖ {0})) = (ℤ × (ℤ ∖
{0})) |
33 | | fracval 33090 |
. . . . . . . . . . 11
⊢ ( Frac
‘ℤring) = (ℤring RLocal
(RLReg‘ℤring)) |
34 | 6 | idomdomd 21272 |
. . . . . . . . . . . . . . 15
⊢
(ℤring ∈ IDomn → ℤring
∈ Domn) |
35 | 5, 34 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
ℤring ∈ Domn |
36 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(RLReg‘ℤring) =
(RLReg‘ℤring) |
37 | 28, 36, 29 | isdomn6 33071 |
. . . . . . . . . . . . . 14
⊢
(ℤring ∈ Domn ↔ (ℤring
∈ NzRing ∧ (ℤ ∖ {0}) =
(RLReg‘ℤring))) |
38 | 35, 37 | mpbi 229 |
. . . . . . . . . . . . 13
⊢
(ℤring ∈ NzRing ∧ (ℤ ∖ {0}) =
(RLReg‘ℤring)) |
39 | 38 | simpri 484 |
. . . . . . . . . . . 12
⊢ (ℤ
∖ {0}) = (RLReg‘ℤring) |
40 | 39 | oveq2i 7430 |
. . . . . . . . . . 11
⊢
(ℤring RLocal (ℤ ∖ {0})) =
(ℤring RLocal
(RLReg‘ℤring)) |
41 | 33, 40 | eqtr4i 2756 |
. . . . . . . . . 10
⊢ ( Frac
‘ℤring) = (ℤring RLocal (ℤ
∖ {0})) |
42 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ ℤring ∈ IDomn) |
43 | | difssd 4129 |
. . . . . . . . . 10
⊢ (⊤
→ (ℤ ∖ {0}) ⊆ ℤ) |
44 | 28, 29, 30, 31, 32, 41, 24, 42, 43 | rlocbas 33057 |
. . . . . . . . 9
⊢ (⊤
→ ((ℤ × (ℤ ∖ {0})) / ∼ ) = (Base‘(
Frac ‘ℤring))) |
45 | 44 | mptru 1540 |
. . . . . . . 8
⊢ ((ℤ
× (ℤ ∖ {0})) / ∼ ) = (Base‘(
Frac ‘ℤring)) |
46 | 27, 45 | eleqtrdi 2835 |
. . . . . . 7
⊢ (𝑞 ∈ ℚ →
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
∈ (Base‘( Frac ‘ℤring))) |
47 | 17, 46 | fmpti 7121 |
. . . . . 6
⊢ 𝐹:ℚ⟶(Base‘(
Frac ‘ℤring)) |
48 | | ecexg 8729 |
. . . . . . . . . . . 12
⊢ ( ∼ ∈
V → [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈
V) |
49 | 25, 48 | ax-mp 5 |
. . . . . . . . . . 11
⊢
[〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈
V |
50 | 17 | fvmpt2 7015 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℚ ∧
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
∈ V) → (𝐹‘𝑞) = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) |
51 | 49, 50 | mpan2 689 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ℚ → (𝐹‘𝑞) = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) |
52 | 51 | adantr 479 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘𝑞) = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) |
53 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑝 → (numer‘𝑞) = (numer‘𝑝)) |
54 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑝 → (denom‘𝑞) = (denom‘𝑝)) |
55 | 53, 54 | opeq12d 4883 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑝 → 〈(numer‘𝑞), (denom‘𝑞)〉 = 〈(numer‘𝑝), (denom‘𝑝)〉) |
56 | 55 | eceq1d 8764 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑝 → [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ =
[〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
) |
57 | 56, 17, 27 | fvmpt3 7008 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℚ → (𝐹‘𝑝) = [〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) |
58 | 57 | adantl 480 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘𝑝) = [〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) |
59 | 52, 58 | oveq12d 7437 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹‘𝑞)(+g‘(ℤring
RLocal (ℤ ∖ {0})))(𝐹‘𝑝)) = ([〈(numer‘𝑞), (denom‘𝑞)〉] ∼
(+g‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ )) |
60 | 41 | fveq2i 6899 |
. . . . . . . . . 10
⊢
(+g‘( Frac ‘ℤring)) =
(+g‘(ℤring RLocal (ℤ ∖
{0}))) |
61 | 60 | oveqi 7432 |
. . . . . . . . 9
⊢ ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝)) = ((𝐹‘𝑞)(+g‘(ℤring
RLocal (ℤ ∖ {0})))(𝐹‘𝑝)) |
62 | 61 | a1i 11 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝)) = ((𝐹‘𝑞)(+g‘(ℤring
RLocal (ℤ ∖ {0})))(𝐹‘𝑝))) |
63 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑢 → (numer‘𝑞) = (numer‘𝑢)) |
64 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑢 → (denom‘𝑞) = (denom‘𝑢)) |
65 | 63, 64 | opeq12d 4883 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑢 → 〈(numer‘𝑞), (denom‘𝑞)〉 = 〈(numer‘𝑢), (denom‘𝑢)〉) |
66 | 65 | eceq1d 8764 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑢 → [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ =
[〈(numer‘𝑢),
(denom‘𝑢)〉]
∼
) |
67 | 66 | cbvmptv 5262 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ℚ ↦
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
) = (𝑢 ∈ ℚ
↦ [〈(numer‘𝑢), (denom‘𝑢)〉] ∼ ) |
68 | 17, 67 | eqtri 2753 |
. . . . . . . . 9
⊢ 𝐹 = (𝑢 ∈ ℚ ↦
[〈(numer‘𝑢),
(denom‘𝑢)〉]
∼
) |
69 | | zring1 21402 |
. . . . . . . . . . . . 13
⊢ 1 =
(1r‘ℤring) |
70 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
ℤring ∈ IDomn) |
71 | 70 | idomcringd 21273 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
ℤring ∈ CRing) |
72 | 35 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
ℤring ∈ Domn) |
73 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(mulGrp‘ℤring) =
(mulGrp‘ℤring) |
74 | 28, 29, 73 | isdomn3 21265 |
. . . . . . . . . . . . . . 15
⊢
(ℤring ∈ Domn ↔ (ℤring
∈ Ring ∧ (ℤ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring)))) |
75 | 72, 74 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring)))) |
76 | 75 | simprd 494 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤ
∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring))) |
77 | 28, 29, 69, 30, 31, 32, 24, 71, 76 | erler 33055 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ∼ Er
(ℤ × (ℤ ∖ {0}))) |
78 | | qcn 12980 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ ℚ → 𝑞 ∈
ℂ) |
79 | 78 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑞 ∈
ℂ) |
80 | | qcn 12980 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℚ → 𝑝 ∈
ℂ) |
81 | 80 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑝 ∈
ℂ) |
82 | 79, 81 | addcld 11265 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℂ) |
83 | | qaddcl 12982 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℚ) |
84 | | qdencl 16716 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 + 𝑝) ∈ ℚ → (denom‘(𝑞 + 𝑝)) ∈ ℕ) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ∈
ℕ) |
86 | 85 | nncnd 12261 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ∈
ℂ) |
87 | 19 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ∈
ℕ) |
88 | 87 | nncnd 12261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ∈
ℂ) |
89 | | qdencl 16716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ℚ →
(denom‘𝑝) ∈
ℕ) |
90 | 89 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ∈
ℕ) |
91 | 90 | nncnd 12261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ∈
ℂ) |
92 | 88, 91 | mulcld 11266 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ∈
ℂ) |
93 | 82, 86, 92 | mul32d 11456 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝)))) |
94 | | qmuldeneqnum 16722 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 + 𝑝) ∈ ℚ → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝))) |
95 | 83, 94 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝))) |
96 | 95 | oveq1d 7434 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))) |
97 | 79, 88, 91 | mulassd 11269 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = (𝑞 · ((denom‘𝑞) · (denom‘𝑝)))) |
98 | | qmuldeneqnum 16722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ ℚ → (𝑞 · (denom‘𝑞)) = (numer‘𝑞)) |
99 | 98 | adantr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · (denom‘𝑞)) = (numer‘𝑞)) |
100 | 99 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = ((numer‘𝑞) · (denom‘𝑝))) |
101 | 97, 100 | eqtr3d 2767 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑞) · (denom‘𝑝))) |
102 | 81, 91, 88 | mulassd 11269 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = (𝑝 · ((denom‘𝑝) · (denom‘𝑞)))) |
103 | | qmuldeneqnum 16722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ ℚ → (𝑝 · (denom‘𝑝)) = (numer‘𝑝)) |
104 | 103 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · (denom‘𝑝)) = (numer‘𝑝)) |
105 | 104 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = ((numer‘𝑝) · (denom‘𝑞))) |
106 | 91, 88 | mulcomd 11267 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑝) ·
(denom‘𝑞)) =
((denom‘𝑞) ·
(denom‘𝑝))) |
107 | 106 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑝) · (denom‘𝑞))) = (𝑝 · ((denom‘𝑞) · (denom‘𝑝)))) |
108 | 102, 105,
107 | 3eqtr3rd 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑝) · (denom‘𝑞))) |
109 | 101, 108 | oveq12d 7437 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · ((denom‘𝑞) · (denom‘𝑝))) + (𝑝 · ((denom‘𝑞) · (denom‘𝑝)))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞)))) |
110 | 79, 92, 81, 109 | joinlmuladdmuld 11273 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞)))) |
111 | 110 | oveq1d 7434 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝)))) |
112 | 93, 96, 111 | 3eqtr3d 2773 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝)))) |
113 | 39 | oveq2i 7430 |
. . . . . . . . . . . . . . 15
⊢
(ℤring ~RL (ℤ ∖ {0})) =
(ℤring ~RL
(RLReg‘ℤring)) |
114 | 24, 113 | eqtri 2753 |
. . . . . . . . . . . . . 14
⊢ ∼ =
(ℤring ~RL
(RLReg‘ℤring)) |
115 | | qnumcl 16715 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 + 𝑝) ∈ ℚ → (numer‘(𝑞 + 𝑝)) ∈ ℤ) |
116 | 83, 115 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘(𝑞 + 𝑝)) ∈
ℤ) |
117 | 18 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘𝑞) ∈
ℤ) |
118 | 89 | nnzd 12618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℚ →
(denom‘𝑝) ∈
ℤ) |
119 | 118 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ∈
ℤ) |
120 | 117, 119 | zmulcld 12705 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((numer‘𝑞) ·
(denom‘𝑝)) ∈
ℤ) |
121 | | qnumcl 16715 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℚ →
(numer‘𝑝) ∈
ℤ) |
122 | 121 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘𝑝) ∈
ℤ) |
123 | 20 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ∈
ℤ) |
124 | 122, 123 | zmulcld 12705 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((numer‘𝑝) ·
(denom‘𝑞)) ∈
ℤ) |
125 | 120, 124 | zaddcld 12703 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(((numer‘𝑞) ·
(denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))) ∈
ℤ) |
126 | 85 | nnzd 12618 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ∈
ℤ) |
127 | 85 | nnne0d 12295 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ≠ 0) |
128 | 126, 127 | eldifsnd 32393 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ∈ (ℤ ∖
{0})) |
129 | 128, 39 | eleqtrdi 2835 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 + 𝑝)) ∈
(RLReg‘ℤring)) |
130 | 123, 119 | zmulcld 12705 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ∈
ℤ) |
131 | 87, 90 | nnmulcld 12298 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ∈
ℕ) |
132 | 131 | nnne0d 12295 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ≠
0) |
133 | 130, 132 | eldifsnd 32393 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ∈
(ℤ ∖ {0})) |
134 | 133, 39 | eleqtrdi 2835 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((denom‘𝑞) ·
(denom‘𝑝)) ∈
(RLReg‘ℤring)) |
135 | 28, 30, 114, 71, 116, 125, 129, 134 | fracerl 33092 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉 ∼
〈(((numer‘𝑞)
· (denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))),
((denom‘𝑞) ·
(denom‘𝑝))〉
↔ ((numer‘(𝑞 +
𝑝)) ·
((denom‘𝑞) ·
(denom‘𝑝))) =
((((numer‘𝑞) ·
(denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))) ·
(denom‘(𝑞 + 𝑝))))) |
136 | 112, 135 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉 ∼
〈(((numer‘𝑞)
· (denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))),
((denom‘𝑞) ·
(denom‘𝑝))〉) |
137 | 77, 136 | erthi 8777 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
[〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉] ∼ =
[〈(((numer‘𝑞)
· (denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))),
((denom‘𝑞) ·
(denom‘𝑝))〉]
∼
) |
138 | 137 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [〈(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))〉] ∼ =
[〈(((numer‘𝑞)
· (denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))),
((denom‘𝑞) ·
(denom‘𝑝))〉]
∼
) |
139 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑞 + 𝑝) → (numer‘𝑢) = (numer‘(𝑞 + 𝑝))) |
140 | | fveq2 6896 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑞 + 𝑝) → (denom‘𝑢) = (denom‘(𝑞 + 𝑝))) |
141 | 139, 140 | opeq12d 4883 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑞 + 𝑝) → 〈(numer‘𝑢), (denom‘𝑢)〉 =
〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉) |
142 | 141 | adantl 480 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → 〈(numer‘𝑢), (denom‘𝑢)〉 =
〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉) |
143 | 142 | eceq1d 8764 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [〈(numer‘𝑢), (denom‘𝑢)〉] ∼ =
[〈(numer‘(𝑞 +
𝑝)), (denom‘(𝑞 + 𝑝))〉] ∼ ) |
144 | | zringplusg 21397 |
. . . . . . . . . . 11
⊢ + =
(+g‘ℤring) |
145 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(ℤring RLocal (ℤ ∖ {0})) =
(ℤring RLocal (ℤ ∖ {0})) |
146 | | zringcrng 21391 |
. . . . . . . . . . . 12
⊢
ℤring ∈ CRing |
147 | 146 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ℤring ∈
CRing) |
148 | 35, 74 | mpbi 229 |
. . . . . . . . . . . . 13
⊢
(ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring))) |
149 | 148 | simpri 484 |
. . . . . . . . . . . 12
⊢ (ℤ
∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring)) |
150 | 149 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (ℤ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring))) |
151 | 117 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑞) ∈ ℤ) |
152 | 122 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑝) ∈ ℤ) |
153 | 22 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ∈
(ℤ ∖ {0})) |
154 | 153 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑞) ∈ (ℤ ∖
{0})) |
155 | 89 | nnne0d 12295 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℚ →
(denom‘𝑝) ≠
0) |
156 | 118, 155 | eldifsnd 32393 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℚ →
(denom‘𝑝) ∈
(ℤ ∖ {0})) |
157 | 156 | adantl 480 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ∈
(ℤ ∖ {0})) |
158 | 157 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑝) ∈ (ℤ ∖
{0})) |
159 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(+g‘(ℤring RLocal (ℤ ∖
{0}))) = (+g‘(ℤring RLocal (ℤ ∖
{0}))) |
160 | 28, 30, 144, 145, 24, 147, 150, 151, 152, 154, 158, 159 | rlocaddval 33058 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ([〈(numer‘𝑞), (denom‘𝑞)〉] ∼
(+g‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) =
[〈(((numer‘𝑞)
· (denom‘𝑝)) +
((numer‘𝑝) ·
(denom‘𝑞))),
((denom‘𝑞) ·
(denom‘𝑝))〉]
∼
) |
161 | 138, 143,
160 | 3eqtr4d 2775 |
. . . . . . . . 9
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [〈(numer‘𝑢), (denom‘𝑢)〉] ∼ =
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
(+g‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ )) |
162 | | ovexd 7454 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
(+g‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) ∈
V) |
163 | 68, 161, 83, 162 | fvmptd2 7012 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ([〈(numer‘𝑞), (denom‘𝑞)〉] ∼
(+g‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ )) |
164 | 59, 62, 163 | 3eqtr4rd 2776 |
. . . . . . 7
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝))) |
165 | 164 | rgen2 3187 |
. . . . . 6
⊢
∀𝑞 ∈
ℚ ∀𝑝 ∈
ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝)) |
166 | 47, 165 | pm3.2i 469 |
. . . . 5
⊢ (𝐹:ℚ⟶(Base‘(
Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝))) |
167 | 1 | qrngbas 27597 |
. . . . . 6
⊢ ℚ =
(Base‘𝑄) |
168 | | eqid 2725 |
. . . . . 6
⊢
(Base‘( Frac ‘ℤring)) = (Base‘( Frac
‘ℤring)) |
169 | | qex 12978 |
. . . . . . 7
⊢ ℚ
∈ V |
170 | | cnfldadd 21302 |
. . . . . . . 8
⊢ + =
(+g‘ℂfld) |
171 | 1, 170 | ressplusg 17274 |
. . . . . . 7
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
172 | 169, 171 | ax-mp 5 |
. . . . . 6
⊢ + =
(+g‘𝑄) |
173 | | eqid 2725 |
. . . . . 6
⊢
(+g‘( Frac ‘ℤring)) =
(+g‘( Frac ‘ℤring)) |
174 | 167, 168,
172, 173 | isghm 19178 |
. . . . 5
⊢ (𝐹 ∈ (𝑄 GrpHom ( Frac
‘ℤring)) ↔ ((𝑄 ∈ Grp ∧ ( Frac
‘ℤring) ∈ Grp) ∧ (𝐹:ℚ⟶(Base‘( Frac
‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹‘𝑞)(+g‘( Frac
‘ℤring))(𝐹‘𝑝))))) |
175 | 16, 166, 174 | mpbir2an 709 |
. . . 4
⊢ 𝐹 ∈ (𝑄 GrpHom ( Frac
‘ℤring)) |
176 | | eqid 2725 |
. . . . . . . 8
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
177 | 176 | ringmgp 20191 |
. . . . . . 7
⊢ (𝑄 ∈ Ring →
(mulGrp‘𝑄) ∈
Mnd) |
178 | 4, 177 | ax-mp 5 |
. . . . . 6
⊢
(mulGrp‘𝑄)
∈ Mnd |
179 | | eqid 2725 |
. . . . . . . 8
⊢
(mulGrp‘( Frac ‘ℤring)) = (mulGrp‘(
Frac ‘ℤring)) |
180 | 179 | ringmgp 20191 |
. . . . . . 7
⊢ (( Frac
‘ℤring) ∈ Ring → (mulGrp‘( Frac
‘ℤring)) ∈ Mnd) |
181 | 10, 180 | ax-mp 5 |
. . . . . 6
⊢
(mulGrp‘( Frac ‘ℤring)) ∈
Mnd |
182 | 178, 181 | pm3.2i 469 |
. . . . 5
⊢
((mulGrp‘𝑄)
∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈
Mnd) |
183 | | eqid 2725 |
. . . . . . . . . 10
⊢
(.r‘(ℤring RLocal (ℤ ∖
{0}))) = (.r‘(ℤring RLocal (ℤ ∖
{0}))) |
184 | 28, 30, 144, 145, 24, 71, 76, 117, 122, 153, 157, 183 | rlocmulval 33059 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
(.r‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) =
[〈((numer‘𝑞)
· (numer‘𝑝)),
((denom‘𝑞) ·
(denom‘𝑝))〉]
∼
) |
185 | 79, 81 | mulcld 11266 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℂ) |
186 | | qmulcl 12984 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℚ) |
187 | | qdencl 16716 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 · 𝑝) ∈ ℚ → (denom‘(𝑞 · 𝑝)) ∈ ℕ) |
188 | 186, 187 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ∈
ℕ) |
189 | 188 | nncnd 12261 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ∈
ℂ) |
190 | 185, 189,
92 | mul32d 11456 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝)))) |
191 | 79, 81, 88, 91 | mul4d 11458 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝)))) |
192 | 191 | oveq1d 7434 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝)))) |
193 | 190, 192 | eqtrd 2765 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝)))) |
194 | | qmuldeneqnum 16722 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 · 𝑝) ∈ ℚ → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝))) |
195 | 186, 194 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝))) |
196 | 195 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))) |
197 | 99, 104 | oveq12d 7437 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) = ((numer‘𝑞) · (numer‘𝑝))) |
198 | 197 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝)))) |
199 | 193, 196,
198 | 3eqtr3rd 2774 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(((numer‘𝑞) ·
(numer‘𝑝)) ·
(denom‘(𝑞 ·
𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))) |
200 | 117, 122 | zmulcld 12705 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((numer‘𝑞) ·
(numer‘𝑝)) ∈
ℤ) |
201 | | qnumcl 16715 |
. . . . . . . . . . . . 13
⊢ ((𝑞 · 𝑝) ∈ ℚ → (numer‘(𝑞 · 𝑝)) ∈ ℤ) |
202 | 186, 201 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘(𝑞 ·
𝑝)) ∈
ℤ) |
203 | 188 | nnzd 12618 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ∈
ℤ) |
204 | 188 | nnne0d 12295 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ≠
0) |
205 | 203, 204 | eldifsnd 32393 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ∈ (ℤ ∖
{0})) |
206 | 205, 39 | eleqtrdi 2835 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘(𝑞 ·
𝑝)) ∈
(RLReg‘ℤring)) |
207 | 28, 30, 114, 71, 200, 202, 134, 206 | fracerl 33092 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(〈((numer‘𝑞)
· (numer‘𝑝)),
((denom‘𝑞) ·
(denom‘𝑝))〉
∼
〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉 ↔
(((numer‘𝑞) ·
(numer‘𝑝)) ·
(denom‘(𝑞 ·
𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))) |
208 | 199, 207 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
〈((numer‘𝑞)
· (numer‘𝑝)),
((denom‘𝑞) ·
(denom‘𝑝))〉
∼
〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉) |
209 | 77, 208 | erthi 8777 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
[〈((numer‘𝑞)
· (numer‘𝑝)),
((denom‘𝑞) ·
(denom‘𝑝))〉]
∼
= [〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉] ∼
) |
210 | 184, 209 | eqtrd 2765 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
(.r‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ ) =
[〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉] ∼
) |
211 | 41 | fveq2i 6899 |
. . . . . . . . . 10
⊢
(.r‘( Frac ‘ℤring)) =
(.r‘(ℤring RLocal (ℤ ∖
{0}))) |
212 | 211 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(.r‘( Frac ‘ℤring)) =
(.r‘(ℤring RLocal (ℤ ∖
{0})))) |
213 | 212, 52, 58 | oveq123d 7440 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹‘𝑞)(.r‘( Frac
‘ℤring))(𝐹‘𝑝)) = ([〈(numer‘𝑞), (denom‘𝑞)〉] ∼
(.r‘(ℤring RLocal (ℤ ∖
{0})))[〈(numer‘𝑝), (denom‘𝑝)〉] ∼ )) |
214 | | fveq2 6896 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑞 · 𝑝) → (numer‘𝑢) = (numer‘(𝑞 · 𝑝))) |
215 | | fveq2 6896 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑞 · 𝑝) → (denom‘𝑢) = (denom‘(𝑞 · 𝑝))) |
216 | 214, 215 | opeq12d 4883 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑞 · 𝑝) → 〈(numer‘𝑢), (denom‘𝑢)〉 =
〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉) |
217 | 216 | eceq1d 8764 |
. . . . . . . . 9
⊢ (𝑢 = (𝑞 · 𝑝) → [〈(numer‘𝑢), (denom‘𝑢)〉] ∼ =
[〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉] ∼
) |
218 | | ecexg 8729 |
. . . . . . . . . 10
⊢ ( ∼ ∈
V → [〈(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))〉] ∼ ∈
V) |
219 | 25, 218 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
[〈(numer‘(𝑞
· 𝑝)),
(denom‘(𝑞 ·
𝑝))〉] ∼ ∈
V) |
220 | 68, 217, 186, 219 | fvmptd3 7027 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = [〈(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))〉] ∼ ) |
221 | 210, 213,
220 | 3eqtr4rd 2776 |
. . . . . . 7
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = ((𝐹‘𝑞)(.r‘( Frac
‘ℤring))(𝐹‘𝑝))) |
222 | 221 | rgen2 3187 |
. . . . . 6
⊢
∀𝑞 ∈
ℚ ∀𝑝 ∈
ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹‘𝑞)(.r‘( Frac
‘ℤring))(𝐹‘𝑝)) |
223 | | zssq 12973 |
. . . . . . . 8
⊢ ℤ
⊆ ℚ |
224 | | 1z 12625 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
225 | 223, 224 | sselii 3973 |
. . . . . . 7
⊢ 1 ∈
ℚ |
226 | | fveq2 6896 |
. . . . . . . . . . 11
⊢ (𝑞 = 1 → (numer‘𝑞) =
(numer‘1)) |
227 | | 1zzd 12626 |
. . . . . . . . . . . . 13
⊢
(ℤring ∈ IDomn → 1 ∈
ℤ) |
228 | 227 | znumd 32661 |
. . . . . . . . . . . 12
⊢
(ℤring ∈ IDomn → (numer‘1) =
1) |
229 | 5, 228 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(numer‘1) = 1 |
230 | 226, 229 | eqtrdi 2781 |
. . . . . . . . . 10
⊢ (𝑞 = 1 → (numer‘𝑞) = 1) |
231 | | fveq2 6896 |
. . . . . . . . . . 11
⊢ (𝑞 = 1 → (denom‘𝑞) =
(denom‘1)) |
232 | 227 | zdend 32662 |
. . . . . . . . . . . 12
⊢
(ℤring ∈ IDomn → (denom‘1) =
1) |
233 | 5, 232 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(denom‘1) = 1 |
234 | 231, 233 | eqtrdi 2781 |
. . . . . . . . . 10
⊢ (𝑞 = 1 → (denom‘𝑞) = 1) |
235 | 230, 234 | opeq12d 4883 |
. . . . . . . . 9
⊢ (𝑞 = 1 →
〈(numer‘𝑞),
(denom‘𝑞)〉 =
〈1, 1〉) |
236 | 235 | eceq1d 8764 |
. . . . . . . 8
⊢ (𝑞 = 1 →
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈1, 1〉] ∼ ) |
237 | 236, 17, 49 | fvmpt3i 7009 |
. . . . . . 7
⊢ (1 ∈
ℚ → (𝐹‘1)
= [〈1, 1〉] ∼ ) |
238 | 225, 237 | ax-mp 5 |
. . . . . 6
⊢ (𝐹‘1) = [〈1, 1〉]
∼ |
239 | 47, 222, 238 | 3pm3.2i 1336 |
. . . . 5
⊢ (𝐹:ℚ⟶(Base‘(
Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹‘𝑞)(.r‘( Frac
‘ℤring))(𝐹‘𝑝)) ∧ (𝐹‘1) = [〈1, 1〉] ∼
) |
240 | 176, 167 | mgpbas 20092 |
. . . . . 6
⊢ ℚ =
(Base‘(mulGrp‘𝑄)) |
241 | 179, 168 | mgpbas 20092 |
. . . . . 6
⊢
(Base‘( Frac ‘ℤring)) =
(Base‘(mulGrp‘( Frac
‘ℤring))) |
242 | | cnfldmul 21304 |
. . . . . . . . 9
⊢ ·
= (.r‘ℂfld) |
243 | 1, 242 | ressmulr 17291 |
. . . . . . . 8
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
244 | 169, 243 | ax-mp 5 |
. . . . . . 7
⊢ ·
= (.r‘𝑄) |
245 | 176, 244 | mgpplusg 20090 |
. . . . . 6
⊢ ·
= (+g‘(mulGrp‘𝑄)) |
246 | | eqid 2725 |
. . . . . . 7
⊢
(.r‘( Frac ‘ℤring)) =
(.r‘( Frac ‘ℤring)) |
247 | 179, 246 | mgpplusg 20090 |
. . . . . 6
⊢
(.r‘( Frac ‘ℤring)) =
(+g‘(mulGrp‘( Frac
‘ℤring))) |
248 | 1 | qrng1 27600 |
. . . . . . 7
⊢ 1 =
(1r‘𝑄) |
249 | 176, 248 | ringidval 20135 |
. . . . . 6
⊢ 1 =
(0g‘(mulGrp‘𝑄)) |
250 | 146 | a1i 11 |
. . . . . . . . 9
⊢
(ℤring ∈ IDomn → ℤring
∈ CRing) |
251 | 149 | a1i 11 |
. . . . . . . . 9
⊢
(ℤring ∈ IDomn → (ℤ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring))) |
252 | | eqid 2725 |
. . . . . . . . 9
⊢ [〈1,
1〉] ∼ = [〈1,
1〉] ∼ |
253 | 29, 69, 41, 24, 250, 251, 252 | rloc1r 33062 |
. . . . . . . 8
⊢
(ℤring ∈ IDomn → [〈1, 1〉] ∼ =
(1r‘( Frac ‘ℤring))) |
254 | 5, 253 | ax-mp 5 |
. . . . . . 7
⊢ [〈1,
1〉] ∼ =
(1r‘( Frac ‘ℤring)) |
255 | 179, 254 | ringidval 20135 |
. . . . . 6
⊢ [〈1,
1〉] ∼ =
(0g‘(mulGrp‘( Frac
‘ℤring))) |
256 | 240, 241,
245, 247, 249, 255 | ismhm 18745 |
. . . . 5
⊢ (𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac
‘ℤring))) ↔ (((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac
‘ℤring)) ∈ Mnd) ∧ (𝐹:ℚ⟶(Base‘( Frac
‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹‘𝑞)(.r‘( Frac
‘ℤring))(𝐹‘𝑝)) ∧ (𝐹‘1) = [〈1, 1〉] ∼
))) |
257 | 182, 239,
256 | mpbir2an 709 |
. . . 4
⊢ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac
‘ℤring))) |
258 | 175, 257 | pm3.2i 469 |
. . 3
⊢ (𝐹 ∈ (𝑄 GrpHom ( Frac
‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac
‘ℤring)))) |
259 | 176, 179 | isrhm 20429 |
. . 3
⊢ (𝐹 ∈ (𝑄 RingHom ( Frac
‘ℤring)) ↔ ((𝑄 ∈ Ring ∧ ( Frac
‘ℤring) ∈ Ring) ∧ (𝐹 ∈ (𝑄 GrpHom ( Frac
‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac
‘ℤring)))))) |
260 | 11, 258, 259 | mpbir2an 709 |
. 2
⊢ 𝐹 ∈ (𝑄 RingHom ( Frac
‘ℤring)) |
261 | 46 | rgen 3052 |
. . . 4
⊢
∀𝑞 ∈
ℚ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈
(Base‘( Frac ‘ℤring)) |
262 | 117 | zcnd 12700 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘𝑞) ∈
ℂ) |
263 | 122 | zcnd 12700 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(numer‘𝑝) ∈
ℂ) |
264 | 21 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ≠
0) |
265 | 155 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ≠
0) |
266 | 262, 88, 263, 91, 264, 265 | divmuleqd 12069 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(((numer‘𝑞) /
(denom‘𝑞)) =
((numer‘𝑝) /
(denom‘𝑝)) ↔
((numer‘𝑞) ·
(denom‘𝑝)) =
((numer‘𝑝) ·
(denom‘𝑞)))) |
267 | 153, 39 | eleqtrdi 2835 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑞) ∈
(RLReg‘ℤring)) |
268 | 157, 39 | eleqtrdi 2835 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(denom‘𝑝) ∈
(RLReg‘ℤring)) |
269 | 28, 30, 114, 71, 117, 122, 267, 268 | fracerl 33092 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(〈(numer‘𝑞),
(denom‘𝑞)〉 ∼
〈(numer‘𝑝),
(denom‘𝑝)〉
↔ ((numer‘𝑞)
· (denom‘𝑝)) =
((numer‘𝑝) ·
(denom‘𝑞)))) |
270 | 23 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
〈(numer‘𝑞),
(denom‘𝑞)〉
∈ (ℤ × (ℤ ∖ {0}))) |
271 | 77, 270 | erth 8775 |
. . . . . . . . 9
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
(〈(numer‘𝑞),
(denom‘𝑞)〉 ∼
〈(numer‘𝑝),
(denom‘𝑝)〉
↔ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ =
[〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
)) |
272 | 266, 269,
271 | 3bitr2rd 307 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
↔ ((numer‘𝑞) /
(denom‘𝑞)) =
((numer‘𝑝) /
(denom‘𝑝)))) |
273 | 272 | biimpa 475 |
. . . . . . 7
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
) → ((numer‘𝑞) /
(denom‘𝑞)) =
((numer‘𝑝) /
(denom‘𝑝))) |
274 | | qeqnumdivden 16721 |
. . . . . . . 8
⊢ (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞))) |
275 | 274 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
) → 𝑞 =
((numer‘𝑞) /
(denom‘𝑞))) |
276 | | qeqnumdivden 16721 |
. . . . . . . 8
⊢ (𝑝 ∈ ℚ → 𝑝 = ((numer‘𝑝) / (denom‘𝑝))) |
277 | 276 | ad2antlr 725 |
. . . . . . 7
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
) → 𝑝 =
((numer‘𝑝) /
(denom‘𝑝))) |
278 | 273, 275,
277 | 3eqtr4d 2775 |
. . . . . 6
⊢ (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
) → 𝑞 = 𝑝) |
279 | 278 | ex 411 |
. . . . 5
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
→ 𝑞 = 𝑝)) |
280 | 279 | rgen2 3187 |
. . . 4
⊢
∀𝑞 ∈
ℚ ∀𝑝 ∈
ℚ ([〈(numer‘𝑞), (denom‘𝑞)〉] ∼ =
[〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
→ 𝑞 = 𝑝) |
281 | 17, 56 | f1mpt 7271 |
. . . 4
⊢ (𝐹:ℚ–1-1→(Base‘( Frac
‘ℤring)) ↔ (∀𝑞 ∈ ℚ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈
(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ
([〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
= [〈(numer‘𝑝),
(denom‘𝑝)〉]
∼
→ 𝑞 = 𝑝))) |
282 | 261, 280,
281 | mpbir2an 709 |
. . 3
⊢ 𝐹:ℚ–1-1→(Base‘( Frac
‘ℤring)) |
283 | | fveq2 6896 |
. . . . . . . . . 10
⊢ (𝑞 = (𝑎 / 𝑏) → (numer‘𝑞) = (numer‘(𝑎 / 𝑏))) |
284 | | fveq2 6896 |
. . . . . . . . . 10
⊢ (𝑞 = (𝑎 / 𝑏) → (denom‘𝑞) = (denom‘(𝑎 / 𝑏))) |
285 | 283, 284 | opeq12d 4883 |
. . . . . . . . 9
⊢ (𝑞 = (𝑎 / 𝑏) → 〈(numer‘𝑞), (denom‘𝑞)〉 =
〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉) |
286 | 285 | eceq1d 8764 |
. . . . . . . 8
⊢ (𝑞 = (𝑎 / 𝑏) → [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ =
[〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉] ∼ ) |
287 | 286 | eqeq2d 2736 |
. . . . . . 7
⊢ (𝑞 = (𝑎 / 𝑏) → (𝑧 = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ↔ 𝑧 = [〈(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))〉] ∼ )) |
288 | | simpllr 774 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑎 ∈
ℤ) |
289 | 223, 288 | sselid 3974 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑎 ∈
ℚ) |
290 | | simplr 767 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑏 ∈ (ℤ ∖
{0})) |
291 | 290 | eldifad 3956 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑏 ∈
ℤ) |
292 | 223, 291 | sselid 3974 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑏 ∈
ℚ) |
293 | | eldifsni 4795 |
. . . . . . . . 9
⊢ (𝑏 ∈ (ℤ ∖ {0})
→ 𝑏 ≠
0) |
294 | 290, 293 | syl 17 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑏 ≠ 0) |
295 | | qdivcl 12987 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0) → (𝑎 / 𝑏) ∈ ℚ) |
296 | 289, 292,
294, 295 | syl3anc 1368 |
. . . . . . 7
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → (𝑎 / 𝑏) ∈ ℚ) |
297 | | simpr 483 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑧 = [〈𝑎, 𝑏〉] ∼ ) |
298 | 146 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) →
ℤring ∈ CRing) |
299 | 149 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → (ℤ
∖ {0}) ∈
(SubMnd‘(mulGrp‘ℤring))) |
300 | 28, 29, 69, 30, 31, 32, 24, 298, 299 | erler 33055 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → ∼ Er
(ℤ × (ℤ ∖ {0}))) |
301 | | simpl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑎 ∈
ℤ) |
302 | 301 | zcnd 12700 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑎 ∈
ℂ) |
303 | | eldifi 4123 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ (ℤ ∖ {0})
→ 𝑏 ∈
ℤ) |
304 | 303 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ∈
ℤ) |
305 | 304 | zcnd 12700 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ∈
ℂ) |
306 | 293 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ≠
0) |
307 | 302, 305,
306 | divcld 12023 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (𝑎 / 𝑏) ∈
ℂ) |
308 | 223, 301 | sselid 3974 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑎 ∈
ℚ) |
309 | 223, 304 | sselid 3974 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ∈
ℚ) |
310 | 308, 309,
306, 295 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (𝑎 / 𝑏) ∈
ℚ) |
311 | | qdencl 16716 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 / 𝑏) ∈ ℚ → (denom‘(𝑎 / 𝑏)) ∈ ℕ) |
312 | 310, 311 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ∈
ℕ) |
313 | 312 | nncnd 12261 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ∈
ℂ) |
314 | 307, 313,
305 | mul32d 11456 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏)))) |
315 | | qmuldeneqnum 16722 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 / 𝑏) ∈ ℚ → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏))) |
316 | 310, 315 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏))) |
317 | 316 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = ((numer‘(𝑎 / 𝑏)) · 𝑏)) |
318 | 302, 305,
306 | divcan1d 12024 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ ((𝑎 / 𝑏) · 𝑏) = 𝑎) |
319 | 318 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))) = (𝑎 · (denom‘(𝑎 / 𝑏)))) |
320 | 314, 317,
319 | 3eqtr3rd 2774 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (𝑎 ·
(denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏)) |
321 | 146 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ ℤring ∈ CRing) |
322 | | qnumcl 16715 |
. . . . . . . . . . . . 13
⊢ ((𝑎 / 𝑏) ∈ ℚ → (numer‘(𝑎 / 𝑏)) ∈ ℤ) |
323 | 310, 322 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (numer‘(𝑎 /
𝑏)) ∈
ℤ) |
324 | | simpr 483 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ∈ (ℤ
∖ {0})) |
325 | 324, 39 | eleqtrdi 2835 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 𝑏 ∈
(RLReg‘ℤring)) |
326 | 312 | nnzd 12618 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ∈
ℤ) |
327 | 312 | nnne0d 12295 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ≠
0) |
328 | 326, 327 | eldifsnd 32393 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ∈ (ℤ ∖
{0})) |
329 | 328, 39 | eleqtrdi 2835 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (denom‘(𝑎 /
𝑏)) ∈
(RLReg‘ℤring)) |
330 | 28, 30, 114, 321, 301, 323, 325, 329 | fracerl 33092 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (〈𝑎, 𝑏〉 ∼
〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉 ↔ (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏))) |
331 | 320, 330 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ 〈𝑎, 𝑏〉 ∼
〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉) |
332 | 331 | ad4ant23 751 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) →
〈𝑎, 𝑏〉 ∼
〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉) |
333 | 300, 332 | erthi 8777 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) →
[〈𝑎, 𝑏〉] ∼ =
[〈(numer‘(𝑎 /
𝑏)), (denom‘(𝑎 / 𝑏))〉] ∼ ) |
334 | 297, 333 | eqtrd 2765 |
. . . . . . 7
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) → 𝑧 = [〈(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))〉] ∼ ) |
335 | 287, 296,
334 | rspcedvdw 3609 |
. . . . . 6
⊢ ((((𝑧 ∈ (Base‘( Frac
‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [〈𝑎, 𝑏〉] ∼ ) →
∃𝑞 ∈ ℚ
𝑧 =
[〈(numer‘𝑞),
(denom‘𝑞)〉]
∼
) |
336 | 45 | eleq2i 2817 |
. . . . . . . 8
⊢ (𝑧 ∈ ((ℤ ×
(ℤ ∖ {0})) / ∼ ) ↔ 𝑧 ∈ (Base‘( Frac
‘ℤring))) |
337 | 336 | biimpri 227 |
. . . . . . 7
⊢ (𝑧 ∈ (Base‘( Frac
‘ℤring)) → 𝑧 ∈ ((ℤ × (ℤ ∖
{0})) / ∼ )) |
338 | 337 | elrlocbasi 33056 |
. . . . . 6
⊢ (𝑧 ∈ (Base‘( Frac
‘ℤring)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ (ℤ ∖ {0})𝑧 = [〈𝑎, 𝑏〉] ∼ ) |
339 | 335, 338 | r19.29vva 3203 |
. . . . 5
⊢ (𝑧 ∈ (Base‘( Frac
‘ℤring)) → ∃𝑞 ∈ ℚ 𝑧 = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) |
340 | 339 | rgen 3052 |
. . . 4
⊢
∀𝑧 ∈
(Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ |
341 | 17 | fompt 7127 |
. . . 4
⊢ (𝐹:ℚ–onto→(Base‘( Frac
‘ℤring)) ↔ (∀𝑞 ∈ ℚ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ∈
(Base‘( Frac ‘ℤring)) ∧ ∀𝑧 ∈ (Base‘( Frac
‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ )) |
342 | 261, 340,
341 | mpbir2an 709 |
. . 3
⊢ 𝐹:ℚ–onto→(Base‘( Frac
‘ℤring)) |
343 | | df-f1o 6556 |
. . 3
⊢ (𝐹:ℚ–1-1-onto→(Base‘( Frac
‘ℤring)) ↔ (𝐹:ℚ–1-1→(Base‘( Frac
‘ℤring)) ∧ 𝐹:ℚ–onto→(Base‘( Frac
‘ℤring)))) |
344 | 282, 342,
343 | mpbir2an 709 |
. 2
⊢ 𝐹:ℚ–1-1-onto→(Base‘( Frac
‘ℤring)) |
345 | 167, 168 | isrim 20443 |
. 2
⊢ (𝐹 ∈ (𝑄 RingIso ( Frac
‘ℤring)) ↔ (𝐹 ∈ (𝑄 RingHom ( Frac
‘ℤring)) ∧ 𝐹:ℚ–1-1-onto→(Base‘( Frac
‘ℤring)))) |
346 | 260, 344,
345 | mpbir2an 709 |
1
⊢ 𝐹 ∈ (𝑄 RingIso ( Frac
‘ℤring)) |