Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zringfrac Structured version   Visualization version   GIF version

Theorem zringfrac 33491
Description: The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
zringfrac.1 𝑄 = (ℂflds ℚ)
zringfrac.2 = (ℤring ~RL (ℤ ∖ {0}))
zringfrac.3 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
Assertion
Ref Expression
zringfrac 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Distinct variable groups:   ,𝑞   𝐹,𝑞   𝑄,𝑞

Proof of Theorem zringfrac
Dummy variables 𝑎 𝑏 𝑧 𝑝 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringfrac.1 . . . . . 6 𝑄 = (ℂflds ℚ)
21qdrng 27529 . . . . 5 𝑄 ∈ DivRing
3 drngring 20621 . . . . 5 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
42, 3ax-mp 5 . . . 4 𝑄 ∈ Ring
5 zringidom 33488 . . . . 5 ring ∈ IDomn
6 id 22 . . . . . . . 8 (ℤring ∈ IDomn → ℤring ∈ IDomn)
76fracfld 33247 . . . . . . 7 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Field)
87fldcrngd 20627 . . . . . 6 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ CRing)
98crngringd 20131 . . . . 5 (ℤring ∈ IDomn → ( Frac ‘ℤring) ∈ Ring)
105, 9ax-mp 5 . . . 4 ( Frac ‘ℤring) ∈ Ring
114, 10pm3.2i 470 . . 3 (𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring)
12 ringgrp 20123 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
134, 12ax-mp 5 . . . . . 6 𝑄 ∈ Grp
14 ringgrp 20123 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → ( Frac ‘ℤring) ∈ Grp)
1510, 14ax-mp 5 . . . . . 6 ( Frac ‘ℤring) ∈ Grp
1613, 15pm3.2i 470 . . . . 5 (𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp)
17 zringfrac.3 . . . . . . 7 𝐹 = (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
18 qnumcl 16651 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
19 qdencl 16652 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2019nnzd 12498 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
2119nnne0d 12178 . . . . . . . . . . 11 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
2220, 21eldifsnd 4738 . . . . . . . . . 10 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ (ℤ ∖ {0}))
2318, 22opelxpd 5658 . . . . . . . . 9 (𝑞 ∈ ℚ → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
24 zringfrac.2 . . . . . . . . . . 11 = (ℤring ~RL (ℤ ∖ {0}))
2524ovexi 7383 . . . . . . . . . 10 ∈ V
2625ecelqsi 8697 . . . . . . . . 9 (⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
2723, 26syl 17 . . . . . . . 8 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ ((ℤ × (ℤ ∖ {0})) / ))
28 zringbas 21360 . . . . . . . . . 10 ℤ = (Base‘ℤring)
29 zring0 21365 . . . . . . . . . 10 0 = (0g‘ℤring)
30 zringmulr 21364 . . . . . . . . . 10 · = (.r‘ℤring)
31 eqid 2729 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
32 eqid 2729 . . . . . . . . . 10 (ℤ × (ℤ ∖ {0})) = (ℤ × (ℤ ∖ {0}))
33 fracval 33243 . . . . . . . . . . 11 ( Frac ‘ℤring) = (ℤring RLocal (RLReg‘ℤring))
346idomdomd 20611 . . . . . . . . . . . . . . 15 (ℤring ∈ IDomn → ℤring ∈ Domn)
355, 34ax-mp 5 . . . . . . . . . . . . . 14 ring ∈ Domn
36 eqid 2729 . . . . . . . . . . . . . . 15 (RLReg‘ℤring) = (RLReg‘ℤring)
3728, 36, 29isdomn6 20599 . . . . . . . . . . . . . 14 (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring)))
3835, 37mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) = (RLReg‘ℤring))
3938simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) = (RLReg‘ℤring)
4039oveq2i 7360 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (RLReg‘ℤring))
4133, 40eqtr4i 2755 . . . . . . . . . 10 ( Frac ‘ℤring) = (ℤring RLocal (ℤ ∖ {0}))
425a1i 11 . . . . . . . . . 10 (⊤ → ℤring ∈ IDomn)
43 difssd 4088 . . . . . . . . . 10 (⊤ → (ℤ ∖ {0}) ⊆ ℤ)
4428, 29, 30, 31, 32, 41, 24, 42, 43rlocbas 33207 . . . . . . . . 9 (⊤ → ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring)))
4544mptru 1547 . . . . . . . 8 ((ℤ × (ℤ ∖ {0})) / ) = (Base‘( Frac ‘ℤring))
4627, 45eleqtrdi 2838 . . . . . . 7 (𝑞 ∈ ℚ → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)))
4717, 46fmpti 7046 . . . . . 6 𝐹:ℚ⟶(Base‘( Frac ‘ℤring))
48 ecexg 8629 . . . . . . . . . . . 12 ( ∈ V → [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V)
4925, 48ax-mp 5 . . . . . . . . . . 11 [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V
5017fvmpt2 6941 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ V) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5149, 50mpan2 691 . . . . . . . . . 10 (𝑞 ∈ ℚ → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
5251adantr 480 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑞) = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
53 fveq2 6822 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (numer‘𝑞) = (numer‘𝑝))
54 fveq2 6822 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (denom‘𝑞) = (denom‘𝑝))
5553, 54opeq12d 4832 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑝), (denom‘𝑝)⟩)
5655eceq1d 8665 . . . . . . . . . . 11 (𝑞 = 𝑝 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5756, 17, 27fvmpt3 6934 . . . . . . . . . 10 (𝑝 ∈ ℚ → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5857adantl 481 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹𝑝) = [⟨(numer‘𝑝), (denom‘𝑝)⟩] )
5952, 58oveq12d 7367 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
6041fveq2i 6825 . . . . . . . . . 10 (+g‘( Frac ‘ℤring)) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
6160oveqi 7362 . . . . . . . . 9 ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝))
6261a1i 11 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)) = ((𝐹𝑞)(+g‘(ℤring RLocal (ℤ ∖ {0})))(𝐹𝑝)))
63 fveq2 6822 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (numer‘𝑞) = (numer‘𝑢))
64 fveq2 6822 . . . . . . . . . . . . 13 (𝑞 = 𝑢 → (denom‘𝑞) = (denom‘𝑢))
6563, 64opeq12d 4832 . . . . . . . . . . . 12 (𝑞 = 𝑢 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘𝑢), (denom‘𝑢)⟩)
6665eceq1d 8665 . . . . . . . . . . 11 (𝑞 = 𝑢 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6766cbvmptv 5196 . . . . . . . . . 10 (𝑞 ∈ ℚ ↦ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ) = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
6817, 67eqtri 2752 . . . . . . . . 9 𝐹 = (𝑢 ∈ ℚ ↦ [⟨(numer‘𝑢), (denom‘𝑢)⟩] )
69 zring1 21366 . . . . . . . . . . . . 13 1 = (1r‘ℤring)
705a1i 11 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ IDomn)
7170idomcringd 20612 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ CRing)
7235a1i 11 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ℤring ∈ Domn)
73 eqid 2729 . . . . . . . . . . . . . . . 16 (mulGrp‘ℤring) = (mulGrp‘ℤring)
7428, 29, 73isdomn3 20600 . . . . . . . . . . . . . . 15 (ℤring ∈ Domn ↔ (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7572, 74sylib 218 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))))
7675simprd 495 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
7728, 29, 69, 30, 31, 32, 24, 71, 76erler 33205 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → Er (ℤ × (ℤ ∖ {0})))
78 qcn 12864 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℚ → 𝑞 ∈ ℂ)
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑞 ∈ ℂ)
80 qcn 12864 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → 𝑝 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → 𝑝 ∈ ℂ)
8279, 81addcld 11134 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℂ)
83 qaddcl 12866 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 + 𝑝) ∈ ℚ)
84 qdencl 16652 . . . . . . . . . . . . . . . . 17 ((𝑞 + 𝑝) ∈ ℚ → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℕ)
8685nncnd 12144 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℂ)
8719adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
8887nncnd 12144 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℂ)
89 qdencl 16652 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℕ)
9089adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℕ)
9190nncnd 12144 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℂ)
9288, 91mulcld 11135 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℂ)
9382, 86, 92mul32d 11326 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))))
94 qmuldeneqnum 16658 . . . . . . . . . . . . . . . 16 ((𝑞 + 𝑝) ∈ ℚ → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9583, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) = (numer‘(𝑞 + 𝑝)))
9695oveq1d 7364 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · (denom‘(𝑞 + 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
9779, 88, 91mulassd 11138 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = (𝑞 · ((denom‘𝑞) · (denom‘𝑝))))
98 qmuldeneqnum 16658 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℚ → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
9998adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · (denom‘𝑞)) = (numer‘𝑞))
10099oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (denom‘𝑝)) = ((numer‘𝑞) · (denom‘𝑝)))
10197, 100eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑞) · (denom‘𝑝)))
10281, 91, 88mulassd 11138 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = (𝑝 · ((denom‘𝑝) · (denom‘𝑞))))
103 qmuldeneqnum 16658 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℚ → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
104103adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · (denom‘𝑝)) = (numer‘𝑝))
105104oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑝 · (denom‘𝑝)) · (denom‘𝑞)) = ((numer‘𝑝) · (denom‘𝑞)))
10691, 88mulcomd 11136 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑝) · (denom‘𝑞)) = ((denom‘𝑞) · (denom‘𝑝)))
107106oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑝) · (denom‘𝑞))) = (𝑝 · ((denom‘𝑞) · (denom‘𝑝))))
108102, 105, 1073eqtr3rd 2773 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑝 · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘𝑝) · (denom‘𝑞)))
109101, 108oveq12d 7367 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · ((denom‘𝑞) · (denom‘𝑝))) + (𝑝 · ((denom‘𝑞) · (denom‘𝑝)))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
11079, 92, 81, 109joinlmuladdmuld 11142 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))))
111110oveq1d 7364 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 + 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 + 𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11293, 96, 1113eqtr3d 2772 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝))))
11339oveq2i 7360 . . . . . . . . . . . . . . 15 (ℤring ~RL (ℤ ∖ {0})) = (ℤring ~RL (RLReg‘ℤring))
11424, 113eqtri 2752 . . . . . . . . . . . . . 14 = (ℤring ~RL (RLReg‘ℤring))
115 qnumcl 16651 . . . . . . . . . . . . . . 15 ((𝑞 + 𝑝) ∈ ℚ → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11683, 115syl 17 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 + 𝑝)) ∈ ℤ)
11718adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
11889nnzd 12498 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ ℤ)
119118adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ ℤ)
120117, 119zmulcld 12586 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (denom‘𝑝)) ∈ ℤ)
121 qnumcl 16651 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (numer‘𝑝) ∈ ℤ)
122121adantl 481 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℤ)
12320adantr 480 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
124122, 123zmulcld 12586 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑝) · (denom‘𝑞)) ∈ ℤ)
125120, 124zaddcld 12584 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) ∈ ℤ)
12685nnzd 12498 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ ℤ)
12785nnne0d 12178 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ≠ 0)
128126, 127eldifsnd 4738 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (ℤ ∖ {0}))
129128, 39eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 + 𝑝)) ∈ (RLReg‘ℤring))
130123, 119zmulcld 12586 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℤ)
13187, 90nnmulcld 12181 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ ℕ)
132131nnne0d 12178 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ≠ 0)
133130, 132eldifsnd 4738 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (ℤ ∖ {0}))
134133, 39eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((denom‘𝑞) · (denom‘𝑝)) ∈ (RLReg‘ℤring))
13528, 30, 114, 71, 116, 125, 129, 134fracerl 33245 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩ ↔ ((numer‘(𝑞 + 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))) = ((((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))) · (denom‘(𝑞 + 𝑝)))))
136112, 135mpbird 257 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩ ⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩)
13777, 136erthi 8681 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
138137adantr 480 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
139 fveq2 6822 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (numer‘𝑢) = (numer‘(𝑞 + 𝑝)))
140 fveq2 6822 . . . . . . . . . . . . 13 (𝑢 = (𝑞 + 𝑝) → (denom‘𝑢) = (denom‘(𝑞 + 𝑝)))
141139, 140opeq12d 4832 . . . . . . . . . . . 12 (𝑢 = (𝑞 + 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩)
143142eceq1d 8665 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 + 𝑝)), (denom‘(𝑞 + 𝑝))⟩] )
144 zringplusg 21361 . . . . . . . . . . 11 + = (+g‘ℤring)
145 eqid 2729 . . . . . . . . . . 11 (ℤring RLocal (ℤ ∖ {0})) = (ℤring RLocal (ℤ ∖ {0}))
146 zringcrng 21355 . . . . . . . . . . . 12 ring ∈ CRing
147146a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ℤring ∈ CRing)
14835, 74mpbi 230 . . . . . . . . . . . . 13 (ℤring ∈ Ring ∧ (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
149148simpri 485 . . . . . . . . . . . 12 (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring))
150149a1i 11 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
151117adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑞) ∈ ℤ)
152122adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (numer‘𝑝) ∈ ℤ)
15322adantr 480 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
154153adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
15589nnne0d 12178 . . . . . . . . . . . . . 14 (𝑝 ∈ ℚ → (denom‘𝑝) ≠ 0)
156118, 155eldifsnd 4738 . . . . . . . . . . . . 13 (𝑝 ∈ ℚ → (denom‘𝑝) ∈ (ℤ ∖ {0}))
157156adantl 481 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
158157adantr 480 . . . . . . . . . . 11 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → (denom‘𝑝) ∈ (ℤ ∖ {0}))
159 eqid 2729 . . . . . . . . . . 11 (+g‘(ℤring RLocal (ℤ ∖ {0}))) = (+g‘(ℤring RLocal (ℤ ∖ {0})))
16028, 30, 144, 145, 24, 147, 150, 151, 152, 154, 158, 159rlocaddval 33208 . . . . . . . . . 10 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(((numer‘𝑞) · (denom‘𝑝)) + ((numer‘𝑝) · (denom‘𝑞))), ((denom‘𝑞) · (denom‘𝑝))⟩] )
161138, 143, 1603eqtr4d 2774 . . . . . . . . 9 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ 𝑢 = (𝑞 + 𝑝)) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
162 ovexd 7384 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) ∈ V)
16368, 161, 83, 162fvmptd2 6938 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (+g‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
16459, 62, 1633eqtr4rd 2775 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
165164rgen2 3169 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝))
16647, 165pm3.2i 470 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))
1671qrngbas 27528 . . . . . 6 ℚ = (Base‘𝑄)
168 eqid 2729 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘( Frac ‘ℤring))
169 qex 12862 . . . . . . 7 ℚ ∈ V
170 cnfldadd 21267 . . . . . . . 8 + = (+g‘ℂfld)
1711, 170ressplusg 17195 . . . . . . 7 (ℚ ∈ V → + = (+g𝑄))
172169, 171ax-mp 5 . . . . . 6 + = (+g𝑄)
173 eqid 2729 . . . . . 6 (+g‘( Frac ‘ℤring)) = (+g‘( Frac ‘ℤring))
174167, 168, 172, 173isghm 19094 . . . . 5 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Grp ∧ ( Frac ‘ℤring) ∈ Grp) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 + 𝑝)) = ((𝐹𝑞)(+g‘( Frac ‘ℤring))(𝐹𝑝)))))
17516, 166, 174mpbir2an 711 . . . 4 𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring))
176 eqid 2729 . . . . . . . 8 (mulGrp‘𝑄) = (mulGrp‘𝑄)
177176ringmgp 20124 . . . . . . 7 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
1784, 177ax-mp 5 . . . . . 6 (mulGrp‘𝑄) ∈ Mnd
179 eqid 2729 . . . . . . . 8 (mulGrp‘( Frac ‘ℤring)) = (mulGrp‘( Frac ‘ℤring))
180179ringmgp 20124 . . . . . . 7 (( Frac ‘ℤring) ∈ Ring → (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
18110, 180ax-mp 5 . . . . . 6 (mulGrp‘( Frac ‘ℤring)) ∈ Mnd
182178, 181pm3.2i 470 . . . . 5 ((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd)
183 eqid 2729 . . . . . . . . . 10 (.r‘(ℤring RLocal (ℤ ∖ {0}))) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
18428, 30, 144, 145, 24, 71, 76, 117, 122, 153, 157, 183rlocmulval 33209 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] )
18579, 81mulcld 11135 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℂ)
186 qmulcl 12868 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 · 𝑝) ∈ ℚ)
187 qdencl 16652 . . . . . . . . . . . . . . . 16 ((𝑞 · 𝑝) ∈ ℚ → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
188186, 187syl 17 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℕ)
189188nncnd 12144 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℂ)
190185, 189, 92mul32d 11326 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
19179, 81, 88, 91mul4d 11328 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) = ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))))
192191oveq1d 7364 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · ((denom‘𝑞) · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
193190, 192eqtrd 2764 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))))
194 qmuldeneqnum 16658 . . . . . . . . . . . . . 14 ((𝑞 · 𝑝) ∈ ℚ → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
195186, 194syl 17 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) = (numer‘(𝑞 · 𝑝)))
196195oveq1d 7364 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · 𝑝) · (denom‘(𝑞 · 𝑝))) · ((denom‘𝑞) · (denom‘𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
19799, 104oveq12d 7367 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) = ((numer‘𝑞) · (numer‘𝑝)))
198197oveq1d 7364 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((𝑞 · (denom‘𝑞)) · (𝑝 · (denom‘𝑝))) · (denom‘(𝑞 · 𝑝))) = (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))))
199193, 196, 1983eqtr3rd 2773 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝))))
200117, 122zmulcld 12586 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((numer‘𝑞) · (numer‘𝑝)) ∈ ℤ)
201 qnumcl 16651 . . . . . . . . . . . . 13 ((𝑞 · 𝑝) ∈ ℚ → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
202186, 201syl 17 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘(𝑞 · 𝑝)) ∈ ℤ)
203188nnzd 12498 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ ℤ)
204188nnne0d 12178 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ≠ 0)
205203, 204eldifsnd 4738 . . . . . . . . . . . . 13 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (ℤ ∖ {0}))
206205, 39eleqtrdi 2838 . . . . . . . . . . . 12 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘(𝑞 · 𝑝)) ∈ (RLReg‘ℤring))
20728, 30, 114, 71, 200, 202, 134, 206fracerl 33245 . . . . . . . . . . 11 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩ ↔ (((numer‘𝑞) · (numer‘𝑝)) · (denom‘(𝑞 · 𝑝))) = ((numer‘(𝑞 · 𝑝)) · ((denom‘𝑞) · (denom‘𝑝)))))
208199, 207mpbird 257 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩ ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
20977, 208erthi 8681 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨((numer‘𝑞) · (numer‘𝑝)), ((denom‘𝑞) · (denom‘𝑝))⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
210184, 209eqtrd 2764 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
21141fveq2i 6825 . . . . . . . . . 10 (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0})))
212211a1i 11 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (.r‘( Frac ‘ℤring)) = (.r‘(ℤring RLocal (ℤ ∖ {0}))))
213212, 52, 58oveq123d 7370 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) = ([⟨(numer‘𝑞), (denom‘𝑞)⟩] (.r‘(ℤring RLocal (ℤ ∖ {0})))[⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
214 fveq2 6822 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (numer‘𝑢) = (numer‘(𝑞 · 𝑝)))
215 fveq2 6822 . . . . . . . . . . 11 (𝑢 = (𝑞 · 𝑝) → (denom‘𝑢) = (denom‘(𝑞 · 𝑝)))
216214, 215opeq12d 4832 . . . . . . . . . 10 (𝑢 = (𝑞 · 𝑝) → ⟨(numer‘𝑢), (denom‘𝑢)⟩ = ⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩)
217216eceq1d 8665 . . . . . . . . 9 (𝑢 = (𝑞 · 𝑝) → [⟨(numer‘𝑢), (denom‘𝑢)⟩] = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
218 ecexg 8629 . . . . . . . . . 10 ( ∈ V → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
21925, 218mp1i 13 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] ∈ V)
22068, 217, 186, 219fvmptd3 6953 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = [⟨(numer‘(𝑞 · 𝑝)), (denom‘(𝑞 · 𝑝))⟩] )
221210, 213, 2203eqtr4rd 2775 . . . . . . 7 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)))
222221rgen2 3169 . . . . . 6 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝))
223 zssq 12857 . . . . . . . 8 ℤ ⊆ ℚ
224 1z 12505 . . . . . . . 8 1 ∈ ℤ
225223, 224sselii 3932 . . . . . . 7 1 ∈ ℚ
226 fveq2 6822 . . . . . . . . . . 11 (𝑞 = 1 → (numer‘𝑞) = (numer‘1))
227 1zzd 12506 . . . . . . . . . . . . 13 (ℤring ∈ IDomn → 1 ∈ ℤ)
228227znumd 32757 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (numer‘1) = 1)
2295, 228ax-mp 5 . . . . . . . . . . 11 (numer‘1) = 1
230226, 229eqtrdi 2780 . . . . . . . . . 10 (𝑞 = 1 → (numer‘𝑞) = 1)
231 fveq2 6822 . . . . . . . . . . 11 (𝑞 = 1 → (denom‘𝑞) = (denom‘1))
232227zdend 32758 . . . . . . . . . . . 12 (ℤring ∈ IDomn → (denom‘1) = 1)
2335, 232ax-mp 5 . . . . . . . . . . 11 (denom‘1) = 1
234231, 233eqtrdi 2780 . . . . . . . . . 10 (𝑞 = 1 → (denom‘𝑞) = 1)
235230, 234opeq12d 4832 . . . . . . . . 9 (𝑞 = 1 → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨1, 1⟩)
236235eceq1d 8665 . . . . . . . 8 (𝑞 = 1 → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨1, 1⟩] )
237236, 17, 49fvmpt3i 6935 . . . . . . 7 (1 ∈ ℚ → (𝐹‘1) = [⟨1, 1⟩] )
238225, 237ax-mp 5 . . . . . 6 (𝐹‘1) = [⟨1, 1⟩]
23947, 222, 2383pm3.2i 1340 . . . . 5 (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )
240176, 167mgpbas 20030 . . . . . 6 ℚ = (Base‘(mulGrp‘𝑄))
241179, 168mgpbas 20030 . . . . . 6 (Base‘( Frac ‘ℤring)) = (Base‘(mulGrp‘( Frac ‘ℤring)))
242 cnfldmul 21269 . . . . . . . . 9 · = (.r‘ℂfld)
2431, 242ressmulr 17211 . . . . . . . 8 (ℚ ∈ V → · = (.r𝑄))
244169, 243ax-mp 5 . . . . . . 7 · = (.r𝑄)
245176, 244mgpplusg 20029 . . . . . 6 · = (+g‘(mulGrp‘𝑄))
246 eqid 2729 . . . . . . 7 (.r‘( Frac ‘ℤring)) = (.r‘( Frac ‘ℤring))
247179, 246mgpplusg 20029 . . . . . 6 (.r‘( Frac ‘ℤring)) = (+g‘(mulGrp‘( Frac ‘ℤring)))
2481qrng1 27531 . . . . . . 7 1 = (1r𝑄)
249176, 248ringidval 20068 . . . . . 6 1 = (0g‘(mulGrp‘𝑄))
250146a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → ℤring ∈ CRing)
251149a1i 11 . . . . . . . . 9 (ℤring ∈ IDomn → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
252 eqid 2729 . . . . . . . . 9 [⟨1, 1⟩] = [⟨1, 1⟩]
25329, 69, 41, 24, 250, 251, 252rloc1r 33212 . . . . . . . 8 (ℤring ∈ IDomn → [⟨1, 1⟩] = (1r‘( Frac ‘ℤring)))
2545, 253ax-mp 5 . . . . . . 7 [⟨1, 1⟩] = (1r‘( Frac ‘ℤring))
255179, 254ringidval 20068 . . . . . 6 [⟨1, 1⟩] = (0g‘(mulGrp‘( Frac ‘ℤring)))
256240, 241, 245, 247, 249, 255ismhm 18659 . . . . 5 (𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))) ↔ (((mulGrp‘𝑄) ∈ Mnd ∧ (mulGrp‘( Frac ‘ℤring)) ∈ Mnd) ∧ (𝐹:ℚ⟶(Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ (𝐹‘(𝑞 · 𝑝)) = ((𝐹𝑞)(.r‘( Frac ‘ℤring))(𝐹𝑝)) ∧ (𝐹‘1) = [⟨1, 1⟩] )))
257182, 239, 256mpbir2an 711 . . . 4 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring)))
258175, 257pm3.2i 470 . . 3 (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))
259176, 179isrhm 20363 . . 3 (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ↔ ((𝑄 ∈ Ring ∧ ( Frac ‘ℤring) ∈ Ring) ∧ (𝐹 ∈ (𝑄 GrpHom ( Frac ‘ℤring)) ∧ 𝐹 ∈ ((mulGrp‘𝑄) MndHom (mulGrp‘( Frac ‘ℤring))))))
26011, 258, 259mpbir2an 711 . 2 𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring))
26146rgen 3046 . . . 4 𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring))
262117zcnd 12581 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑞) ∈ ℂ)
263122zcnd 12581 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (numer‘𝑝) ∈ ℂ)
26421adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ≠ 0)
265155adantl 481 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ≠ 0)
266262, 88, 263, 91, 264, 265divmuleqd 11946 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)) ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
267153, 39eleqtrdi 2838 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑞) ∈ (RLReg‘ℤring))
268157, 39eleqtrdi 2838 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (denom‘𝑝) ∈ (RLReg‘ℤring))
26928, 30, 114, 71, 117, 122, 267, 268fracerl 33245 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ ((numer‘𝑞) · (denom‘𝑝)) = ((numer‘𝑝) · (denom‘𝑞))))
27023adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ ∈ (ℤ × (ℤ ∖ {0})))
27177, 270erth 8679 . . . . . . . . 9 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (⟨(numer‘𝑞), (denom‘𝑞)⟩ ⟨(numer‘𝑝), (denom‘𝑝)⟩ ↔ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ))
272266, 269, 2713bitr2rd 308 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ↔ ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝))))
273272biimpa 476 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → ((numer‘𝑞) / (denom‘𝑞)) = ((numer‘𝑝) / (denom‘𝑝)))
274 qeqnumdivden 16657 . . . . . . . 8 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
275274ad2antrr 726 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
276 qeqnumdivden 16657 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
277276ad2antlr 727 . . . . . . 7 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑝 = ((numer‘𝑝) / (denom‘𝑝)))
278273, 275, 2773eqtr4d 2774 . . . . . 6 (((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) ∧ [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] ) → 𝑞 = 𝑝)
279278ex 412 . . . . 5 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝))
280279rgen2 3169 . . . 4 𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)
28117, 56f1mpt 7198 . . . 4 (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑞 ∈ ℚ ∀𝑝 ∈ ℚ ([⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘𝑝), (denom‘𝑝)⟩] 𝑞 = 𝑝)))
282261, 280, 281mpbir2an 711 . . 3 𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring))
283 fveq2 6822 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (numer‘𝑞) = (numer‘(𝑎 / 𝑏)))
284 fveq2 6822 . . . . . . . . . 10 (𝑞 = (𝑎 / 𝑏) → (denom‘𝑞) = (denom‘(𝑎 / 𝑏)))
285283, 284opeq12d 4832 . . . . . . . . 9 (𝑞 = (𝑎 / 𝑏) → ⟨(numer‘𝑞), (denom‘𝑞)⟩ = ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
286285eceq1d 8665 . . . . . . . 8 (𝑞 = (𝑎 / 𝑏) → [⟨(numer‘𝑞), (denom‘𝑞)⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
287286eqeq2d 2740 . . . . . . 7 (𝑞 = (𝑎 / 𝑏) → (𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] ))
288 simpllr 775 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℤ)
289223, 288sselid 3933 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ ℚ)
290 simplr 768 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (ℤ ∖ {0}))
291290eldifad 3915 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℤ)
292223, 291sselid 3933 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ ℚ)
293 eldifsni 4741 . . . . . . . . 9 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
294290, 293syl 17 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ≠ 0)
295 qdivcl 12871 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0) → (𝑎 / 𝑏) ∈ ℚ)
296289, 292, 294, 295syl3anc 1373 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (𝑎 / 𝑏) ∈ ℚ)
297 simpr 484 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨𝑎, 𝑏⟩] )
298146a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ℤring ∈ CRing)
299149a1i 11 . . . . . . . . . 10 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → (ℤ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℤring)))
30028, 29, 69, 30, 31, 32, 24, 298, 299erler 33205 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → Er (ℤ × (ℤ ∖ {0})))
301 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℤ)
302301zcnd 12581 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℂ)
303 eldifi 4082 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
304303adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℤ)
305304zcnd 12581 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℂ)
306293adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ≠ 0)
307302, 305, 306divcld 11900 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℂ)
308223, 301sselid 3933 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑎 ∈ ℚ)
309223, 304sselid 3933 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ ℚ)
310308, 309, 306, 295syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 / 𝑏) ∈ ℚ)
311 qdencl 16652 . . . . . . . . . . . . . . 15 ((𝑎 / 𝑏) ∈ ℚ → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
312310, 311syl 17 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℕ)
313312nncnd 12144 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℂ)
314307, 313, 305mul32d 11326 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))))
315 qmuldeneqnum 16658 . . . . . . . . . . . . . 14 ((𝑎 / 𝑏) ∈ ℚ → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
316310, 315syl 17 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) = (numer‘(𝑎 / 𝑏)))
317316oveq1d 7364 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · (denom‘(𝑎 / 𝑏))) · 𝑏) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
318302, 305, 306divcan1d 11901 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ((𝑎 / 𝑏) · 𝑏) = 𝑎)
319318oveq1d 7364 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (((𝑎 / 𝑏) · 𝑏) · (denom‘(𝑎 / 𝑏))) = (𝑎 · (denom‘(𝑎 / 𝑏))))
320314, 317, 3193eqtr3rd 2773 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏))
321146a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ℤring ∈ CRing)
322 qnumcl 16651 . . . . . . . . . . . . 13 ((𝑎 / 𝑏) ∈ ℚ → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
323310, 322syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (numer‘(𝑎 / 𝑏)) ∈ ℤ)
324 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (ℤ ∖ {0}))
325324, 39eleqtrdi 2838 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → 𝑏 ∈ (RLReg‘ℤring))
326312nnzd 12498 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ ℤ)
327312nnne0d 12178 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ≠ 0)
328326, 327eldifsnd 4738 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (ℤ ∖ {0}))
329328, 39eleqtrdi 2838 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (denom‘(𝑎 / 𝑏)) ∈ (RLReg‘ℤring))
33028, 30, 114, 321, 301, 323, 325, 329fracerl 33245 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → (⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩ ↔ (𝑎 · (denom‘(𝑎 / 𝑏))) = ((numer‘(𝑎 / 𝑏)) · 𝑏)))
331320, 330mpbird 257 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ (ℤ ∖ {0})) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
332331ad4ant23 753 . . . . . . . . 9 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ⟨𝑎, 𝑏 ⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩)
333300, 332erthi 8681 . . . . . . . 8 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → [⟨𝑎, 𝑏⟩] = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
334297, 333eqtrd 2764 . . . . . . 7 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → 𝑧 = [⟨(numer‘(𝑎 / 𝑏)), (denom‘(𝑎 / 𝑏))⟩] )
335287, 296, 334rspcedvdw 3580 . . . . . 6 ((((𝑧 ∈ (Base‘( Frac ‘ℤring)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑧 = [⟨𝑎, 𝑏⟩] ) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
33645eleq2i 2820 . . . . . . . 8 (𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ) ↔ 𝑧 ∈ (Base‘( Frac ‘ℤring)))
337336biimpri 228 . . . . . . 7 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → 𝑧 ∈ ((ℤ × (ℤ ∖ {0})) / ))
338337elrlocbasi 33206 . . . . . 6 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ (ℤ ∖ {0})𝑧 = [⟨𝑎, 𝑏⟩] )
339335, 338r19.29vva 3189 . . . . 5 (𝑧 ∈ (Base‘( Frac ‘ℤring)) → ∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] )
340339rgen 3046 . . . 4 𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩]
34117fompt 7052 . . . 4 (𝐹:ℚ–onto→(Base‘( Frac ‘ℤring)) ↔ (∀𝑞 ∈ ℚ [⟨(numer‘𝑞), (denom‘𝑞)⟩] ∈ (Base‘( Frac ‘ℤring)) ∧ ∀𝑧 ∈ (Base‘( Frac ‘ℤring))∃𝑞 ∈ ℚ 𝑧 = [⟨(numer‘𝑞), (denom‘𝑞)⟩] ))
342261, 340, 341mpbir2an 711 . . 3 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))
343 df-f1o 6489 . . 3 (𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring)) ↔ (𝐹:ℚ–1-1→(Base‘( Frac ‘ℤring)) ∧ 𝐹:ℚ–onto→(Base‘( Frac ‘ℤring))))
344282, 342, 343mpbir2an 711 . 2 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))
345167, 168isrim 20377 . 2 (𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring)) ↔ (𝐹 ∈ (𝑄 RingHom ( Frac ‘ℤring)) ∧ 𝐹:ℚ–1-1-onto→(Base‘( Frac ‘ℤring))))
346260, 344, 345mpbir2an 711 1 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  [cec 8623   / cqs 8624  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   / cdiv 11777  cn 12128  cz 12471  cq 12849  numercnumer 16644  denomcdenom 16645  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Mndcmnd 18608   MndHom cmhm 18655  SubMndcsubmnd 18656  Grpcgrp 18812  -gcsg 18814   GrpHom cghm 19091  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   RingIso crs 20355  NzRingcnzr 20397  RLRegcrlreg 20576  Domncdomn 20577  IDomncidom 20578  DivRingcdr 20614  fldccnfld 21261  ringczring 21353   ~RL cerl 33193   RLocal crloc 33194   Frac cfrac 33241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-cnfld 21262  df-zring 21354  df-erl 33195  df-rloc 33196  df-frac 33242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator