Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1gprod Structured version   Visualization version   GIF version

Theorem deg1gprod 42158
Description: Degree multiplication is a homomorphism. (Contributed by metakunt, 6-May-2025.)
Hypotheses
Ref Expression
deg1gprod.1 (𝜑𝑅 ∈ IDomn)
deg1gprod.2 (𝜑𝑁 ∈ Fin)
deg1gprod.3 (𝜑 → ∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))))
Assertion
Ref Expression
deg1gprod (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑁,𝑥   𝑅,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem deg1gprod
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5214 . . . . . 6 (𝑎 = ∅ → (𝑥𝑎𝐶) = (𝑥 ∈ ∅ ↦ 𝐶))
21oveq2d 7426 . . . . 5 (𝑎 = ∅ → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))
32fveq2d 6885 . . . 4 (𝑎 = ∅ → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
4 sumeq1 15710 . . . 4 (𝑎 = ∅ → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
53, 4eqeq12d 2752 . . 3 (𝑎 = ∅ → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
63breq2d 5136 . . 3 (𝑎 = ∅ → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))))
75, 6anbi12d 632 . 2 (𝑎 = ∅ → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))))
8 mpteq1 5214 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑎𝐶) = (𝑥𝑏𝐶))
98oveq2d 7426 . . . . 5 (𝑎 = 𝑏 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))
109fveq2d 6885 . . . 4 (𝑎 = 𝑏 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))
11 sumeq1 15710 . . . 4 (𝑎 = 𝑏 → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
1210, 11eqeq12d 2752 . . 3 (𝑎 = 𝑏 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
1310breq2d 5136 . . 3 (𝑎 = 𝑏 → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))))
1412, 13anbi12d 632 . 2 (𝑎 = 𝑏 → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))))
15 mpteq1 5214 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎𝐶) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))
1615oveq2d 7426 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))
1716fveq2d 6885 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))
18 sumeq1 15710 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
1917, 18eqeq12d 2752 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
2017breq2d 5136 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))))
2119, 20anbi12d 632 . 2 (𝑎 = (𝑏 ∪ {𝑐}) → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))))
22 mpteq1 5214 . . . . . 6 (𝑎 = 𝑁 → (𝑥𝑎𝐶) = (𝑥𝑁𝐶))
2322oveq2d 7426 . . . . 5 (𝑎 = 𝑁 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))
2423fveq2d 6885 . . . 4 (𝑎 = 𝑁 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))))
25 sumeq1 15710 . . . 4 (𝑎 = 𝑁 → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
2624, 25eqeq12d 2752 . . 3 (𝑎 = 𝑁 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
2724breq2d 5136 . . 3 (𝑎 = 𝑁 → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
2826, 27anbi12d 632 . 2 (𝑎 = 𝑁 → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))))))
29 mpt0 6685 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ 𝐶) = ∅
3029a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ∅ ↦ 𝐶) = ∅)
3130oveq2d 7426 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg ∅))
32 eqid 2736 . . . . . . . . 9 (0g‘(mulGrp‘(Poly1𝑅))) = (0g‘(mulGrp‘(Poly1𝑅)))
3332gsum0 18667 . . . . . . . 8 ((mulGrp‘(Poly1𝑅)) Σg ∅) = (0g‘(mulGrp‘(Poly1𝑅)))
3433a1i 11 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg ∅) = (0g‘(mulGrp‘(Poly1𝑅))))
3531, 34eqtrd 2771 . . . . . 6 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)) = (0g‘(mulGrp‘(Poly1𝑅))))
3635fveq2d 6885 . . . . 5 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))))
37 deg1gprod.1 . . . . . . . . . 10 (𝜑𝑅 ∈ IDomn)
3837idomringd 20693 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
39 eqid 2736 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
40 eqid 2736 . . . . . . . . . 10 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
41 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
42 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1𝑅))
43 eqid 2736 . . . . . . . . . . . 12 (1r‘(Poly1𝑅)) = (1r‘(Poly1𝑅))
4442, 43ringidval 20148 . . . . . . . . . . 11 (1r‘(Poly1𝑅)) = (0g‘(mulGrp‘(Poly1𝑅)))
4544eqcomi 2745 . . . . . . . . . 10 (0g‘(mulGrp‘(Poly1𝑅))) = (1r‘(Poly1𝑅))
4639, 40, 41, 45ply1scl1 22235 . . . . . . . . 9 (𝑅 ∈ Ring → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (0g‘(mulGrp‘(Poly1𝑅))))
4738, 46syl 17 . . . . . . . 8 (𝜑 → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (0g‘(mulGrp‘(Poly1𝑅))))
4847eqcomd 2742 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘(Poly1𝑅))) = ((algSc‘(Poly1𝑅))‘(1r𝑅)))
4948fveq2d 6885 . . . . . 6 (𝜑 → ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))) = ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))))
50 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5150, 41ringidcl 20230 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5238, 51syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5337idomdomd 20691 . . . . . . . . 9 (𝜑𝑅 ∈ Domn)
54 domnnzr 20671 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
5553, 54syl 17 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
56 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
5741, 56nzrnz 20480 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
5855, 57syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ≠ (0g𝑅))
59 eqid 2736 . . . . . . . 8 (deg1𝑅) = (deg1𝑅)
6059, 39, 50, 40, 56deg1scl 26075 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (1r𝑅) ≠ (0g𝑅)) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
6138, 52, 58, 60syl3anc 1373 . . . . . 6 (𝜑 → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
6249, 61eqtrd 2771 . . . . 5 (𝜑 → ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))) = 0)
6336, 62eqtrd 2771 . . . 4 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = 0)
64 sum0 15742 . . . . . 6 Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = 0
6564eqcomi 2745 . . . . 5 0 = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))
6665a1i 11 . . . 4 (𝜑 → 0 = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
6763, 66eqtrd 2771 . . 3 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
68 0red 11243 . . . . 5 (𝜑 → 0 ∈ ℝ)
6968leidd 11808 . . . 4 (𝜑 → 0 ≤ 0)
7063eqcomd 2742 . . . 4 (𝜑 → 0 = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
7169, 70breqtrd 5150 . . 3 (𝜑 → 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
7267, 71jca 511 . 2 (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))))
73 nfcv 2899 . . . . . . . . 9 𝑦𝐶
74 nfcsb1v 3903 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
75 csbeq1a 3893 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
7673, 74, 75cbvmpt 5228 . . . . . . . 8 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)
7776a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))
7877oveq2d 7426 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)))
7978fveq2d 6885 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))))
80 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘(Poly1𝑅))) = (Base‘(mulGrp‘(Poly1𝑅)))
81 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘(Poly1𝑅))) = (+g‘(mulGrp‘(Poly1𝑅)))
82 isidom 20690 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
8337, 82sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
8483simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
8539ply1crng 22139 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (Poly1𝑅) ∈ CRing)
8684, 85syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑅) ∈ CRing)
8742crngmgp 20206 . . . . . . . . . . 11 ((Poly1𝑅) ∈ CRing → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
8886, 87syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
8988adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
9089adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
91 deg1gprod.2 . . . . . . . . . 10 (𝜑𝑁 ∈ Fin)
9291ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑁 ∈ Fin)
93 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑏𝑁)
9492, 93ssfid 9278 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑏 ∈ Fin)
9593sselda 3963 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦𝑁)
96 deg1gprod.3 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))))
97 r19.26 3099 . . . . . . . . . . . . . 14 (∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))) ↔ (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
9897biimpi 216 . . . . . . . . . . . . 13 (∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))) → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
9996, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
10099simpld 494 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
101100ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
102 rspcsbela 4418 . . . . . . . . . 10 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
10395, 101, 102syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
104 eqid 2736 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
10542, 104mgpbas 20110 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(mulGrp‘(Poly1𝑅)))
106103, 105eleqtrdi 2845 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ∈ (Base‘(mulGrp‘(Poly1𝑅))))
107 eldifi 4111 . . . . . . . . . . 11 (𝑐 ∈ (𝑁𝑏) → 𝑐𝑁)
108107adantl 481 . . . . . . . . . 10 ((𝑏𝑁𝑐 ∈ (𝑁𝑏)) → 𝑐𝑁)
109108adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐𝑁)
110109adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐𝑁)
111 eldifn 4112 . . . . . . . . . . 11 (𝑐 ∈ (𝑁𝑏) → ¬ 𝑐𝑏)
112111adantl 481 . . . . . . . . . 10 ((𝑏𝑁𝑐 ∈ (𝑁𝑏)) → ¬ 𝑐𝑏)
113112adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ¬ 𝑐𝑏)
114113adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ¬ 𝑐𝑏)
115100ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
116 rspcsbela 4418 . . . . . . . . . 10 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
117110, 115, 116syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
118117, 105eleqtrdi 2845 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(mulGrp‘(Poly1𝑅))))
119 csbeq1 3882 . . . . . . . 8 (𝑦 = 𝑐𝑦 / 𝑥𝐶 = 𝑐 / 𝑥𝐶)
12080, 81, 90, 94, 106, 110, 114, 118, 119gsumunsn 19946 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)) = (((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶))
121120fveq2d 6885 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))) = ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)))
122 eqid 2736 . . . . . . . . . 10 (.r‘(Poly1𝑅)) = (.r‘(Poly1𝑅))
12342, 122mgpplusg 20109 . . . . . . . . 9 (.r‘(Poly1𝑅)) = (+g‘(mulGrp‘(Poly1𝑅)))
124123eqcomi 2745 . . . . . . . 8 (+g‘(mulGrp‘(Poly1𝑅))) = (.r‘(Poly1𝑅))
125 eqid 2736 . . . . . . . 8 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
12653adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑅 ∈ Domn)
127126adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑅 ∈ Domn)
128103ralrimiva 3133 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑦𝑏 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
129105, 90, 94, 128gsummptcl 19953 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) ∈ (Base‘(Poly1𝑅)))
13039ply1idom 26087 . . . . . . . . . . . 12 (𝑅 ∈ IDomn → (Poly1𝑅) ∈ IDomn)
13137, 130syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑅) ∈ IDomn)
132131adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (Poly1𝑅) ∈ IDomn)
133132adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Poly1𝑅) ∈ IDomn)
13499simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
135134ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
136 rspcsbnea 42149 . . . . . . . . . 10 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
13795, 135, 136syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
13842, 133, 94, 103, 137idomnnzgmulnz 42151 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) ≠ (0g‘(Poly1𝑅)))
139134ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
140 rspcsbnea 42149 . . . . . . . . 9 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
141110, 139, 140syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
14259, 39, 104, 124, 125, 127, 129, 138, 117, 141deg1mul 26077 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)) = (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
14373, 74, 75cbvmpt 5228 . . . . . . . . . . . . 13 (𝑥𝑏𝐶) = (𝑦𝑏𝑦 / 𝑥𝐶)
144143eqcomi 2745 . . . . . . . . . . . 12 (𝑦𝑏𝑦 / 𝑥𝐶) = (𝑥𝑏𝐶)
145144a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑦𝑏𝑦 / 𝑥𝐶) = (𝑥𝑏𝐶))
146145oveq2d 7426 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))
147146fveq2d 6885 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))
148147oveq1d 7425 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
149 simpl 482 . . . . . . . . . . 11 ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
150149adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
151150oveq1d 7425 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
152 nfv 1914 . . . . . . . . . . . . 13 𝑛(𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏)))
153 nfcv 2899 . . . . . . . . . . . . 13 𝑛((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))
15491adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑁 ∈ Fin)
155 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑏𝑁)
156154, 155ssfid 9278 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑏 ∈ Fin)
15773, 74, 75cbvmpt 5228 . . . . . . . . . . . . . . . . . 18 (𝑥𝑁𝐶) = (𝑦𝑁𝑦 / 𝑥𝐶)
158157fveq1i 6882 . . . . . . . . . . . . . . . . 17 ((𝑥𝑁𝐶)‘𝑛) = ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)
159158a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((𝑥𝑁𝐶)‘𝑛) = ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛))
160159fveq2d 6885 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)))
161 eqidd 2737 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → (𝑦𝑁𝑦 / 𝑥𝐶) = (𝑦𝑁𝑦 / 𝑥𝐶))
162 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) ∧ 𝑦 = 𝑛) → 𝑦 = 𝑛)
163162csbeq1d 3883 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) ∧ 𝑦 = 𝑛) → 𝑦 / 𝑥𝐶 = 𝑛 / 𝑥𝐶)
164155sselda 3963 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛𝑁)
165100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
166165adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
167 rspcsbela 4418 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
168164, 166, 167syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
169161, 163, 164, 168fvmptd 6998 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛) = 𝑛 / 𝑥𝐶)
170169fveq2d 6885 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)) = ((deg1𝑅)‘𝑛 / 𝑥𝐶))
17138adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑅 ∈ Ring)
172171adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑅 ∈ Ring)
173134ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
174 rspcsbnea 42149 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
175164, 173, 174syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
17659, 39, 125, 104deg1nn0cl 26050 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘𝑛 / 𝑥𝐶) ∈ ℕ0)
177172, 168, 175, 176syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘𝑛 / 𝑥𝐶) ∈ ℕ0)
178170, 177eqeltrd 2835 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)) ∈ ℕ0)
179160, 178eqeltrd 2835 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∈ ℕ0)
180179nn0cnd 12569 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∈ ℂ)
181 2fveq3 6886 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)))
182109, 165, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
183 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑥𝑁𝐶) = (𝑥𝑁𝐶)
184183fvmpts 6994 . . . . . . . . . . . . . . . . 17 ((𝑐𝑁𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
185109, 182, 184syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
186185fveq2d 6885 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) = ((deg1𝑅)‘𝑐 / 𝑥𝐶))
187108, 134, 140syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
18859, 39, 125, 104deg1nn0cl 26050 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘𝑐 / 𝑥𝐶) ∈ ℕ0)
189171, 182, 187, 188syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘𝑐 / 𝑥𝐶) ∈ ℕ0)
190186, 189eqeltrd 2835 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) ∈ ℕ0)
191190nn0cnd 12569 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) ∈ ℂ)
192152, 153, 156, 109, 113, 180, 181, 191fsumsplitsn 15765 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))))
193192adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))))
194185adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
195194fveq2d 6885 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) = ((deg1𝑅)‘𝑐 / 𝑥𝐶))
196195oveq2d 7426 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
197193, 196eqtrd 2771 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
198197eqcomd 2742 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
199151, 198eqtrd 2771 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
200148, 199eqtrd 2771 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
201142, 200eqtrd 2771 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
202121, 201eqtrd 2771 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
20379, 202eqtrd 2771 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
204171adantr 480 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑅 ∈ Ring)
205110snssd 4790 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → {𝑐} ⊆ 𝑁)
20693, 205unssd 4172 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑏 ∪ {𝑐}) ⊆ 𝑁)
20792, 206ssfid 9278 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑏 ∪ {𝑐}) ∈ Fin)
208165adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
209 ssralv 4032 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝑁 → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅))))
210206, 209syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅))))
211208, 210mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅)))
212105, 90, 207, 211gsummptcl 19953 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ∈ (Base‘(Poly1𝑅)))
21376oveq2i 7421 . . . . . . . . 9 ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))
214213a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)))
215109snssd 4790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → {𝑐} ⊆ 𝑁)
216155, 215unssd 4172 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (𝑏 ∪ {𝑐}) ⊆ 𝑁)
217154, 216ssfid 9278 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (𝑏 ∪ {𝑐}) ∈ Fin)
218216sselda 3963 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦𝑁)
219165adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
220218, 219, 102syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
221134ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
222218, 221, 136syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
22342, 132, 217, 220, 222idomnnzgmulnz 42151 . . . . . . . 8 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)) ≠ (0g‘(Poly1𝑅)))
224214, 223eqnetrd 3000 . . . . . . 7 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅)))
225224adantr 480 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅)))
22659, 39, 125, 104deg1nn0cl 26050 . . . . . 6 ((𝑅 ∈ Ring ∧ ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ∈ (Base‘(Poly1𝑅)) ∧ ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) ∈ ℕ0)
227204, 212, 225, 226syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) ∈ ℕ0)
228227nn0ge0d 12570 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))
229203, 228jca 511 . . 3 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))))
230229ex 412 . 2 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))))
2317, 14, 21, 28, 72, 230, 91findcard2d 9185 1 (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  csb 3879  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134   + caddc 11137  cle 11275  0cn0 12506  Σcsu 15707  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  NzRingcnzr 20477  Domncdomn 20657  IDomncidom 20658  algSccascl 21817  Poly1cpl1 22117  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-lmod 20824  df-lss 20894  df-cnfld 21321  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  aks6d1c6lem1  42188
  Copyright terms: Public domain W3C validator