Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1gprod Structured version   Visualization version   GIF version

Theorem deg1gprod 42128
Description: Degree multiplication is a homomorphism. (Contributed by metakunt, 6-May-2025.)
Hypotheses
Ref Expression
deg1gprod.1 (𝜑𝑅 ∈ IDomn)
deg1gprod.2 (𝜑𝑁 ∈ Fin)
deg1gprod.3 (𝜑 → ∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))))
Assertion
Ref Expression
deg1gprod (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑁,𝑥   𝑅,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem deg1gprod
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5196 . . . . . 6 (𝑎 = ∅ → (𝑥𝑎𝐶) = (𝑥 ∈ ∅ ↦ 𝐶))
21oveq2d 7403 . . . . 5 (𝑎 = ∅ → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))
32fveq2d 6862 . . . 4 (𝑎 = ∅ → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
4 sumeq1 15655 . . . 4 (𝑎 = ∅ → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
53, 4eqeq12d 2745 . . 3 (𝑎 = ∅ → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
63breq2d 5119 . . 3 (𝑎 = ∅ → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))))
75, 6anbi12d 632 . 2 (𝑎 = ∅ → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))))
8 mpteq1 5196 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑎𝐶) = (𝑥𝑏𝐶))
98oveq2d 7403 . . . . 5 (𝑎 = 𝑏 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))
109fveq2d 6862 . . . 4 (𝑎 = 𝑏 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))
11 sumeq1 15655 . . . 4 (𝑎 = 𝑏 → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
1210, 11eqeq12d 2745 . . 3 (𝑎 = 𝑏 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
1310breq2d 5119 . . 3 (𝑎 = 𝑏 → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))))
1412, 13anbi12d 632 . 2 (𝑎 = 𝑏 → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))))
15 mpteq1 5196 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎𝐶) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))
1615oveq2d 7403 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))
1716fveq2d 6862 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))
18 sumeq1 15655 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
1917, 18eqeq12d 2745 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
2017breq2d 5119 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))))
2119, 20anbi12d 632 . 2 (𝑎 = (𝑏 ∪ {𝑐}) → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))))
22 mpteq1 5196 . . . . . 6 (𝑎 = 𝑁 → (𝑥𝑎𝐶) = (𝑥𝑁𝐶))
2322oveq2d 7403 . . . . 5 (𝑎 = 𝑁 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))
2423fveq2d 6862 . . . 4 (𝑎 = 𝑁 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))))
25 sumeq1 15655 . . . 4 (𝑎 = 𝑁 → Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
2624, 25eqeq12d 2745 . . 3 (𝑎 = 𝑁 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ↔ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))))
2724breq2d 5119 . . 3 (𝑎 = 𝑁 → (0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) ↔ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
2826, 27anbi12d 632 . 2 (𝑎 = 𝑁 → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶))) = Σ𝑛𝑎 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑎𝐶)))) ↔ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))))))
29 mpt0 6660 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ 𝐶) = ∅
3029a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ∅ ↦ 𝐶) = ∅)
3130oveq2d 7403 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg ∅))
32 eqid 2729 . . . . . . . . 9 (0g‘(mulGrp‘(Poly1𝑅))) = (0g‘(mulGrp‘(Poly1𝑅)))
3332gsum0 18611 . . . . . . . 8 ((mulGrp‘(Poly1𝑅)) Σg ∅) = (0g‘(mulGrp‘(Poly1𝑅)))
3433a1i 11 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg ∅) = (0g‘(mulGrp‘(Poly1𝑅))))
3531, 34eqtrd 2764 . . . . . 6 (𝜑 → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)) = (0g‘(mulGrp‘(Poly1𝑅))))
3635fveq2d 6862 . . . . 5 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))))
37 deg1gprod.1 . . . . . . . . . 10 (𝜑𝑅 ∈ IDomn)
3837idomringd 20637 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
39 eqid 2729 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
40 eqid 2729 . . . . . . . . . 10 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
41 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
42 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1𝑅))
43 eqid 2729 . . . . . . . . . . . 12 (1r‘(Poly1𝑅)) = (1r‘(Poly1𝑅))
4442, 43ringidval 20092 . . . . . . . . . . 11 (1r‘(Poly1𝑅)) = (0g‘(mulGrp‘(Poly1𝑅)))
4544eqcomi 2738 . . . . . . . . . 10 (0g‘(mulGrp‘(Poly1𝑅))) = (1r‘(Poly1𝑅))
4639, 40, 41, 45ply1scl1 22179 . . . . . . . . 9 (𝑅 ∈ Ring → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (0g‘(mulGrp‘(Poly1𝑅))))
4738, 46syl 17 . . . . . . . 8 (𝜑 → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (0g‘(mulGrp‘(Poly1𝑅))))
4847eqcomd 2735 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘(Poly1𝑅))) = ((algSc‘(Poly1𝑅))‘(1r𝑅)))
4948fveq2d 6862 . . . . . 6 (𝜑 → ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))) = ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))))
50 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5150, 41ringidcl 20174 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5238, 51syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5337idomdomd 20635 . . . . . . . . 9 (𝜑𝑅 ∈ Domn)
54 domnnzr 20615 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
5553, 54syl 17 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
56 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
5741, 56nzrnz 20424 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
5855, 57syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ≠ (0g𝑅))
59 eqid 2729 . . . . . . . 8 (deg1𝑅) = (deg1𝑅)
6059, 39, 50, 40, 56deg1scl 26018 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (1r𝑅) ≠ (0g𝑅)) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
6138, 52, 58, 60syl3anc 1373 . . . . . 6 (𝜑 → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
6249, 61eqtrd 2764 . . . . 5 (𝜑 → ((deg1𝑅)‘(0g‘(mulGrp‘(Poly1𝑅)))) = 0)
6336, 62eqtrd 2764 . . . 4 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = 0)
64 sum0 15687 . . . . . 6 Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = 0
6564eqcomi 2738 . . . . 5 0 = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛))
6665a1i 11 . . . 4 (𝜑 → 0 = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
6763, 66eqtrd 2764 . . 3 (𝜑 → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
68 0red 11177 . . . . 5 (𝜑 → 0 ∈ ℝ)
6968leidd 11744 . . . 4 (𝜑 → 0 ≤ 0)
7063eqcomd 2735 . . . 4 (𝜑 → 0 = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
7169, 70breqtrd 5133 . . 3 (𝜑 → 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))))
7267, 71jca 511 . 2 (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶))) = Σ𝑛 ∈ ∅ ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ ∅ ↦ 𝐶)))))
73 nfcv 2891 . . . . . . . . 9 𝑦𝐶
74 nfcsb1v 3886 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
75 csbeq1a 3876 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
7673, 74, 75cbvmpt 5209 . . . . . . . 8 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)
7776a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))
7877oveq2d 7403 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)))
7978fveq2d 6862 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))))
80 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘(Poly1𝑅))) = (Base‘(mulGrp‘(Poly1𝑅)))
81 eqid 2729 . . . . . . . 8 (+g‘(mulGrp‘(Poly1𝑅))) = (+g‘(mulGrp‘(Poly1𝑅)))
82 isidom 20634 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
8337, 82sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
8483simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
8539ply1crng 22083 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (Poly1𝑅) ∈ CRing)
8684, 85syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑅) ∈ CRing)
8742crngmgp 20150 . . . . . . . . . . 11 ((Poly1𝑅) ∈ CRing → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
8886, 87syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
8988adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
9089adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (mulGrp‘(Poly1𝑅)) ∈ CMnd)
91 deg1gprod.2 . . . . . . . . . 10 (𝜑𝑁 ∈ Fin)
9291ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑁 ∈ Fin)
93 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑏𝑁)
9492, 93ssfid 9212 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑏 ∈ Fin)
9593sselda 3946 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦𝑁)
96 deg1gprod.3 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))))
97 r19.26 3091 . . . . . . . . . . . . . 14 (∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))) ↔ (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
9897biimpi 216 . . . . . . . . . . . . 13 (∀𝑥𝑁 (𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1𝑅))) → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
9996, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))))
10099simpld 494 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
101100ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
102 rspcsbela 4401 . . . . . . . . . 10 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
10395, 101, 102syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
104 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
10542, 104mgpbas 20054 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(mulGrp‘(Poly1𝑅)))
106103, 105eleqtrdi 2838 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ∈ (Base‘(mulGrp‘(Poly1𝑅))))
107 eldifi 4094 . . . . . . . . . . 11 (𝑐 ∈ (𝑁𝑏) → 𝑐𝑁)
108107adantl 481 . . . . . . . . . 10 ((𝑏𝑁𝑐 ∈ (𝑁𝑏)) → 𝑐𝑁)
109108adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐𝑁)
110109adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐𝑁)
111 eldifn 4095 . . . . . . . . . . 11 (𝑐 ∈ (𝑁𝑏) → ¬ 𝑐𝑏)
112111adantl 481 . . . . . . . . . 10 ((𝑏𝑁𝑐 ∈ (𝑁𝑏)) → ¬ 𝑐𝑏)
113112adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ¬ 𝑐𝑏)
114113adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ¬ 𝑐𝑏)
115100ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
116 rspcsbela 4401 . . . . . . . . . 10 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
117110, 115, 116syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
118117, 105eleqtrdi 2838 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(mulGrp‘(Poly1𝑅))))
119 csbeq1 3865 . . . . . . . 8 (𝑦 = 𝑐𝑦 / 𝑥𝐶 = 𝑐 / 𝑥𝐶)
12080, 81, 90, 94, 106, 110, 114, 118, 119gsumunsn 19890 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)) = (((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶))
121120fveq2d 6862 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))) = ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)))
122 eqid 2729 . . . . . . . . . 10 (.r‘(Poly1𝑅)) = (.r‘(Poly1𝑅))
12342, 122mgpplusg 20053 . . . . . . . . 9 (.r‘(Poly1𝑅)) = (+g‘(mulGrp‘(Poly1𝑅)))
124123eqcomi 2738 . . . . . . . 8 (+g‘(mulGrp‘(Poly1𝑅))) = (.r‘(Poly1𝑅))
125 eqid 2729 . . . . . . . 8 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
12653adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑅 ∈ Domn)
127126adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑅 ∈ Domn)
128103ralrimiva 3125 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑦𝑏 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
129105, 90, 94, 128gsummptcl 19897 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) ∈ (Base‘(Poly1𝑅)))
13039ply1idom 26030 . . . . . . . . . . . 12 (𝑅 ∈ IDomn → (Poly1𝑅) ∈ IDomn)
13137, 130syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑅) ∈ IDomn)
132131adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (Poly1𝑅) ∈ IDomn)
133132adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Poly1𝑅) ∈ IDomn)
13499simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
135134ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
136 rspcsbnea 42119 . . . . . . . . . 10 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
13795, 135, 136syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
13842, 133, 94, 103, 137idomnnzgmulnz 42121 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) ≠ (0g‘(Poly1𝑅)))
139134ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
140 rspcsbnea 42119 . . . . . . . . 9 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
141110, 139, 140syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
14259, 39, 104, 124, 125, 127, 129, 138, 117, 141deg1mul 26020 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)) = (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
14373, 74, 75cbvmpt 5209 . . . . . . . . . . . . 13 (𝑥𝑏𝐶) = (𝑦𝑏𝑦 / 𝑥𝐶)
144143eqcomi 2738 . . . . . . . . . . . 12 (𝑦𝑏𝑦 / 𝑥𝐶) = (𝑥𝑏𝐶)
145144a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑦𝑏𝑦 / 𝑥𝐶) = (𝑥𝑏𝐶))
146145oveq2d 7403 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))
147146fveq2d 6862 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) = ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))
148147oveq1d 7402 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
149 simpl 482 . . . . . . . . . . 11 ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
150149adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
151150oveq1d 7402 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
152 nfv 1914 . . . . . . . . . . . . 13 𝑛(𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏)))
153 nfcv 2891 . . . . . . . . . . . . 13 𝑛((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))
15491adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑁 ∈ Fin)
155 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑏𝑁)
156154, 155ssfid 9212 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑏 ∈ Fin)
15773, 74, 75cbvmpt 5209 . . . . . . . . . . . . . . . . . 18 (𝑥𝑁𝐶) = (𝑦𝑁𝑦 / 𝑥𝐶)
158157fveq1i 6859 . . . . . . . . . . . . . . . . 17 ((𝑥𝑁𝐶)‘𝑛) = ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)
159158a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((𝑥𝑁𝐶)‘𝑛) = ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛))
160159fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)))
161 eqidd 2730 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → (𝑦𝑁𝑦 / 𝑥𝐶) = (𝑦𝑁𝑦 / 𝑥𝐶))
162 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) ∧ 𝑦 = 𝑛) → 𝑦 = 𝑛)
163162csbeq1d 3866 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) ∧ 𝑦 = 𝑛) → 𝑦 / 𝑥𝐶 = 𝑛 / 𝑥𝐶)
164155sselda 3946 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛𝑁)
165100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
166165adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
167 rspcsbela 4401 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑁 ∧ ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅))) → 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
168164, 166, 167syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
169161, 163, 164, 168fvmptd 6975 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛) = 𝑛 / 𝑥𝐶)
170169fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)) = ((deg1𝑅)‘𝑛 / 𝑥𝐶))
17138adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑅 ∈ Ring)
172171adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑅 ∈ Ring)
173134ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
174 rspcsbnea 42119 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑁 ∧ ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅))) → 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
175164, 173, 174syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
17659, 39, 125, 104deg1nn0cl 25993 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝑛 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘𝑛 / 𝑥𝐶) ∈ ℕ0)
177172, 168, 175, 176syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘𝑛 / 𝑥𝐶) ∈ ℕ0)
178170, 177eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑦𝑁𝑦 / 𝑥𝐶)‘𝑛)) ∈ ℕ0)
179160, 178eqeltrd 2828 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∈ ℕ0)
180179nn0cnd 12505 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑛𝑏) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∈ ℂ)
181 2fveq3 6863 . . . . . . . . . . . . 13 (𝑛 = 𝑐 → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)))
182109, 165, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
183 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑥𝑁𝐶) = (𝑥𝑁𝐶)
184183fvmpts 6971 . . . . . . . . . . . . . . . . 17 ((𝑐𝑁𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
185109, 182, 184syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
186185fveq2d 6862 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) = ((deg1𝑅)‘𝑐 / 𝑥𝐶))
187108, 134, 140syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
18859, 39, 125, 104deg1nn0cl 25993 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑐 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)) ∧ 𝑐 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘𝑐 / 𝑥𝐶) ∈ ℕ0)
189171, 182, 187, 188syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘𝑐 / 𝑥𝐶) ∈ ℕ0)
190186, 189eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) ∈ ℕ0)
191190nn0cnd 12505 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) ∈ ℂ)
192152, 153, 156, 109, 113, 180, 181, 191fsumsplitsn 15710 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))))
193192adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))))
194185adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((𝑥𝑁𝐶)‘𝑐) = 𝑐 / 𝑥𝐶)
195194fveq2d 6862 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐)) = ((deg1𝑅)‘𝑐 / 𝑥𝐶))
196195oveq2d 7403 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑐))) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
197193, 196eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) = (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)))
198197eqcomd 2735 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
199151, 198eqtrd 2764 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
200148, 199eqtrd 2764 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))) + ((deg1𝑅)‘𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
201142, 200eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘(((mulGrp‘(Poly1𝑅)) Σg (𝑦𝑏𝑦 / 𝑥𝐶))(+g‘(mulGrp‘(Poly1𝑅)))𝑐 / 𝑥𝐶)) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
202121, 201eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
20379, 202eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)))
204171adantr 480 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 𝑅 ∈ Ring)
205110snssd 4773 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → {𝑐} ⊆ 𝑁)
20693, 205unssd 4155 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑏 ∪ {𝑐}) ⊆ 𝑁)
20792, 206ssfid 9212 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (𝑏 ∪ {𝑐}) ∈ Fin)
208165adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
209 ssralv 4015 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝑁 → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅))))
210206, 209syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅))))
211208, 210mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ∀𝑥 ∈ (𝑏 ∪ {𝑐})𝐶 ∈ (Base‘(Poly1𝑅)))
212105, 90, 207, 211gsummptcl 19897 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ∈ (Base‘(Poly1𝑅)))
21376oveq2i 7398 . . . . . . . . 9 ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶))
214213a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) = ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)))
215109snssd 4773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → {𝑐} ⊆ 𝑁)
216155, 215unssd 4155 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (𝑏 ∪ {𝑐}) ⊆ 𝑁)
217154, 216ssfid 9212 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (𝑏 ∪ {𝑐}) ∈ Fin)
218216sselda 3946 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦𝑁)
219165adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → ∀𝑥𝑁 𝐶 ∈ (Base‘(Poly1𝑅)))
220218, 219, 102syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦 / 𝑥𝐶 ∈ (Base‘(Poly1𝑅)))
221134ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → ∀𝑥𝑁 𝐶 ≠ (0g‘(Poly1𝑅)))
222218, 221, 136syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ 𝑦 ∈ (𝑏 ∪ {𝑐})) → 𝑦 / 𝑥𝐶 ≠ (0g‘(Poly1𝑅)))
22342, 132, 217, 220, 222idomnnzgmulnz 42121 . . . . . . . 8 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝐶)) ≠ (0g‘(Poly1𝑅)))
224214, 223eqnetrd 2992 . . . . . . 7 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅)))
225224adantr 480 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅)))
22659, 39, 125, 104deg1nn0cl 25993 . . . . . 6 ((𝑅 ∈ Ring ∧ ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ∈ (Base‘(Poly1𝑅)) ∧ ((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)) ≠ (0g‘(Poly1𝑅))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) ∈ ℕ0)
227204, 212, 225, 226syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) ∈ ℕ0)
228227nn0ge0d 12506 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))
229203, 228jca 511 . . 3 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶)))))
230229ex 412 . 2 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → ((((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶))) = Σ𝑛𝑏 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑏𝐶)))) → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))) = Σ𝑛 ∈ (𝑏 ∪ {𝑐})((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝐶))))))
2317, 14, 21, 28, 72, 230, 91findcard2d 9130 1 (𝜑 → (((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶))) = Σ𝑛𝑁 ((deg1𝑅)‘((𝑥𝑁𝐶)‘𝑛)) ∧ 0 ≤ ((deg1𝑅)‘((mulGrp‘(Poly1𝑅)) Σg (𝑥𝑁𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  csb 3862  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068   + caddc 11071  cle 11209  0cn0 12442  Σcsu 15652  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  NzRingcnzr 20421  Domncdomn 20601  IDomncidom 20602  algSccascl 21761  Poly1cpl1 22061  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-lmod 20768  df-lss 20838  df-cnfld 21265  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  aks6d1c6lem1  42158
  Copyright terms: Public domain W3C validator