Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirredlem Structured version   Visualization version   GIF version

Theorem minplyirredlem 33749
Description: Lemma for minplyirred 33750. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
minplyirredlem.1 (𝜑𝐺 ∈ (Base‘𝑃))
minplyirredlem.2 (𝜑𝐻 ∈ (Base‘𝑃))
minplyirredlem.3 (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))
minplyirredlem.4 (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))
minplyirredlem.5 (𝜑𝐺𝑍)
minplyirredlem.6 (𝜑𝐻𝑍)
Assertion
Ref Expression
minplyirredlem (𝜑𝐻 ∈ (Unit‘𝑃))

Proof of Theorem minplyirredlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 eqid 2736 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
32sdrgdrng 20755 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
54drngringd 20702 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Ring)
6 minplyirredlem.2 . . 3 (𝜑𝐻 ∈ (Base‘𝑃))
7 minplyirredlem.1 . . . . . 6 (𝜑𝐺 ∈ (Base‘𝑃))
8 minplyirredlem.5 . . . . . 6 (𝜑𝐺𝑍)
9 eqid 2736 . . . . . . 7 (deg1‘(𝐸s 𝐹)) = (deg1‘(𝐸s 𝐹))
10 ply1annig1p.p . . . . . . 7 𝑃 = (Poly1‘(𝐸s 𝐹))
11 minplyirred.2 . . . . . . 7 𝑍 = (0g𝑃)
12 eqid 2736 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
139, 10, 11, 12deg1nn0cl 26050 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺𝑍) → ((deg1‘(𝐸s 𝐹))‘𝐺) ∈ ℕ0)
145, 7, 8, 13syl3anc 1373 . . . . 5 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝐺) ∈ ℕ0)
1514nn0red 12568 . . . 4 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝐺) ∈ ℝ)
16 minplyirredlem.6 . . . . . 6 (𝜑𝐻𝑍)
179, 10, 11, 12deg1nn0cl 26050 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃) ∧ 𝐻𝑍) → ((deg1‘(𝐸s 𝐹))‘𝐻) ∈ ℕ0)
185, 6, 16, 17syl3anc 1373 . . . . 5 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝐻) ∈ ℕ0)
1918nn0red 12568 . . . 4 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝐻) ∈ ℝ)
20 eqid 2736 . . . . . 6 (RLReg‘(𝐸s 𝐹)) = (RLReg‘(𝐸s 𝐹))
21 eqid 2736 . . . . . 6 (.r𝑃) = (.r𝑃)
22 ply1annig1p.e . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
23 fldsdrgfld 20763 . . . . . . . . . 10 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
2422, 1, 23syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ Field)
25 fldidom 20736 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
2726idomdomd 20691 . . . . . . 7 (𝜑 → (𝐸s 𝐹) ∈ Domn)
28 eqid 2736 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
299, 10, 11, 12, 20, 28deg1ldgdomn 26056 . . . . . . 7 (((𝐸s 𝐹) ∈ Domn ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺𝑍) → ((coe1𝐺)‘((deg1‘(𝐸s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸s 𝐹)))
3027, 7, 8, 29syl3anc 1373 . . . . . 6 (𝜑 → ((coe1𝐺)‘((deg1‘(𝐸s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸s 𝐹)))
319, 10, 20, 12, 21, 11, 5, 7, 8, 30, 6, 16deg1mul2 26076 . . . . 5 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) = (((deg1‘(𝐸s 𝐹))‘𝐺) + ((deg1‘(𝐸s 𝐹))‘𝐻)))
32 minplyirredlem.3 . . . . . . . 8 (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))
33 ply1annig1p.o . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
34 ply1annig1p.b . . . . . . . . 9 𝐵 = (Base‘𝐸)
35 ply1annig1p.a . . . . . . . . 9 (𝜑𝐴𝐵)
36 eqid 2736 . . . . . . . . 9 (0g𝐸) = (0g𝐸)
37 eqid 2736 . . . . . . . . 9 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
38 eqid 2736 . . . . . . . . 9 (RSpan‘𝑃) = (RSpan‘𝑃)
39 eqid 2736 . . . . . . . . 9 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
40 minplyirred.1 . . . . . . . . 9 𝑀 = (𝐸 minPoly 𝐹)
4133, 10, 34, 22, 1, 35, 36, 37, 38, 39, 40minplyval 33744 . . . . . . . 8 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
4232, 41eqtrd 2771 . . . . . . 7 (𝜑 → (𝐺(.r𝑃)𝐻) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
4342fveq2d 6885 . . . . . 6 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) = ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})))
4422fldcrngd 20707 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
45 sdrgsubrg 20756 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
461, 45syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
4733, 10, 34, 44, 46, 35, 36, 37ply1annidl 33741 . . . . . . 7 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
48 fveq2 6881 . . . . . . . . . 10 (𝑞 = 𝐺 → (𝑂𝑞) = (𝑂𝐺))
4948fveq1d 6883 . . . . . . . . 9 (𝑞 = 𝐺 → ((𝑂𝑞)‘𝐴) = ((𝑂𝐺)‘𝐴))
5049eqeq1d 2738 . . . . . . . 8 (𝑞 = 𝐺 → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂𝐺)‘𝐴) = (0g𝐸)))
5133, 10, 12, 44, 46evls1dm 33579 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘𝑃))
527, 51eleqtrrd 2838 . . . . . . . 8 (𝜑𝐺 ∈ dom 𝑂)
53 minplyirredlem.4 . . . . . . . 8 (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))
5450, 52, 53elrabd 3678 . . . . . . 7 (𝜑𝐺 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
5510, 39, 12, 4, 47, 9, 11, 54, 8ig1pmindeg 33616 . . . . . 6 (𝜑 → ((deg1‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})) ≤ ((deg1‘(𝐸s 𝐹))‘𝐺))
5643, 55eqbrtrd 5146 . . . . 5 (𝜑 → ((deg1‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) ≤ ((deg1‘(𝐸s 𝐹))‘𝐺))
5731, 56eqbrtrrd 5148 . . . 4 (𝜑 → (((deg1‘(𝐸s 𝐹))‘𝐺) + ((deg1‘(𝐸s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸s 𝐹))‘𝐺))
58 leaddle0 11757 . . . . 5 ((((deg1‘(𝐸s 𝐹))‘𝐺) ∈ ℝ ∧ ((deg1‘(𝐸s 𝐹))‘𝐻) ∈ ℝ) → ((((deg1‘(𝐸s 𝐹))‘𝐺) + ((deg1‘(𝐸s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸s 𝐹))‘𝐺) ↔ ((deg1‘(𝐸s 𝐹))‘𝐻) ≤ 0))
5958biimpa 476 . . . 4 (((((deg1‘(𝐸s 𝐹))‘𝐺) ∈ ℝ ∧ ((deg1‘(𝐸s 𝐹))‘𝐻) ∈ ℝ) ∧ (((deg1‘(𝐸s 𝐹))‘𝐺) + ((deg1‘(𝐸s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸s 𝐹))‘𝐺)) → ((deg1‘(𝐸s 𝐹))‘𝐻) ≤ 0)
6015, 19, 57, 59syl21anc 837 . . 3 (𝜑 → ((deg1‘(𝐸s 𝐹))‘𝐻) ≤ 0)
61 eqid 2736 . . . . 5 (algSc‘𝑃) = (algSc‘𝑃)
629, 10, 12, 61deg1le0 26073 . . . 4 (((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) → (((deg1‘(𝐸s 𝐹))‘𝐻) ≤ 0 ↔ 𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0))))
6362biimpa 476 . . 3 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) ∧ ((deg1‘(𝐸s 𝐹))‘𝐻) ≤ 0) → 𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0)))
645, 6, 60, 63syl21anc 837 . 2 (𝜑𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0)))
65 eqid 2736 . . 3 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
66 eqid 2736 . . 3 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
67 0nn0 12521 . . . 4 0 ∈ ℕ0
68 eqid 2736 . . . . 5 (coe1𝐻) = (coe1𝐻)
6968, 12, 10, 65coe1fvalcl 22153 . . . 4 ((𝐻 ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1𝐻)‘0) ∈ (Base‘(𝐸s 𝐹)))
706, 67, 69sylancl 586 . . 3 (𝜑 → ((coe1𝐻)‘0) ∈ (Base‘(𝐸s 𝐹)))
719, 10, 66, 12, 11, 5, 6, 60deg1le0eq0 33591 . . . . 5 (𝜑 → (𝐻 = 𝑍 ↔ ((coe1𝐻)‘0) = (0g‘(𝐸s 𝐹))))
7271necon3bid 2977 . . . 4 (𝜑 → (𝐻𝑍 ↔ ((coe1𝐻)‘0) ≠ (0g‘(𝐸s 𝐹))))
7316, 72mpbid 232 . . 3 (𝜑 → ((coe1𝐻)‘0) ≠ (0g‘(𝐸s 𝐹)))
7410, 61, 65, 66, 24, 70, 73ply1asclunit 33592 . 2 (𝜑 → ((algSc‘𝑃)‘((coe1𝐻)‘0)) ∈ (Unit‘𝑃))
7564, 74eqeltrd 2835 1 (𝜑𝐻 ∈ (Unit‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420   class class class wbr 5124  dom cdm 5659  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   + caddc 11137  cle 11275  0cn0 12506  Basecbs 17233  s cress 17256  .rcmulr 17277  0gc0g 17458  Ringcrg 20198  Unitcui 20320  SubRingcsubrg 20534  RLRegcrlreg 20656  Domncdomn 20657  IDomncidom 20658  DivRingcdr 20694  Fieldcfield 20695  SubDRingcsdrg 20751  RSpancrsp 21173  algSccascl 21817  Poly1cpl1 22117  coe1cco1 22118   evalSub1 ces1 22256  deg1cdg1 26016  idlGen1pcig1p 26092   minPoly cminply 33738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-sdrg 20752  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-cnfld 21321  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evls1 22258  df-evl1 22259  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-ig1p 26097  df-minply 33739
This theorem is referenced by:  minplyirred  33750
  Copyright terms: Public domain W3C validator