| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ply1annig1p.f | . . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | 
| 2 |  | eqid 2736 | . . . . . 6
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | 
| 3 | 2 | sdrgdrng 20792 | . . . . 5
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) | 
| 4 | 1, 3 | syl 17 | . . . 4
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) | 
| 5 | 4 | drngringd 20738 | . . 3
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) | 
| 6 |  | minplyirredlem.2 | . . 3
⊢ (𝜑 → 𝐻 ∈ (Base‘𝑃)) | 
| 7 |  | minplyirredlem.1 | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) | 
| 8 |  | minplyirredlem.5 | . . . . . 6
⊢ (𝜑 → 𝐺 ≠ 𝑍) | 
| 9 |  | eqid 2736 | . . . . . . 7
⊢
(deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) | 
| 10 |  | ply1annig1p.p | . . . . . . 7
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) | 
| 11 |  | minplyirred.2 | . . . . . . 7
⊢ 𝑍 = (0g‘𝑃) | 
| 12 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 13 | 9, 10, 11, 12 | deg1nn0cl 26128 | . . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘𝐺) ∈
ℕ0) | 
| 14 | 5, 7, 8, 13 | syl3anc 1372 | . . . . 5
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘𝐺) ∈
ℕ0) | 
| 15 | 14 | nn0red 12590 | . . . 4
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘𝐺) ∈ ℝ) | 
| 16 |  | minplyirredlem.6 | . . . . . 6
⊢ (𝜑 → 𝐻 ≠ 𝑍) | 
| 17 | 9, 10, 11, 12 | deg1nn0cl 26128 | . . . . . 6
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃) ∧ 𝐻 ≠ 𝑍) → ((deg1‘(𝐸 ↾s 𝐹))‘𝐻) ∈
ℕ0) | 
| 18 | 5, 6, 16, 17 | syl3anc 1372 | . . . . 5
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ∈
ℕ0) | 
| 19 | 18 | nn0red 12590 | . . . 4
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ∈ ℝ) | 
| 20 |  | eqid 2736 | . . . . . 6
⊢
(RLReg‘(𝐸
↾s 𝐹)) =
(RLReg‘(𝐸
↾s 𝐹)) | 
| 21 |  | eqid 2736 | . . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 22 |  | ply1annig1p.e | . . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Field) | 
| 23 |  | fldsdrgfld 20800 | . . . . . . . . . 10
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | 
| 24 | 22, 1, 23 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) | 
| 25 |  | fldidom 20772 | . . . . . . . . 9
⊢ ((𝐸 ↾s 𝐹) ∈ Field → (𝐸 ↾s 𝐹) ∈ IDomn) | 
| 26 | 24, 25 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ IDomn) | 
| 27 | 26 | idomdomd 20727 | . . . . . . 7
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Domn) | 
| 28 |  | eqid 2736 | . . . . . . . 8
⊢
(coe1‘𝐺) = (coe1‘𝐺) | 
| 29 | 9, 10, 11, 12, 20, 28 | deg1ldgdomn 26134 | . . . . . . 7
⊢ (((𝐸 ↾s 𝐹) ∈ Domn ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ 𝑍) → ((coe1‘𝐺)‘((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸 ↾s 𝐹))) | 
| 30 | 27, 7, 8, 29 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 →
((coe1‘𝐺)‘((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸 ↾s 𝐹))) | 
| 31 | 9, 10, 20, 12, 21, 11, 5, 7, 8,
30, 6, 16 | deg1mul2 26154 | . . . . 5
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(.r‘𝑃)𝐻)) = (((deg1‘(𝐸 ↾s 𝐹))‘𝐺) + ((deg1‘(𝐸 ↾s 𝐹))‘𝐻))) | 
| 32 |  | minplyirredlem.3 | . . . . . . . 8
⊢ (𝜑 → (𝐺(.r‘𝑃)𝐻) = (𝑀‘𝐴)) | 
| 33 |  | ply1annig1p.o | . . . . . . . . 9
⊢ 𝑂 = (𝐸 evalSub1 𝐹) | 
| 34 |  | ply1annig1p.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐸) | 
| 35 |  | ply1annig1p.a | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 36 |  | eqid 2736 | . . . . . . . . 9
⊢
(0g‘𝐸) = (0g‘𝐸) | 
| 37 |  | eqid 2736 | . . . . . . . . 9
⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} | 
| 38 |  | eqid 2736 | . . . . . . . . 9
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) | 
| 39 |  | eqid 2736 | . . . . . . . . 9
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | 
| 40 |  | minplyirred.1 | . . . . . . . . 9
⊢ 𝑀 = (𝐸 minPoly 𝐹) | 
| 41 | 33, 10, 34, 22, 1, 35, 36, 37, 38, 39, 40 | minplyval 33749 | . . . . . . . 8
⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) | 
| 42 | 32, 41 | eqtrd 2776 | . . . . . . 7
⊢ (𝜑 → (𝐺(.r‘𝑃)𝐻) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) | 
| 43 | 42 | fveq2d 6909 | . . . . . 6
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(.r‘𝑃)𝐻)) = ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}))) | 
| 44 | 22 | fldcrngd 20743 | . . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ CRing) | 
| 45 |  | sdrgsubrg 20793 | . . . . . . . . 9
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | 
| 46 | 1, 45 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) | 
| 47 | 33, 10, 34, 44, 46, 35, 36, 37 | ply1annidl 33746 | . . . . . . 7
⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘𝑃)) | 
| 48 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑞 = 𝐺 → (𝑂‘𝑞) = (𝑂‘𝐺)) | 
| 49 | 48 | fveq1d 6907 | . . . . . . . . 9
⊢ (𝑞 = 𝐺 → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘𝐺)‘𝐴)) | 
| 50 | 49 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑞 = 𝐺 → (((𝑂‘𝑞)‘𝐴) = (0g‘𝐸) ↔ ((𝑂‘𝐺)‘𝐴) = (0g‘𝐸))) | 
| 51 | 33, 10, 12, 44, 46 | evls1dm 33588 | . . . . . . . . 9
⊢ (𝜑 → dom 𝑂 = (Base‘𝑃)) | 
| 52 | 7, 51 | eleqtrrd 2843 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ dom 𝑂) | 
| 53 |  | minplyirredlem.4 | . . . . . . . 8
⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = (0g‘𝐸)) | 
| 54 | 50, 52, 53 | elrabd 3693 | . . . . . . 7
⊢ (𝜑 → 𝐺 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) | 
| 55 | 10, 39, 12, 4, 47, 9, 11, 54, 8 | ig1pmindeg 33623 | . . . . . 6
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) | 
| 56 | 43, 55 | eqbrtrd 5164 | . . . . 5
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘(𝐺(.r‘𝑃)𝐻)) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) | 
| 57 | 31, 56 | eqbrtrrd 5166 | . . . 4
⊢ (𝜑 →
(((deg1‘(𝐸
↾s 𝐹))‘𝐺) + ((deg1‘(𝐸 ↾s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) | 
| 58 |  | leaddle0 11779 | . . . . 5
⊢
((((deg1‘(𝐸 ↾s 𝐹))‘𝐺) ∈ ℝ ∧
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ∈ ℝ) →
((((deg1‘(𝐸 ↾s 𝐹))‘𝐺) + ((deg1‘(𝐸 ↾s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘𝐺) ↔ ((deg1‘(𝐸 ↾s 𝐹))‘𝐻) ≤ 0)) | 
| 59 | 58 | biimpa 476 | . . . 4
⊢
(((((deg1‘(𝐸 ↾s 𝐹))‘𝐺) ∈ ℝ ∧
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ∈ ℝ) ∧
(((deg1‘(𝐸
↾s 𝐹))‘𝐺) + ((deg1‘(𝐸 ↾s 𝐹))‘𝐻)) ≤ ((deg1‘(𝐸 ↾s 𝐹))‘𝐺)) → ((deg1‘(𝐸 ↾s 𝐹))‘𝐻) ≤ 0) | 
| 60 | 15, 19, 57, 59 | syl21anc 837 | . . 3
⊢ (𝜑 →
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ≤ 0) | 
| 61 |  | eqid 2736 | . . . . 5
⊢
(algSc‘𝑃) =
(algSc‘𝑃) | 
| 62 | 9, 10, 12, 61 | deg1le0 26151 | . . . 4
⊢ (((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) →
(((deg1‘(𝐸
↾s 𝐹))‘𝐻) ≤ 0 ↔ 𝐻 = ((algSc‘𝑃)‘((coe1‘𝐻)‘0)))) | 
| 63 | 62 | biimpa 476 | . . 3
⊢ ((((𝐸 ↾s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) ∧
((deg1‘(𝐸
↾s 𝐹))‘𝐻) ≤ 0) → 𝐻 = ((algSc‘𝑃)‘((coe1‘𝐻)‘0))) | 
| 64 | 5, 6, 60, 63 | syl21anc 837 | . 2
⊢ (𝜑 → 𝐻 = ((algSc‘𝑃)‘((coe1‘𝐻)‘0))) | 
| 65 |  | eqid 2736 | . . 3
⊢
(Base‘(𝐸
↾s 𝐹)) =
(Base‘(𝐸
↾s 𝐹)) | 
| 66 |  | eqid 2736 | . . 3
⊢
(0g‘(𝐸 ↾s 𝐹)) = (0g‘(𝐸 ↾s 𝐹)) | 
| 67 |  | 0nn0 12543 | . . . 4
⊢ 0 ∈
ℕ0 | 
| 68 |  | eqid 2736 | . . . . 5
⊢
(coe1‘𝐻) = (coe1‘𝐻) | 
| 69 | 68, 12, 10, 65 | coe1fvalcl 22215 | . . . 4
⊢ ((𝐻 ∈ (Base‘𝑃) ∧ 0 ∈
ℕ0) → ((coe1‘𝐻)‘0) ∈ (Base‘(𝐸 ↾s 𝐹))) | 
| 70 | 6, 67, 69 | sylancl 586 | . . 3
⊢ (𝜑 →
((coe1‘𝐻)‘0) ∈ (Base‘(𝐸 ↾s 𝐹))) | 
| 71 | 9, 10, 66, 12, 11, 5, 6, 60 | deg1le0eq0 33599 | . . . . 5
⊢ (𝜑 → (𝐻 = 𝑍 ↔ ((coe1‘𝐻)‘0) =
(0g‘(𝐸
↾s 𝐹)))) | 
| 72 | 71 | necon3bid 2984 | . . . 4
⊢ (𝜑 → (𝐻 ≠ 𝑍 ↔ ((coe1‘𝐻)‘0) ≠
(0g‘(𝐸
↾s 𝐹)))) | 
| 73 | 16, 72 | mpbid 232 | . . 3
⊢ (𝜑 →
((coe1‘𝐻)‘0) ≠ (0g‘(𝐸 ↾s 𝐹))) | 
| 74 | 10, 61, 65, 66, 24, 70, 73 | ply1asclunit 33600 | . 2
⊢ (𝜑 → ((algSc‘𝑃)‘((coe1‘𝐻)‘0)) ∈
(Unit‘𝑃)) | 
| 75 | 64, 74 | eqeltrd 2840 | 1
⊢ (𝜑 → 𝐻 ∈ (Unit‘𝑃)) |