Step | Hyp | Ref
| Expression |
1 | | ply1annig1p.f |
. . . . 5
β’ (π β πΉ β (SubDRingβπΈ)) |
2 | | eqid 2732 |
. . . . . 6
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
3 | 2 | sdrgdrng 20405 |
. . . . 5
β’ (πΉ β (SubDRingβπΈ) β (πΈ βΎs πΉ) β DivRing) |
4 | 1, 3 | syl 17 |
. . . 4
β’ (π β (πΈ βΎs πΉ) β DivRing) |
5 | 4 | drngringd 20364 |
. . 3
β’ (π β (πΈ βΎs πΉ) β Ring) |
6 | | minplyirredlem.2 |
. . 3
β’ (π β π» β (Baseβπ)) |
7 | | minplyirredlem.1 |
. . . . . 6
β’ (π β πΊ β (Baseβπ)) |
8 | | minplyirredlem.5 |
. . . . . 6
β’ (π β πΊ β π) |
9 | | eqid 2732 |
. . . . . . 7
β’ (
deg1 β(πΈ
βΎs πΉ)) = (
deg1 β(πΈ
βΎs πΉ)) |
10 | | ply1annig1p.p |
. . . . . . 7
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
11 | | minplyirred.2 |
. . . . . . 7
β’ π = (0gβπ) |
12 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
13 | 9, 10, 11, 12 | deg1nn0cl 25605 |
. . . . . 6
β’ (((πΈ βΎs πΉ) β Ring β§ πΊ β (Baseβπ) β§ πΊ β π) β (( deg1 β(πΈ βΎs πΉ))βπΊ) β
β0) |
14 | 5, 7, 8, 13 | syl3anc 1371 |
. . . . 5
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπΊ) β
β0) |
15 | 14 | nn0red 12532 |
. . . 4
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπΊ) β β) |
16 | | minplyirredlem.6 |
. . . . . 6
β’ (π β π» β π) |
17 | 9, 10, 11, 12 | deg1nn0cl 25605 |
. . . . . 6
β’ (((πΈ βΎs πΉ) β Ring β§ π» β (Baseβπ) β§ π» β π) β (( deg1 β(πΈ βΎs πΉ))βπ») β
β0) |
18 | 5, 6, 16, 17 | syl3anc 1371 |
. . . . 5
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπ») β
β0) |
19 | 18 | nn0red 12532 |
. . . 4
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπ») β β) |
20 | | eqid 2732 |
. . . . . 6
β’
(RLRegβ(πΈ
βΎs πΉ)) =
(RLRegβ(πΈ
βΎs πΉ)) |
21 | | eqid 2732 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
22 | | ply1annig1p.e |
. . . . . . . . . 10
β’ (π β πΈ β Field) |
23 | | fldsdrgfld 20413 |
. . . . . . . . . 10
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
24 | 22, 1, 23 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (πΈ βΎs πΉ) β Field) |
25 | | fldidom 20922 |
. . . . . . . . 9
β’ ((πΈ βΎs πΉ) β Field β (πΈ βΎs πΉ) β IDomn) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
β’ (π β (πΈ βΎs πΉ) β IDomn) |
27 | 26 | idomdomd 32369 |
. . . . . . 7
β’ (π β (πΈ βΎs πΉ) β Domn) |
28 | | eqid 2732 |
. . . . . . . 8
β’
(coe1βπΊ) = (coe1βπΊ) |
29 | 9, 10, 11, 12, 20, 28 | deg1ldgdomn 25611 |
. . . . . . 7
β’ (((πΈ βΎs πΉ) β Domn β§ πΊ β (Baseβπ) β§ πΊ β π) β ((coe1βπΊ)β(( deg1
β(πΈ
βΎs πΉ))βπΊ)) β (RLRegβ(πΈ βΎs πΉ))) |
30 | 27, 7, 8, 29 | syl3anc 1371 |
. . . . . 6
β’ (π β
((coe1βπΊ)β(( deg1 β(πΈ βΎs πΉ))βπΊ)) β (RLRegβ(πΈ βΎs πΉ))) |
31 | 9, 10, 20, 12, 21, 11, 5, 7, 8,
30, 6, 16 | deg1mul2 25631 |
. . . . 5
β’ (π β (( deg1
β(πΈ
βΎs πΉ))β(πΊ(.rβπ)π»)) = ((( deg1 β(πΈ βΎs πΉ))βπΊ) + (( deg1 β(πΈ βΎs πΉ))βπ»))) |
32 | | minplyirredlem.3 |
. . . . . . . 8
β’ (π β (πΊ(.rβπ)π») = (πβπ΄)) |
33 | | ply1annig1p.o |
. . . . . . . . 9
β’ π = (πΈ evalSub1 πΉ) |
34 | | ply1annig1p.b |
. . . . . . . . 9
β’ π΅ = (BaseβπΈ) |
35 | | ply1annig1p.a |
. . . . . . . . 9
β’ (π β π΄ β π΅) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβπΈ) = (0gβπΈ) |
37 | | eqid 2732 |
. . . . . . . . 9
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
38 | | eqid 2732 |
. . . . . . . . 9
β’
(RSpanβπ) =
(RSpanβπ) |
39 | | eqid 2732 |
. . . . . . . . 9
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
40 | | minplyirred.1 |
. . . . . . . . 9
β’ π = (πΈ minPoly πΉ) |
41 | 33, 10, 34, 22, 1, 35, 36, 37, 38, 39, 40 | minplyval 32761 |
. . . . . . . 8
β’ (π β (πβπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
42 | 32, 41 | eqtrd 2772 |
. . . . . . 7
β’ (π β (πΊ(.rβπ)π») = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
43 | 42 | fveq2d 6895 |
. . . . . 6
β’ (π β (( deg1
β(πΈ
βΎs πΉ))β(πΊ(.rβπ)π»)) = (( deg1 β(πΈ βΎs πΉ))β((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}))) |
44 | 22 | fldcrngd 20369 |
. . . . . . . 8
β’ (π β πΈ β CRing) |
45 | | sdrgsubrg 20406 |
. . . . . . . . 9
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
46 | 1, 45 | syl 17 |
. . . . . . . 8
β’ (π β πΉ β (SubRingβπΈ)) |
47 | 33, 10, 34, 44, 46, 35, 36, 37 | ply1annidl 32758 |
. . . . . . 7
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} β (LIdealβπ)) |
48 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = πΊ β (πβπ) = (πβπΊ)) |
49 | 48 | fveq1d 6893 |
. . . . . . . . 9
β’ (π = πΊ β ((πβπ)βπ΄) = ((πβπΊ)βπ΄)) |
50 | 49 | eqeq1d 2734 |
. . . . . . . 8
β’ (π = πΊ β (((πβπ)βπ΄) = (0gβπΈ) β ((πβπΊ)βπ΄) = (0gβπΈ))) |
51 | 33, 10, 12, 44, 46 | evls1dm 32636 |
. . . . . . . . 9
β’ (π β dom π = (Baseβπ)) |
52 | 7, 51 | eleqtrrd 2836 |
. . . . . . . 8
β’ (π β πΊ β dom π) |
53 | | minplyirredlem.4 |
. . . . . . . 8
β’ (π β ((πβπΊ)βπ΄) = (0gβπΈ)) |
54 | 50, 52, 53 | elrabd 3685 |
. . . . . . 7
β’ (π β πΊ β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
55 | 10, 39, 12, 4, 47, 9, 11, 54, 8 | ig1pmindeg 32666 |
. . . . . 6
β’ (π β (( deg1
β(πΈ
βΎs πΉ))β((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) β€ (( deg1 β(πΈ βΎs πΉ))βπΊ)) |
56 | 43, 55 | eqbrtrd 5170 |
. . . . 5
β’ (π β (( deg1
β(πΈ
βΎs πΉ))β(πΊ(.rβπ)π»)) β€ (( deg1 β(πΈ βΎs πΉ))βπΊ)) |
57 | 31, 56 | eqbrtrrd 5172 |
. . . 4
β’ (π β ((( deg1
β(πΈ
βΎs πΉ))βπΊ) + (( deg1 β(πΈ βΎs πΉ))βπ»)) β€ (( deg1 β(πΈ βΎs πΉ))βπΊ)) |
58 | | leaddle0 11728 |
. . . . 5
β’ ((((
deg1 β(πΈ
βΎs πΉ))βπΊ) β β β§ (( deg1
β(πΈ
βΎs πΉ))βπ») β β) β ((((
deg1 β(πΈ
βΎs πΉ))βπΊ) + (( deg1 β(πΈ βΎs πΉ))βπ»)) β€ (( deg1 β(πΈ βΎs πΉ))βπΊ) β (( deg1 β(πΈ βΎs πΉ))βπ») β€ 0)) |
59 | 58 | biimpa 477 |
. . . 4
β’ (((((
deg1 β(πΈ
βΎs πΉ))βπΊ) β β β§ (( deg1
β(πΈ
βΎs πΉ))βπ») β β) β§ ((( deg1
β(πΈ
βΎs πΉ))βπΊ) + (( deg1 β(πΈ βΎs πΉ))βπ»)) β€ (( deg1 β(πΈ βΎs πΉ))βπΊ)) β (( deg1 β(πΈ βΎs πΉ))βπ») β€ 0) |
60 | 15, 19, 57, 59 | syl21anc 836 |
. . 3
β’ (π β (( deg1
β(πΈ
βΎs πΉ))βπ») β€ 0) |
61 | | eqid 2732 |
. . . . 5
β’
(algScβπ) =
(algScβπ) |
62 | 9, 10, 12, 61 | deg1le0 25628 |
. . . 4
β’ (((πΈ βΎs πΉ) β Ring β§ π» β (Baseβπ)) β ((( deg1
β(πΈ
βΎs πΉ))βπ») β€ 0 β π» = ((algScβπ)β((coe1βπ»)β0)))) |
63 | 62 | biimpa 477 |
. . 3
β’ ((((πΈ βΎs πΉ) β Ring β§ π» β (Baseβπ)) β§ (( deg1
β(πΈ
βΎs πΉ))βπ») β€ 0) β π» = ((algScβπ)β((coe1βπ»)β0))) |
64 | 5, 6, 60, 63 | syl21anc 836 |
. 2
β’ (π β π» = ((algScβπ)β((coe1βπ»)β0))) |
65 | | eqid 2732 |
. . 3
β’
(Baseβ(πΈ
βΎs πΉ)) =
(Baseβ(πΈ
βΎs πΉ)) |
66 | | eqid 2732 |
. . 3
β’
(0gβ(πΈ βΎs πΉ)) = (0gβ(πΈ βΎs πΉ)) |
67 | | 0nn0 12486 |
. . . 4
β’ 0 β
β0 |
68 | | eqid 2732 |
. . . . 5
β’
(coe1βπ») = (coe1βπ») |
69 | 68, 12, 10, 65 | coe1fvalcl 21735 |
. . . 4
β’ ((π» β (Baseβπ) β§ 0 β
β0) β ((coe1βπ»)β0) β (Baseβ(πΈ βΎs πΉ))) |
70 | 6, 67, 69 | sylancl 586 |
. . 3
β’ (π β
((coe1βπ»)β0) β (Baseβ(πΈ βΎs πΉ))) |
71 | 9, 10, 66, 12, 11, 5, 6, 60 | deg1le0eq0 32650 |
. . . . 5
β’ (π β (π» = π β ((coe1βπ»)β0) =
(0gβ(πΈ
βΎs πΉ)))) |
72 | 71 | necon3bid 2985 |
. . . 4
β’ (π β (π» β π β ((coe1βπ»)β0) β
(0gβ(πΈ
βΎs πΉ)))) |
73 | 16, 72 | mpbid 231 |
. . 3
β’ (π β
((coe1βπ»)β0) β (0gβ(πΈ βΎs πΉ))) |
74 | 10, 61, 65, 66, 24, 70, 73 | ply1asclunit 32649 |
. 2
β’ (π β ((algScβπ)β((coe1βπ»)β0)) β
(Unitβπ)) |
75 | 64, 74 | eqeltrd 2833 |
1
β’ (π β π» β (Unitβπ)) |