Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirredlem Structured version   Visualization version   GIF version

Theorem minplyirredlem 33073
Description: Lemma for minplyirred 33074. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
minplyirredlem.1 (𝜑𝐺 ∈ (Base‘𝑃))
minplyirredlem.2 (𝜑𝐻 ∈ (Base‘𝑃))
minplyirredlem.3 (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))
minplyirredlem.4 (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))
minplyirredlem.5 (𝜑𝐺𝑍)
minplyirredlem.6 (𝜑𝐻𝑍)
Assertion
Ref Expression
minplyirredlem (𝜑𝐻 ∈ (Unit‘𝑃))

Proof of Theorem minplyirredlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 eqid 2731 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
32sdrgdrng 20553 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
41, 3syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
54drngringd 20512 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Ring)
6 minplyirredlem.2 . . 3 (𝜑𝐻 ∈ (Base‘𝑃))
7 minplyirredlem.1 . . . . . 6 (𝜑𝐺 ∈ (Base‘𝑃))
8 minplyirredlem.5 . . . . . 6 (𝜑𝐺𝑍)
9 eqid 2731 . . . . . . 7 ( deg1 ‘(𝐸s 𝐹)) = ( deg1 ‘(𝐸s 𝐹))
10 ply1annig1p.p . . . . . . 7 𝑃 = (Poly1‘(𝐸s 𝐹))
11 minplyirred.2 . . . . . . 7 𝑍 = (0g𝑃)
12 eqid 2731 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
139, 10, 11, 12deg1nn0cl 25855 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺𝑍) → (( deg1 ‘(𝐸s 𝐹))‘𝐺) ∈ ℕ0)
145, 7, 8, 13syl3anc 1370 . . . . 5 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘𝐺) ∈ ℕ0)
1514nn0red 12540 . . . 4 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘𝐺) ∈ ℝ)
16 minplyirredlem.6 . . . . . 6 (𝜑𝐻𝑍)
179, 10, 11, 12deg1nn0cl 25855 . . . . . 6 (((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃) ∧ 𝐻𝑍) → (( deg1 ‘(𝐸s 𝐹))‘𝐻) ∈ ℕ0)
185, 6, 16, 17syl3anc 1370 . . . . 5 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘𝐻) ∈ ℕ0)
1918nn0red 12540 . . . 4 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘𝐻) ∈ ℝ)
20 eqid 2731 . . . . . 6 (RLReg‘(𝐸s 𝐹)) = (RLReg‘(𝐸s 𝐹))
21 eqid 2731 . . . . . 6 (.r𝑃) = (.r𝑃)
22 ply1annig1p.e . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
23 fldsdrgfld 20561 . . . . . . . . . 10 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
2422, 1, 23syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ Field)
25 fldidom 21127 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
2726idomdomd 32659 . . . . . . 7 (𝜑 → (𝐸s 𝐹) ∈ Domn)
28 eqid 2731 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
299, 10, 11, 12, 20, 28deg1ldgdomn 25861 . . . . . . 7 (((𝐸s 𝐹) ∈ Domn ∧ 𝐺 ∈ (Base‘𝑃) ∧ 𝐺𝑍) → ((coe1𝐺)‘(( deg1 ‘(𝐸s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸s 𝐹)))
3027, 7, 8, 29syl3anc 1370 . . . . . 6 (𝜑 → ((coe1𝐺)‘(( deg1 ‘(𝐸s 𝐹))‘𝐺)) ∈ (RLReg‘(𝐸s 𝐹)))
319, 10, 20, 12, 21, 11, 5, 7, 8, 30, 6, 16deg1mul2 25881 . . . . 5 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) = ((( deg1 ‘(𝐸s 𝐹))‘𝐺) + (( deg1 ‘(𝐸s 𝐹))‘𝐻)))
32 minplyirredlem.3 . . . . . . . 8 (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))
33 ply1annig1p.o . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
34 ply1annig1p.b . . . . . . . . 9 𝐵 = (Base‘𝐸)
35 ply1annig1p.a . . . . . . . . 9 (𝜑𝐴𝐵)
36 eqid 2731 . . . . . . . . 9 (0g𝐸) = (0g𝐸)
37 eqid 2731 . . . . . . . . 9 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
38 eqid 2731 . . . . . . . . 9 (RSpan‘𝑃) = (RSpan‘𝑃)
39 eqid 2731 . . . . . . . . 9 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
40 minplyirred.1 . . . . . . . . 9 𝑀 = (𝐸 minPoly 𝐹)
4133, 10, 34, 22, 1, 35, 36, 37, 38, 39, 40minplyval 33070 . . . . . . . 8 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
4232, 41eqtrd 2771 . . . . . . 7 (𝜑 → (𝐺(.r𝑃)𝐻) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
4342fveq2d 6895 . . . . . 6 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) = (( deg1 ‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})))
4422fldcrngd 20517 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
45 sdrgsubrg 20554 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
461, 45syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
4733, 10, 34, 44, 46, 35, 36, 37ply1annidl 33067 . . . . . . 7 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
48 fveq2 6891 . . . . . . . . . 10 (𝑞 = 𝐺 → (𝑂𝑞) = (𝑂𝐺))
4948fveq1d 6893 . . . . . . . . 9 (𝑞 = 𝐺 → ((𝑂𝑞)‘𝐴) = ((𝑂𝐺)‘𝐴))
5049eqeq1d 2733 . . . . . . . 8 (𝑞 = 𝐺 → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂𝐺)‘𝐴) = (0g𝐸)))
5133, 10, 12, 44, 46evls1dm 32930 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘𝑃))
527, 51eleqtrrd 2835 . . . . . . . 8 (𝜑𝐺 ∈ dom 𝑂)
53 minplyirredlem.4 . . . . . . . 8 (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))
5450, 52, 53elrabd 3685 . . . . . . 7 (𝜑𝐺 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
5510, 39, 12, 4, 47, 9, 11, 54, 8ig1pmindeg 32962 . . . . . 6 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})) ≤ (( deg1 ‘(𝐸s 𝐹))‘𝐺))
5643, 55eqbrtrd 5170 . . . . 5 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘(𝐺(.r𝑃)𝐻)) ≤ (( deg1 ‘(𝐸s 𝐹))‘𝐺))
5731, 56eqbrtrrd 5172 . . . 4 (𝜑 → ((( deg1 ‘(𝐸s 𝐹))‘𝐺) + (( deg1 ‘(𝐸s 𝐹))‘𝐻)) ≤ (( deg1 ‘(𝐸s 𝐹))‘𝐺))
58 leaddle0 11736 . . . . 5 (((( deg1 ‘(𝐸s 𝐹))‘𝐺) ∈ ℝ ∧ (( deg1 ‘(𝐸s 𝐹))‘𝐻) ∈ ℝ) → (((( deg1 ‘(𝐸s 𝐹))‘𝐺) + (( deg1 ‘(𝐸s 𝐹))‘𝐻)) ≤ (( deg1 ‘(𝐸s 𝐹))‘𝐺) ↔ (( deg1 ‘(𝐸s 𝐹))‘𝐻) ≤ 0))
5958biimpa 476 . . . 4 ((((( deg1 ‘(𝐸s 𝐹))‘𝐺) ∈ ℝ ∧ (( deg1 ‘(𝐸s 𝐹))‘𝐻) ∈ ℝ) ∧ ((( deg1 ‘(𝐸s 𝐹))‘𝐺) + (( deg1 ‘(𝐸s 𝐹))‘𝐻)) ≤ (( deg1 ‘(𝐸s 𝐹))‘𝐺)) → (( deg1 ‘(𝐸s 𝐹))‘𝐻) ≤ 0)
6015, 19, 57, 59syl21anc 835 . . 3 (𝜑 → (( deg1 ‘(𝐸s 𝐹))‘𝐻) ≤ 0)
61 eqid 2731 . . . . 5 (algSc‘𝑃) = (algSc‘𝑃)
629, 10, 12, 61deg1le0 25878 . . . 4 (((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) → ((( deg1 ‘(𝐸s 𝐹))‘𝐻) ≤ 0 ↔ 𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0))))
6362biimpa 476 . . 3 ((((𝐸s 𝐹) ∈ Ring ∧ 𝐻 ∈ (Base‘𝑃)) ∧ (( deg1 ‘(𝐸s 𝐹))‘𝐻) ≤ 0) → 𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0)))
645, 6, 60, 63syl21anc 835 . 2 (𝜑𝐻 = ((algSc‘𝑃)‘((coe1𝐻)‘0)))
65 eqid 2731 . . 3 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
66 eqid 2731 . . 3 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
67 0nn0 12494 . . . 4 0 ∈ ℕ0
68 eqid 2731 . . . . 5 (coe1𝐻) = (coe1𝐻)
6968, 12, 10, 65coe1fvalcl 21968 . . . 4 ((𝐻 ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1𝐻)‘0) ∈ (Base‘(𝐸s 𝐹)))
706, 67, 69sylancl 585 . . 3 (𝜑 → ((coe1𝐻)‘0) ∈ (Base‘(𝐸s 𝐹)))
719, 10, 66, 12, 11, 5, 6, 60deg1le0eq0 32944 . . . . 5 (𝜑 → (𝐻 = 𝑍 ↔ ((coe1𝐻)‘0) = (0g‘(𝐸s 𝐹))))
7271necon3bid 2984 . . . 4 (𝜑 → (𝐻𝑍 ↔ ((coe1𝐻)‘0) ≠ (0g‘(𝐸s 𝐹))))
7316, 72mpbid 231 . . 3 (𝜑 → ((coe1𝐻)‘0) ≠ (0g‘(𝐸s 𝐹)))
7410, 61, 65, 66, 24, 70, 73ply1asclunit 32943 . 2 (𝜑 → ((algSc‘𝑃)‘((coe1𝐻)‘0)) ∈ (Unit‘𝑃))
7564, 74eqeltrd 2832 1 (𝜑𝐻 ∈ (Unit‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  {crab 3431   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7412  cr 11115  0cc0 11116   + caddc 11119  cle 11256  0cn0 12479  Basecbs 17151  s cress 17180  .rcmulr 17205  0gc0g 17392  Ringcrg 20131  Unitcui 20250  SubRingcsubrg 20461  DivRingcdr 20504  Fieldcfield 20505  SubDRingcsdrg 20549  RSpancrsp 20933  RLRegcrlreg 21099  Domncdomn 21100  IDomncidom 21101  algSccascl 21630  Poly1cpl1 21933  coe1cco1 21934   evalSub1 ces1 22065   deg1 cdg1 25818  idlGen1pcig1p 25896   minPoly cminply 33060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-rhm 20367  df-nzr 20408  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-sdrg 20550  df-lmod 20620  df-lss 20691  df-lsp 20731  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-rlreg 21103  df-domn 21104  df-idom 21105  df-cnfld 21149  df-assa 21631  df-asp 21632  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-evls 21859  df-evl 21860  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-evls1 22067  df-evl1 22068  df-mdeg 25819  df-deg1 25820  df-mon1 25897  df-uc1p 25898  df-ig1p 25901  df-minply 33061
This theorem is referenced by:  minplyirred  33074
  Copyright terms: Public domain W3C validator