Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirred Structured version   Visualization version   GIF version

Theorem minplyirred 33074
Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Assertion
Ref Expression
minplyirred (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))

Proof of Theorem minplyirred
Dummy variables 𝑞 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.o . . 3 𝑂 = (𝐸 evalSub1 𝐹)
2 ply1annig1p.p . . 3 𝑃 = (Poly1‘(𝐸s 𝐹))
3 ply1annig1p.b . . 3 𝐵 = (Base‘𝐸)
4 ply1annig1p.e . . 3 (𝜑𝐸 ∈ Field)
5 ply1annig1p.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 ply1annig1p.a . . 3 (𝜑𝐴𝐵)
7 eqid 2731 . . 3 (0g𝐸) = (0g𝐸)
8 eqid 2731 . . 3 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
9 eqid 2731 . . 3 (RSpan‘𝑃) = (RSpan‘𝑃)
10 eqid 2731 . . 3 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
11 minplyirred.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplycl 33071 . 2 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplyval 33070 . . 3 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
14 eqid 2731 . . . 4 (Base‘𝑃) = (Base‘𝑃)
15 eqid 2731 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
1615sdrgdrng 20553 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
175, 16syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
184fldcrngd 20517 . . . . 5 (𝜑𝐸 ∈ CRing)
19 sdrgsubrg 20554 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
205, 19syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
211, 2, 3, 18, 20, 6, 7, 8ply1annidl 33067 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
224flddrngd 20516 . . . . . 6 (𝜑𝐸 ∈ DivRing)
23 drngnzr 20524 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
2422, 23syl 17 . . . . 5 (𝜑𝐸 ∈ NzRing)
251, 2, 3, 18, 20, 6, 7, 8, 14, 24ply1annnr 33068 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ≠ (Base‘𝑃))
262, 10, 14, 17, 21, 25ig1pnunit 32961 . . 3 (𝜑 → ¬ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ (Unit‘𝑃))
2713, 26eqneltrd 2852 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
28 fldidom 21127 . . . . . . . . . . 11 (𝐸 ∈ Field → 𝐸 ∈ IDomn)
294, 28syl 17 . . . . . . . . . 10 (𝜑𝐸 ∈ IDomn)
3029idomdomd 32659 . . . . . . . . 9 (𝜑𝐸 ∈ Domn)
3130ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ Domn)
3218ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ CRing)
3320ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐹 ∈ (SubRing‘𝐸))
346ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐴𝐵)
35 simpllr 773 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓 ∈ (Base‘𝑃))
361, 2, 3, 14, 32, 33, 34, 35evls1fvcl 33062 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑓)‘𝐴) ∈ 𝐵)
37 simplr 766 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔 ∈ (Base‘𝑃))
381, 2, 3, 14, 32, 33, 34, 37evls1fvcl 33062 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑔)‘𝐴) ∈ 𝐵)
39 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
4039fveq2d 6895 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑂‘(𝑓(.r𝑃)𝑔)) = (𝑂‘(𝑀𝐴)))
4140fveq1d 6893 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
42 eqid 2731 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
43 eqid 2731 . . . . . . . . . 10 (.r𝐸) = (.r𝐸)
441, 3, 2, 15, 14, 42, 43, 32, 33, 35, 37, 34evls1muld 32938 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)))
45 eqid 2731 . . . . . . . . . . . . . . 15 (LIdeal‘𝑃) = (LIdeal‘𝑃)
462, 10, 45ig1pcl 25942 . . . . . . . . . . . . . 14 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4717, 21, 46syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4813, 47eqeltrd 2832 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
49 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑞 = (𝑀𝐴) → (𝑂𝑞) = (𝑂‘(𝑀𝐴)))
5049fveq1d 6893 . . . . . . . . . . . . . 14 (𝑞 = (𝑀𝐴) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
5150eqeq1d 2733 . . . . . . . . . . . . 13 (𝑞 = (𝑀𝐴) → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5251elrab 3683 . . . . . . . . . . . 12 ((𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ↔ ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5348, 52sylib 217 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5453simprd 495 . . . . . . . . . 10 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5554ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5641, 44, 553eqtr3d 2779 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸))
573, 43, 7domneq0 21117 . . . . . . . . 9 ((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) → ((((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸) ↔ (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸))))
5857biimpa 476 . . . . . . . 8 (((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) ∧ (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
5931, 36, 38, 56, 58syl31anc 1372 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
604ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
615ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
6234adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
63 minplyirred.2 . . . . . . . . . 10 𝑍 = (0g𝑃)
64 minplyirred.3 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ≠ 𝑍)
6564ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑀𝐴) ≠ 𝑍)
6665adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
6735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
68 simpllr 773 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
69 simplr 766 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
70 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → ((𝑂𝑓)‘𝐴) = (0g𝐸))
71 fldsdrgfld 20561 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
724, 5, 71syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
73 fldidom 21127 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
7574idomdomd 32659 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸s 𝐹) ∈ Domn)
762ply1domn 25890 . . . . . . . . . . . . . . . 16 ((𝐸s 𝐹) ∈ Domn → 𝑃 ∈ Domn)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑃 ∈ Domn)
7939, 65eqnetrd 3007 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) ≠ 𝑍)
8014, 42, 63domneq0 21117 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = 𝑍 ↔ (𝑓 = 𝑍𝑔 = 𝑍)))
8180necon3abid 2976 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) ≠ 𝑍 ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍)))
8281biimpa 476 . . . . . . . . . . . . . 14 (((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) ≠ 𝑍) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8378, 35, 37, 79, 82syl31anc 1372 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
84 neanior 3034 . . . . . . . . . . . . 13 ((𝑓𝑍𝑔𝑍) ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8583, 84sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓𝑍𝑔𝑍))
8685simpld 494 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓𝑍)
8786adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
8885simprd 495 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔𝑍)
8988adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
901, 2, 3, 60, 61, 62, 11, 63, 66, 67, 68, 69, 70, 87, 89minplyirredlem 33073 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Unit‘𝑃))
9190ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) → 𝑔 ∈ (Unit‘𝑃)))
924ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
935ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
9434adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
9565adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
96 simpllr 773 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
9735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
9872fldcrngd 20517 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
992ply1crng 21954 . . . . . . . . . . . . . 14 ((𝐸s 𝐹) ∈ CRing → 𝑃 ∈ CRing)
10098, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
101100ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑃 ∈ CRing)
10214, 42crngcom 20149 . . . . . . . . . . . 12 ((𝑃 ∈ CRing ∧ 𝑔 ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
103101, 96, 97, 102syl3anc 1370 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
104 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
105103, 104eqtrd 2771 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑀𝐴))
106 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → ((𝑂𝑔)‘𝐴) = (0g𝐸))
10788adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
10886adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
1091, 2, 3, 92, 93, 94, 11, 63, 95, 96, 97, 105, 106, 107, 108minplyirredlem 33073 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Unit‘𝑃))
110109ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑔)‘𝐴) = (0g𝐸) → 𝑓 ∈ (Unit‘𝑃)))
11191, 110orim12d 962 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃))))
11259, 111mpd 15 . . . . . 6 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃)))
113112orcomd 868 . . . . 5 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))
114113ex 412 . . . 4 (((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
115114anasss 466 . . 3 ((𝜑 ∧ (𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃))) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
116115ralrimivva 3199 . 2 (𝜑 → ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
117 eqid 2731 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
118 eqid 2731 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
11914, 117, 118, 42isirred2 20316 . 2 ((𝑀𝐴) ∈ (Irred‘𝑃) ↔ ((𝑀𝐴) ∈ (Base‘𝑃) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃) ∧ ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))))
12012, 27, 116, 119syl3anbrc 1342 1 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  {crab 3431  dom cdm 5676  cfv 6543  (class class class)co 7412  Basecbs 17151  s cress 17180  .rcmulr 17205  0gc0g 17392  CRingccrg 20132  Unitcui 20250  Irredcir 20251  NzRingcnzr 20407  SubRingcsubrg 20461  DivRingcdr 20504  Fieldcfield 20505  SubDRingcsdrg 20549  LIdealclidl 20932  RSpancrsp 20933  Domncdomn 21100  IDomncidom 21101  Poly1cpl1 21933   evalSub1 ces1 22065  idlGen1pcig1p 25896   minPoly cminply 33060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-irred 20254  df-invr 20283  df-rhm 20367  df-nzr 20408  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-sdrg 20550  df-lmod 20620  df-lss 20691  df-lsp 20731  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-rlreg 21103  df-domn 21104  df-idom 21105  df-cnfld 21149  df-assa 21631  df-asp 21632  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-evls 21859  df-evl 21860  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-evls1 22067  df-evl1 22068  df-mdeg 25819  df-deg1 25820  df-mon1 25897  df-uc1p 25898  df-ig1p 25901  df-minply 33061
This theorem is referenced by:  algextdeglem4  33080
  Copyright terms: Public domain W3C validator