Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirred Structured version   Visualization version   GIF version

Theorem minplyirred 33754
Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Assertion
Ref Expression
minplyirred (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))

Proof of Theorem minplyirred
Dummy variables 𝑞 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.o . . 3 𝑂 = (𝐸 evalSub1 𝐹)
2 ply1annig1p.p . . 3 𝑃 = (Poly1‘(𝐸s 𝐹))
3 ply1annig1p.b . . 3 𝐵 = (Base‘𝐸)
4 ply1annig1p.e . . 3 (𝜑𝐸 ∈ Field)
5 ply1annig1p.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 ply1annig1p.a . . 3 (𝜑𝐴𝐵)
7 eqid 2737 . . 3 (0g𝐸) = (0g𝐸)
8 eqid 2737 . . 3 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
9 eqid 2737 . . 3 (RSpan‘𝑃) = (RSpan‘𝑃)
10 eqid 2737 . . 3 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
11 minplyirred.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplycl 33749 . 2 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplyval 33748 . . 3 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
14 eqid 2737 . . . 4 (Base‘𝑃) = (Base‘𝑃)
15 eqid 2737 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
1615sdrgdrng 20791 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
175, 16syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
184fldcrngd 20742 . . . . 5 (𝜑𝐸 ∈ CRing)
19 sdrgsubrg 20792 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
205, 19syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
211, 2, 3, 18, 20, 6, 7, 8ply1annidl 33745 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
224flddrngd 20741 . . . . . 6 (𝜑𝐸 ∈ DivRing)
23 drngnzr 20748 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
2422, 23syl 17 . . . . 5 (𝜑𝐸 ∈ NzRing)
251, 2, 3, 18, 20, 6, 7, 8, 14, 24ply1annnr 33746 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ≠ (Base‘𝑃))
262, 10, 14, 17, 21, 25ig1pnunit 33621 . . 3 (𝜑 → ¬ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ (Unit‘𝑃))
2713, 26eqneltrd 2861 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
28 fldidom 20771 . . . . . . . . . . 11 (𝐸 ∈ Field → 𝐸 ∈ IDomn)
294, 28syl 17 . . . . . . . . . 10 (𝜑𝐸 ∈ IDomn)
3029idomdomd 20726 . . . . . . . . 9 (𝜑𝐸 ∈ Domn)
3130ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ Domn)
3218ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ CRing)
3320ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐹 ∈ (SubRing‘𝐸))
346ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐴𝐵)
35 simpllr 776 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓 ∈ (Base‘𝑃))
361, 2, 3, 14, 32, 33, 34, 35evls1fvcl 22379 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑓)‘𝐴) ∈ 𝐵)
37 simplr 769 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔 ∈ (Base‘𝑃))
381, 2, 3, 14, 32, 33, 34, 37evls1fvcl 22379 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑔)‘𝐴) ∈ 𝐵)
39 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
4039fveq2d 6910 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑂‘(𝑓(.r𝑃)𝑔)) = (𝑂‘(𝑀𝐴)))
4140fveq1d 6908 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
42 eqid 2737 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
43 eqid 2737 . . . . . . . . . 10 (.r𝐸) = (.r𝐸)
441, 3, 2, 15, 14, 42, 43, 32, 33, 35, 37, 34evls1muld 22376 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)))
45 eqid 2737 . . . . . . . . . . . . . . 15 (LIdeal‘𝑃) = (LIdeal‘𝑃)
462, 10, 45ig1pcl 26218 . . . . . . . . . . . . . 14 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4717, 21, 46syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4813, 47eqeltrd 2841 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
49 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑞 = (𝑀𝐴) → (𝑂𝑞) = (𝑂‘(𝑀𝐴)))
5049fveq1d 6908 . . . . . . . . . . . . . 14 (𝑞 = (𝑀𝐴) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
5150eqeq1d 2739 . . . . . . . . . . . . 13 (𝑞 = (𝑀𝐴) → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5251elrab 3692 . . . . . . . . . . . 12 ((𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ↔ ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5348, 52sylib 218 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5453simprd 495 . . . . . . . . . 10 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5554ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5641, 44, 553eqtr3d 2785 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸))
573, 43, 7domneq0 20708 . . . . . . . . 9 ((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) → ((((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸) ↔ (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸))))
5857biimpa 476 . . . . . . . 8 (((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) ∧ (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
5931, 36, 38, 56, 58syl31anc 1375 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
604ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
615ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
6234adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
63 minplyirred.2 . . . . . . . . . 10 𝑍 = (0g𝑃)
64 minplyirred.3 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ≠ 𝑍)
6564ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑀𝐴) ≠ 𝑍)
6665adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
6735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
68 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
69 simplr 769 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
70 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → ((𝑂𝑓)‘𝐴) = (0g𝐸))
71 fldsdrgfld 20799 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
724, 5, 71syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
73 fldidom 20771 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
7574idomdomd 20726 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸s 𝐹) ∈ Domn)
762ply1domn 26163 . . . . . . . . . . . . . . . 16 ((𝐸s 𝐹) ∈ Domn → 𝑃 ∈ Domn)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑃 ∈ Domn)
7939, 65eqnetrd 3008 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) ≠ 𝑍)
8014, 42, 63domneq0 20708 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = 𝑍 ↔ (𝑓 = 𝑍𝑔 = 𝑍)))
8180necon3abid 2977 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) ≠ 𝑍 ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍)))
8281biimpa 476 . . . . . . . . . . . . . 14 (((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) ≠ 𝑍) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8378, 35, 37, 79, 82syl31anc 1375 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
84 neanior 3035 . . . . . . . . . . . . 13 ((𝑓𝑍𝑔𝑍) ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8583, 84sylibr 234 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓𝑍𝑔𝑍))
8685simpld 494 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓𝑍)
8786adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
8885simprd 495 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔𝑍)
8988adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
901, 2, 3, 60, 61, 62, 11, 63, 66, 67, 68, 69, 70, 87, 89minplyirredlem 33753 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Unit‘𝑃))
9190ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) → 𝑔 ∈ (Unit‘𝑃)))
924ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
935ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
9434adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
9565adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
96 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
9735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
9872fldcrngd 20742 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
992ply1crng 22200 . . . . . . . . . . . . . 14 ((𝐸s 𝐹) ∈ CRing → 𝑃 ∈ CRing)
10098, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
101100ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑃 ∈ CRing)
10214, 42crngcom 20248 . . . . . . . . . . . 12 ((𝑃 ∈ CRing ∧ 𝑔 ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
103101, 96, 97, 102syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
104 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
105103, 104eqtrd 2777 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑀𝐴))
106 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → ((𝑂𝑔)‘𝐴) = (0g𝐸))
10788adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
10886adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
1091, 2, 3, 92, 93, 94, 11, 63, 95, 96, 97, 105, 106, 107, 108minplyirredlem 33753 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Unit‘𝑃))
110109ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑔)‘𝐴) = (0g𝐸) → 𝑓 ∈ (Unit‘𝑃)))
11191, 110orim12d 967 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃))))
11259, 111mpd 15 . . . . . 6 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃)))
113112orcomd 872 . . . . 5 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))
114113ex 412 . . . 4 (((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
115114anasss 466 . . 3 ((𝜑 ∧ (𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃))) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
116115ralrimivva 3202 . 2 (𝜑 → ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
117 eqid 2737 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
118 eqid 2737 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
11914, 117, 118, 42isirred2 20421 . 2 ((𝑀𝐴) ∈ (Irred‘𝑃) ↔ ((𝑀𝐴) ∈ (Base‘𝑃) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃) ∧ ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))))
12012, 27, 116, 119syl3anbrc 1344 1 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  dom cdm 5685  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  0gc0g 17484  CRingccrg 20231  Unitcui 20355  Irredcir 20356  NzRingcnzr 20512  SubRingcsubrg 20569  Domncdomn 20692  IDomncidom 20693  DivRingcdr 20729  Fieldcfield 20730  SubDRingcsdrg 20787  LIdealclidl 21216  RSpancrsp 21217  Poly1cpl1 22178   evalSub1 ces1 22317  idlGen1pcig1p 26169   minPoly cminply 33742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-irred 20359  df-invr 20388  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-sdrg 20788  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-ig1p 26174  df-minply 33743
This theorem is referenced by:  irredminply  33757  algextdeglem4  33761
  Copyright terms: Public domain W3C validator