Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirred Structured version   Visualization version   GIF version

Theorem minplyirred 33694
Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Assertion
Ref Expression
minplyirred (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))

Proof of Theorem minplyirred
Dummy variables 𝑞 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.o . . 3 𝑂 = (𝐸 evalSub1 𝐹)
2 ply1annig1p.p . . 3 𝑃 = (Poly1‘(𝐸s 𝐹))
3 ply1annig1p.b . . 3 𝐵 = (Base‘𝐸)
4 ply1annig1p.e . . 3 (𝜑𝐸 ∈ Field)
5 ply1annig1p.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 ply1annig1p.a . . 3 (𝜑𝐴𝐵)
7 eqid 2729 . . 3 (0g𝐸) = (0g𝐸)
8 eqid 2729 . . 3 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
9 eqid 2729 . . 3 (RSpan‘𝑃) = (RSpan‘𝑃)
10 eqid 2729 . . 3 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
11 minplyirred.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplycl 33689 . 2 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplyval 33688 . . 3 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
14 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
15 eqid 2729 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
1615sdrgdrng 20710 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
175, 16syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
184fldcrngd 20662 . . . . 5 (𝜑𝐸 ∈ CRing)
19 sdrgsubrg 20711 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
205, 19syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
211, 2, 3, 18, 20, 6, 7, 8ply1annidl 33685 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
224flddrngd 20661 . . . . . 6 (𝜑𝐸 ∈ DivRing)
23 drngnzr 20668 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
2422, 23syl 17 . . . . 5 (𝜑𝐸 ∈ NzRing)
251, 2, 3, 18, 20, 6, 7, 8, 14, 24ply1annnr 33686 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ≠ (Base‘𝑃))
262, 10, 14, 17, 21, 25ig1pnunit 33559 . . 3 (𝜑 → ¬ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ (Unit‘𝑃))
2713, 26eqneltrd 2848 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
28 fldidom 20691 . . . . . . . . . . 11 (𝐸 ∈ Field → 𝐸 ∈ IDomn)
294, 28syl 17 . . . . . . . . . 10 (𝜑𝐸 ∈ IDomn)
3029idomdomd 20646 . . . . . . . . 9 (𝜑𝐸 ∈ Domn)
3130ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ Domn)
3218ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ CRing)
3320ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐹 ∈ (SubRing‘𝐸))
346ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐴𝐵)
35 simpllr 775 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓 ∈ (Base‘𝑃))
361, 2, 3, 14, 32, 33, 34, 35evls1fvcl 22295 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑓)‘𝐴) ∈ 𝐵)
37 simplr 768 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔 ∈ (Base‘𝑃))
381, 2, 3, 14, 32, 33, 34, 37evls1fvcl 22295 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑔)‘𝐴) ∈ 𝐵)
39 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
4039fveq2d 6844 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑂‘(𝑓(.r𝑃)𝑔)) = (𝑂‘(𝑀𝐴)))
4140fveq1d 6842 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
42 eqid 2729 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
43 eqid 2729 . . . . . . . . . 10 (.r𝐸) = (.r𝐸)
441, 3, 2, 15, 14, 42, 43, 32, 33, 35, 37, 34evls1muld 22292 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)))
45 eqid 2729 . . . . . . . . . . . . . . 15 (LIdeal‘𝑃) = (LIdeal‘𝑃)
462, 10, 45ig1pcl 26117 . . . . . . . . . . . . . 14 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4717, 21, 46syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4813, 47eqeltrd 2828 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
49 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑞 = (𝑀𝐴) → (𝑂𝑞) = (𝑂‘(𝑀𝐴)))
5049fveq1d 6842 . . . . . . . . . . . . . 14 (𝑞 = (𝑀𝐴) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
5150eqeq1d 2731 . . . . . . . . . . . . 13 (𝑞 = (𝑀𝐴) → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5251elrab 3656 . . . . . . . . . . . 12 ((𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ↔ ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5348, 52sylib 218 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5453simprd 495 . . . . . . . . . 10 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5554ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5641, 44, 553eqtr3d 2772 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸))
573, 43, 7domneq0 20628 . . . . . . . . 9 ((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) → ((((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸) ↔ (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸))))
5857biimpa 476 . . . . . . . 8 (((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) ∧ (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
5931, 36, 38, 56, 58syl31anc 1375 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
604ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
615ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
6234adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
63 minplyirred.2 . . . . . . . . . 10 𝑍 = (0g𝑃)
64 minplyirred.3 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ≠ 𝑍)
6564ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑀𝐴) ≠ 𝑍)
6665adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
6735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
68 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
69 simplr 768 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
70 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → ((𝑂𝑓)‘𝐴) = (0g𝐸))
71 fldsdrgfld 20718 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
724, 5, 71syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
73 fldidom 20691 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
7574idomdomd 20646 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸s 𝐹) ∈ Domn)
762ply1domn 26062 . . . . . . . . . . . . . . . 16 ((𝐸s 𝐹) ∈ Domn → 𝑃 ∈ Domn)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑃 ∈ Domn)
7939, 65eqnetrd 2992 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) ≠ 𝑍)
8014, 42, 63domneq0 20628 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = 𝑍 ↔ (𝑓 = 𝑍𝑔 = 𝑍)))
8180necon3abid 2961 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) ≠ 𝑍 ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍)))
8281biimpa 476 . . . . . . . . . . . . . 14 (((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) ≠ 𝑍) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8378, 35, 37, 79, 82syl31anc 1375 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
84 neanior 3018 . . . . . . . . . . . . 13 ((𝑓𝑍𝑔𝑍) ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8583, 84sylibr 234 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓𝑍𝑔𝑍))
8685simpld 494 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓𝑍)
8786adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
8885simprd 495 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔𝑍)
8988adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
901, 2, 3, 60, 61, 62, 11, 63, 66, 67, 68, 69, 70, 87, 89minplyirredlem 33693 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Unit‘𝑃))
9190ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) → 𝑔 ∈ (Unit‘𝑃)))
924ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
935ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
9434adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
9565adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
96 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
9735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
9872fldcrngd 20662 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
992ply1crng 22116 . . . . . . . . . . . . . 14 ((𝐸s 𝐹) ∈ CRing → 𝑃 ∈ CRing)
10098, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
101100ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑃 ∈ CRing)
10214, 42crngcom 20171 . . . . . . . . . . . 12 ((𝑃 ∈ CRing ∧ 𝑔 ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
103101, 96, 97, 102syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
104 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
105103, 104eqtrd 2764 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑀𝐴))
106 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → ((𝑂𝑔)‘𝐴) = (0g𝐸))
10788adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
10886adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
1091, 2, 3, 92, 93, 94, 11, 63, 95, 96, 97, 105, 106, 107, 108minplyirredlem 33693 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Unit‘𝑃))
110109ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑔)‘𝐴) = (0g𝐸) → 𝑓 ∈ (Unit‘𝑃)))
11191, 110orim12d 966 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃))))
11259, 111mpd 15 . . . . . 6 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃)))
113112orcomd 871 . . . . 5 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))
114113ex 412 . . . 4 (((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
115114anasss 466 . . 3 ((𝜑 ∧ (𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃))) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
116115ralrimivva 3178 . 2 (𝜑 → ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
117 eqid 2729 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
118 eqid 2729 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
11914, 117, 118, 42isirred2 20341 . 2 ((𝑀𝐴) ∈ (Irred‘𝑃) ↔ ((𝑀𝐴) ∈ (Base‘𝑃) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃) ∧ ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))))
12012, 27, 116, 119syl3anbrc 1344 1 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  dom cdm 5631  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  .rcmulr 17197  0gc0g 17378  CRingccrg 20154  Unitcui 20275  Irredcir 20276  NzRingcnzr 20432  SubRingcsubrg 20489  Domncdomn 20612  IDomncidom 20613  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706  LIdealclidl 21148  RSpancrsp 21149  Poly1cpl1 22094   evalSub1 ces1 22233  idlGen1pcig1p 26068   minPoly cminply 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-cnfld 21297  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-ig1p 26073  df-minply 33683
This theorem is referenced by:  irredminply  33699  algextdeglem4  33703
  Copyright terms: Public domain W3C validator