Step | Hyp | Ref
| Expression |
1 | | ply1annig1p.o |
. . 3
β’ π = (πΈ evalSub1 πΉ) |
2 | | ply1annig1p.p |
. . 3
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
3 | | ply1annig1p.b |
. . 3
β’ π΅ = (BaseβπΈ) |
4 | | ply1annig1p.e |
. . 3
β’ (π β πΈ β Field) |
5 | | ply1annig1p.f |
. . 3
β’ (π β πΉ β (SubDRingβπΈ)) |
6 | | ply1annig1p.a |
. . 3
β’ (π β π΄ β π΅) |
7 | | eqid 2732 |
. . 3
β’
(0gβπΈ) = (0gβπΈ) |
8 | | eqid 2732 |
. . 3
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
9 | | eqid 2732 |
. . 3
β’
(RSpanβπ) =
(RSpanβπ) |
10 | | eqid 2732 |
. . 3
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
11 | | minplyirred.1 |
. . 3
β’ π = (πΈ minPoly πΉ) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | minplycl 32762 |
. 2
β’ (π β (πβπ΄) β (Baseβπ)) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | minplyval 32761 |
. . 3
β’ (π β (πβπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
14 | | eqid 2732 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
15 | | eqid 2732 |
. . . . . 6
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
16 | 15 | sdrgdrng 20405 |
. . . . 5
β’ (πΉ β (SubDRingβπΈ) β (πΈ βΎs πΉ) β DivRing) |
17 | 5, 16 | syl 17 |
. . . 4
β’ (π β (πΈ βΎs πΉ) β DivRing) |
18 | 4 | fldcrngd 20369 |
. . . . 5
β’ (π β πΈ β CRing) |
19 | | sdrgsubrg 20406 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
20 | 5, 19 | syl 17 |
. . . . 5
β’ (π β πΉ β (SubRingβπΈ)) |
21 | 1, 2, 3, 18, 20, 6, 7, 8 | ply1annidl 32758 |
. . . 4
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} β (LIdealβπ)) |
22 | 4 | flddrngd 20368 |
. . . . . 6
β’ (π β πΈ β DivRing) |
23 | | drngnzr 20376 |
. . . . . 6
β’ (πΈ β DivRing β πΈ β NzRing) |
24 | 22, 23 | syl 17 |
. . . . 5
β’ (π β πΈ β NzRing) |
25 | 1, 2, 3, 18, 20, 6, 7, 8, 14,
24 | ply1annnr 32759 |
. . . 4
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} β (Baseβπ)) |
26 | 2, 10, 14, 17, 21, 25 | ig1pnunit 32665 |
. . 3
β’ (π β Β¬
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) β (Unitβπ)) |
27 | 13, 26 | eqneltrd 2853 |
. 2
β’ (π β Β¬ (πβπ΄) β (Unitβπ)) |
28 | | fldidom 20922 |
. . . . . . . . . . 11
β’ (πΈ β Field β πΈ β IDomn) |
29 | 4, 28 | syl 17 |
. . . . . . . . . 10
β’ (π β πΈ β IDomn) |
30 | 29 | idomdomd 32369 |
. . . . . . . . 9
β’ (π β πΈ β Domn) |
31 | 30 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β πΈ β Domn) |
32 | 18 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β πΈ β CRing) |
33 | 20 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β πΉ β (SubRingβπΈ)) |
34 | 6 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π΄ β π΅) |
35 | | simpllr 774 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π β (Baseβπ)) |
36 | 1, 2, 3, 14, 32, 33, 34, 35 | evls1fvcl 32753 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((πβπ)βπ΄) β π΅) |
37 | | simplr 767 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π β (Baseβπ)) |
38 | 1, 2, 3, 14, 32, 33, 34, 37 | evls1fvcl 32753 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((πβπ)βπ΄) β π΅) |
39 | | simpr 485 |
. . . . . . . . . . 11
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (π(.rβπ)π) = (πβπ΄)) |
40 | 39 | fveq2d 6895 |
. . . . . . . . . 10
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (πβ(π(.rβπ)π)) = (πβ(πβπ΄))) |
41 | 40 | fveq1d 6893 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((πβ(π(.rβπ)π))βπ΄) = ((πβ(πβπ΄))βπ΄)) |
42 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπ) = (.rβπ) |
43 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπΈ) = (.rβπΈ) |
44 | 1, 3, 2, 15, 14, 42, 43, 32, 33, 35, 37, 34 | evls1muld 32644 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((πβ(π(.rβπ)π))βπ΄) = (((πβπ)βπ΄)(.rβπΈ)((πβπ)βπ΄))) |
45 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(LIdealβπ) =
(LIdealβπ) |
46 | 2, 10, 45 | ig1pcl 25692 |
. . . . . . . . . . . . . 14
β’ (((πΈ βΎs πΉ) β DivRing β§ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} β (LIdealβπ)) β ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
47 | 17, 21, 46 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β
((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
48 | 13, 47 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ (π β (πβπ΄) β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
49 | | fveq2 6891 |
. . . . . . . . . . . . . . 15
β’ (π = (πβπ΄) β (πβπ) = (πβ(πβπ΄))) |
50 | 49 | fveq1d 6893 |
. . . . . . . . . . . . . 14
β’ (π = (πβπ΄) β ((πβπ)βπ΄) = ((πβ(πβπ΄))βπ΄)) |
51 | 50 | eqeq1d 2734 |
. . . . . . . . . . . . 13
β’ (π = (πβπ΄) β (((πβπ)βπ΄) = (0gβπΈ) β ((πβ(πβπ΄))βπ΄) = (0gβπΈ))) |
52 | 51 | elrab 3683 |
. . . . . . . . . . . 12
β’ ((πβπ΄) β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} β ((πβπ΄) β dom π β§ ((πβ(πβπ΄))βπ΄) = (0gβπΈ))) |
53 | 48, 52 | sylib 217 |
. . . . . . . . . . 11
β’ (π β ((πβπ΄) β dom π β§ ((πβ(πβπ΄))βπ΄) = (0gβπΈ))) |
54 | 53 | simprd 496 |
. . . . . . . . . 10
β’ (π β ((πβ(πβπ΄))βπ΄) = (0gβπΈ)) |
55 | 54 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((πβ(πβπ΄))βπ΄) = (0gβπΈ)) |
56 | 41, 44, 55 | 3eqtr3d 2780 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (((πβπ)βπ΄)(.rβπΈ)((πβπ)βπ΄)) = (0gβπΈ)) |
57 | 3, 43, 7 | domneq0 20912 |
. . . . . . . . 9
β’ ((πΈ β Domn β§ ((πβπ)βπ΄) β π΅ β§ ((πβπ)βπ΄) β π΅) β ((((πβπ)βπ΄)(.rβπΈ)((πβπ)βπ΄)) = (0gβπΈ) β (((πβπ)βπ΄) = (0gβπΈ) β¨ ((πβπ)βπ΄) = (0gβπΈ)))) |
58 | 57 | biimpa 477 |
. . . . . . . 8
β’ (((πΈ β Domn β§ ((πβπ)βπ΄) β π΅ β§ ((πβπ)βπ΄) β π΅) β§ (((πβπ)βπ΄)(.rβπΈ)((πβπ)βπ΄)) = (0gβπΈ)) β (((πβπ)βπ΄) = (0gβπΈ) β¨ ((πβπ)βπ΄) = (0gβπΈ))) |
59 | 31, 36, 38, 56, 58 | syl31anc 1373 |
. . . . . . 7
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (((πβπ)βπ΄) = (0gβπΈ) β¨ ((πβπ)βπ΄) = (0gβπΈ))) |
60 | 4 | ad4antr 730 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β πΈ β Field) |
61 | 5 | ad4antr 730 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β πΉ β (SubDRingβπΈ)) |
62 | 34 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π΄ β π΅) |
63 | | minplyirred.2 |
. . . . . . . . . 10
β’ π = (0gβπ) |
64 | | minplyirred.3 |
. . . . . . . . . . . 12
β’ (π β (πβπ΄) β π) |
65 | 64 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (πβπ΄) β π) |
66 | 65 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (πβπ΄) β π) |
67 | 35 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Baseβπ)) |
68 | | simpllr 774 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Baseβπ)) |
69 | | simplr 767 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (π(.rβπ)π) = (πβπ΄)) |
70 | | simpr 485 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β ((πβπ)βπ΄) = (0gβπΈ)) |
71 | | fldsdrgfld 20413 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
72 | 4, 5, 71 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ βΎs πΉ) β Field) |
73 | | fldidom 20922 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΈ βΎs πΉ) β Field β (πΈ βΎs πΉ) β IDomn) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΈ βΎs πΉ) β IDomn) |
75 | 74 | idomdomd 32369 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΈ βΎs πΉ) β Domn) |
76 | 2 | ply1domn 25640 |
. . . . . . . . . . . . . . . 16
β’ ((πΈ βΎs πΉ) β Domn β π β Domn) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π β Domn) |
78 | 77 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π β Domn) |
79 | 39, 65 | eqnetrd 3008 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (π(.rβπ)π) β π) |
80 | 14, 42, 63 | domneq0 20912 |
. . . . . . . . . . . . . . . 16
β’ ((π β Domn β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((π(.rβπ)π) = π β (π = π β¨ π = π))) |
81 | 80 | necon3abid 2977 |
. . . . . . . . . . . . . . 15
β’ ((π β Domn β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((π(.rβπ)π) β π β Β¬ (π = π β¨ π = π))) |
82 | 81 | biimpa 477 |
. . . . . . . . . . . . . 14
β’ (((π β Domn β§ π β (Baseβπ) β§ π β (Baseβπ)) β§ (π(.rβπ)π) β π) β Β¬ (π = π β¨ π = π)) |
83 | 78, 35, 37, 79, 82 | syl31anc 1373 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β Β¬ (π = π β¨ π = π)) |
84 | | neanior 3035 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π β π) β Β¬ (π = π β¨ π = π)) |
85 | 83, 84 | sylibr 233 |
. . . . . . . . . . . 12
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (π β π β§ π β π)) |
86 | 85 | simpld 495 |
. . . . . . . . . . 11
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π β π) |
87 | 86 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β π) |
88 | 85 | simprd 496 |
. . . . . . . . . . 11
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β π β π) |
89 | 88 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β π) |
90 | 1, 2, 3, 60, 61, 62, 11, 63, 66, 67, 68, 69, 70, 87, 89 | minplyirredlem 32764 |
. . . . . . . . 9
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Unitβπ)) |
91 | 90 | ex 413 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (((πβπ)βπ΄) = (0gβπΈ) β π β (Unitβπ))) |
92 | 4 | ad4antr 730 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β πΈ β Field) |
93 | 5 | ad4antr 730 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β πΉ β (SubDRingβπΈ)) |
94 | 34 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π΄ β π΅) |
95 | 65 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (πβπ΄) β π) |
96 | | simpllr 774 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Baseβπ)) |
97 | 35 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Baseβπ)) |
98 | 72 | fldcrngd 20369 |
. . . . . . . . . . . . . 14
β’ (π β (πΈ βΎs πΉ) β CRing) |
99 | 2 | ply1crng 21721 |
. . . . . . . . . . . . . 14
β’ ((πΈ βΎs πΉ) β CRing β π β CRing) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β CRing) |
101 | 100 | ad4antr 730 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β CRing) |
102 | 14, 42 | crngcom 20073 |
. . . . . . . . . . . 12
β’ ((π β CRing β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π(.rβπ)π) = (π(.rβπ)π)) |
103 | 101, 96, 97, 102 | syl3anc 1371 |
. . . . . . . . . . 11
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (π(.rβπ)π) = (π(.rβπ)π)) |
104 | | simplr 767 |
. . . . . . . . . . 11
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (π(.rβπ)π) = (πβπ΄)) |
105 | 103, 104 | eqtrd 2772 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β (π(.rβπ)π) = (πβπ΄)) |
106 | | simpr 485 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β ((πβπ)βπ΄) = (0gβπΈ)) |
107 | 88 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β π) |
108 | 86 | adantr 481 |
. . . . . . . . . 10
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β π) |
109 | 1, 2, 3, 92, 93, 94, 11, 63, 95, 96, 97, 105, 106, 107, 108 | minplyirredlem 32764 |
. . . . . . . . 9
β’
(((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β§ ((πβπ)βπ΄) = (0gβπΈ)) β π β (Unitβπ)) |
110 | 109 | ex 413 |
. . . . . . . 8
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (((πβπ)βπ΄) = (0gβπΈ) β π β (Unitβπ))) |
111 | 91, 110 | orim12d 963 |
. . . . . . 7
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β ((((πβπ)βπ΄) = (0gβπΈ) β¨ ((πβπ)βπ΄) = (0gβπΈ)) β (π β (Unitβπ) β¨ π β (Unitβπ)))) |
112 | 59, 111 | mpd 15 |
. . . . . 6
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (π β (Unitβπ) β¨ π β (Unitβπ))) |
113 | 112 | orcomd 869 |
. . . . 5
β’ ((((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β§ (π(.rβπ)π) = (πβπ΄)) β (π β (Unitβπ) β¨ π β (Unitβπ))) |
114 | 113 | ex 413 |
. . . 4
β’ (((π β§ π β (Baseβπ)) β§ π β (Baseβπ)) β ((π(.rβπ)π) = (πβπ΄) β (π β (Unitβπ) β¨ π β (Unitβπ)))) |
115 | 114 | anasss 467 |
. . 3
β’ ((π β§ (π β (Baseβπ) β§ π β (Baseβπ))) β ((π(.rβπ)π) = (πβπ΄) β (π β (Unitβπ) β¨ π β (Unitβπ)))) |
116 | 115 | ralrimivva 3200 |
. 2
β’ (π β βπ β (Baseβπ)βπ β (Baseβπ)((π(.rβπ)π) = (πβπ΄) β (π β (Unitβπ) β¨ π β (Unitβπ)))) |
117 | | eqid 2732 |
. . 3
β’
(Unitβπ) =
(Unitβπ) |
118 | | eqid 2732 |
. . 3
β’
(Irredβπ) =
(Irredβπ) |
119 | 14, 117, 118, 42 | isirred2 20234 |
. 2
β’ ((πβπ΄) β (Irredβπ) β ((πβπ΄) β (Baseβπ) β§ Β¬ (πβπ΄) β (Unitβπ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((π(.rβπ)π) = (πβπ΄) β (π β (Unitβπ) β¨ π β (Unitβπ))))) |
120 | 12, 27, 116, 119 | syl3anbrc 1343 |
1
β’ (π β (πβπ΄) β (Irredβπ)) |