Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyirred Structured version   Visualization version   GIF version

Theorem minplyirred 33745
Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
minplyirred.1 𝑀 = (𝐸 minPoly 𝐹)
minplyirred.2 𝑍 = (0g𝑃)
minplyirred.3 (𝜑 → (𝑀𝐴) ≠ 𝑍)
Assertion
Ref Expression
minplyirred (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))

Proof of Theorem minplyirred
Dummy variables 𝑞 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1annig1p.o . . 3 𝑂 = (𝐸 evalSub1 𝐹)
2 ply1annig1p.p . . 3 𝑃 = (Poly1‘(𝐸s 𝐹))
3 ply1annig1p.b . . 3 𝐵 = (Base‘𝐸)
4 ply1annig1p.e . . 3 (𝜑𝐸 ∈ Field)
5 ply1annig1p.f . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 ply1annig1p.a . . 3 (𝜑𝐴𝐵)
7 eqid 2735 . . 3 (0g𝐸) = (0g𝐸)
8 eqid 2735 . . 3 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
9 eqid 2735 . . 3 (RSpan‘𝑃) = (RSpan‘𝑃)
10 eqid 2735 . . 3 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
11 minplyirred.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplycl 33740 . 2 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minplyval 33739 . . 3 (𝜑 → (𝑀𝐴) = ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
14 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
15 eqid 2735 . . . . . 6 (𝐸s 𝐹) = (𝐸s 𝐹)
1615sdrgdrng 20750 . . . . 5 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
175, 16syl 17 . . . 4 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
184fldcrngd 20702 . . . . 5 (𝜑𝐸 ∈ CRing)
19 sdrgsubrg 20751 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
205, 19syl 17 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐸))
211, 2, 3, 18, 20, 6, 7, 8ply1annidl 33736 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃))
224flddrngd 20701 . . . . . 6 (𝜑𝐸 ∈ DivRing)
23 drngnzr 20708 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
2422, 23syl 17 . . . . 5 (𝜑𝐸 ∈ NzRing)
251, 2, 3, 18, 20, 6, 7, 8, 14, 24ply1annnr 33737 . . . 4 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ≠ (Base‘𝑃))
262, 10, 14, 17, 21, 25ig1pnunit 33610 . . 3 (𝜑 → ¬ ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ (Unit‘𝑃))
2713, 26eqneltrd 2854 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ (Unit‘𝑃))
28 fldidom 20731 . . . . . . . . . . 11 (𝐸 ∈ Field → 𝐸 ∈ IDomn)
294, 28syl 17 . . . . . . . . . 10 (𝜑𝐸 ∈ IDomn)
3029idomdomd 20686 . . . . . . . . 9 (𝜑𝐸 ∈ Domn)
3130ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ Domn)
3218ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐸 ∈ CRing)
3320ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐹 ∈ (SubRing‘𝐸))
346ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝐴𝐵)
35 simpllr 775 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓 ∈ (Base‘𝑃))
361, 2, 3, 14, 32, 33, 34, 35evls1fvcl 22313 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑓)‘𝐴) ∈ 𝐵)
37 simplr 768 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔 ∈ (Base‘𝑃))
381, 2, 3, 14, 32, 33, 34, 37evls1fvcl 22313 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂𝑔)‘𝐴) ∈ 𝐵)
39 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
4039fveq2d 6880 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑂‘(𝑓(.r𝑃)𝑔)) = (𝑂‘(𝑀𝐴)))
4140fveq1d 6878 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
42 eqid 2735 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
43 eqid 2735 . . . . . . . . . 10 (.r𝐸) = (.r𝐸)
441, 3, 2, 15, 14, 42, 43, 32, 33, 35, 37, 34evls1muld 22310 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑓(.r𝑃)𝑔))‘𝐴) = (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)))
45 eqid 2735 . . . . . . . . . . . . . . 15 (LIdeal‘𝑃) = (LIdeal‘𝑃)
462, 10, 45ig1pcl 26136 . . . . . . . . . . . . . 14 (((𝐸s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4717, 21, 46syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((idlGen1p‘(𝐸s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
4813, 47eqeltrd 2834 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
49 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑞 = (𝑀𝐴) → (𝑂𝑞) = (𝑂‘(𝑀𝐴)))
5049fveq1d 6878 . . . . . . . . . . . . . 14 (𝑞 = (𝑀𝐴) → ((𝑂𝑞)‘𝐴) = ((𝑂‘(𝑀𝐴))‘𝐴))
5150eqeq1d 2737 . . . . . . . . . . . . 13 (𝑞 = (𝑀𝐴) → (((𝑂𝑞)‘𝐴) = (0g𝐸) ↔ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5251elrab 3671 . . . . . . . . . . . 12 ((𝑀𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} ↔ ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5348, 52sylib 218 . . . . . . . . . . 11 (𝜑 → ((𝑀𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸)))
5453simprd 495 . . . . . . . . . 10 (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5554ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((𝑂‘(𝑀𝐴))‘𝐴) = (0g𝐸))
5641, 44, 553eqtr3d 2778 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸))
573, 43, 7domneq0 20668 . . . . . . . . 9 ((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) → ((((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸) ↔ (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸))))
5857biimpa 476 . . . . . . . 8 (((𝐸 ∈ Domn ∧ ((𝑂𝑓)‘𝐴) ∈ 𝐵 ∧ ((𝑂𝑔)‘𝐴) ∈ 𝐵) ∧ (((𝑂𝑓)‘𝐴)(.r𝐸)((𝑂𝑔)‘𝐴)) = (0g𝐸)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
5931, 36, 38, 56, 58syl31anc 1375 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)))
604ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
615ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
6234adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
63 minplyirred.2 . . . . . . . . . 10 𝑍 = (0g𝑃)
64 minplyirred.3 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ≠ 𝑍)
6564ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑀𝐴) ≠ 𝑍)
6665adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
6735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
68 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
69 simplr 768 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
70 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → ((𝑂𝑓)‘𝐴) = (0g𝐸))
71 fldsdrgfld 20758 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
724, 5, 71syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
73 fldidom 20731 . . . . . . . . . . . . . . . . . 18 ((𝐸s 𝐹) ∈ Field → (𝐸s 𝐹) ∈ IDomn)
7472, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ IDomn)
7574idomdomd 20686 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸s 𝐹) ∈ Domn)
762ply1domn 26081 . . . . . . . . . . . . . . . 16 ((𝐸s 𝐹) ∈ Domn → 𝑃 ∈ Domn)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑃 ∈ Domn)
7939, 65eqnetrd 2999 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓(.r𝑃)𝑔) ≠ 𝑍)
8014, 42, 63domneq0 20668 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = 𝑍 ↔ (𝑓 = 𝑍𝑔 = 𝑍)))
8180necon3abid 2968 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) ≠ 𝑍 ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍)))
8281biimpa 476 . . . . . . . . . . . . . 14 (((𝑃 ∈ Domn ∧ 𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) ≠ 𝑍) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8378, 35, 37, 79, 82syl31anc 1375 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ¬ (𝑓 = 𝑍𝑔 = 𝑍))
84 neanior 3025 . . . . . . . . . . . . 13 ((𝑓𝑍𝑔𝑍) ↔ ¬ (𝑓 = 𝑍𝑔 = 𝑍))
8583, 84sylibr 234 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓𝑍𝑔𝑍))
8685simpld 494 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑓𝑍)
8786adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
8885simprd 495 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → 𝑔𝑍)
8988adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
901, 2, 3, 60, 61, 62, 11, 63, 66, 67, 68, 69, 70, 87, 89minplyirredlem 33744 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑓)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Unit‘𝑃))
9190ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑓)‘𝐴) = (0g𝐸) → 𝑔 ∈ (Unit‘𝑃)))
924ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐸 ∈ Field)
935ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐹 ∈ (SubDRing‘𝐸))
9434adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝐴𝐵)
9565adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑀𝐴) ≠ 𝑍)
96 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔 ∈ (Base‘𝑃))
9735adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Base‘𝑃))
9872fldcrngd 20702 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
992ply1crng 22134 . . . . . . . . . . . . . 14 ((𝐸s 𝐹) ∈ CRing → 𝑃 ∈ CRing)
10098, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
101100ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑃 ∈ CRing)
10214, 42crngcom 20211 . . . . . . . . . . . 12 ((𝑃 ∈ CRing ∧ 𝑔 ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
103101, 96, 97, 102syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑓(.r𝑃)𝑔))
104 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑓(.r𝑃)𝑔) = (𝑀𝐴))
105103, 104eqtrd 2770 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔(.r𝑃)𝑓) = (𝑀𝐴))
106 simpr 484 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → ((𝑂𝑔)‘𝐴) = (0g𝐸))
10788adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑔𝑍)
10886adantr 480 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓𝑍)
1091, 2, 3, 92, 93, 94, 11, 63, 95, 96, 97, 105, 106, 107, 108minplyirredlem 33744 . . . . . . . . 9 (((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) ∧ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → 𝑓 ∈ (Unit‘𝑃))
110109ex 412 . . . . . . . 8 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (((𝑂𝑔)‘𝐴) = (0g𝐸) → 𝑓 ∈ (Unit‘𝑃)))
11191, 110orim12d 966 . . . . . . 7 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → ((((𝑂𝑓)‘𝐴) = (0g𝐸) ∨ ((𝑂𝑔)‘𝐴) = (0g𝐸)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃))))
11259, 111mpd 15 . . . . . 6 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑔 ∈ (Unit‘𝑃) ∨ 𝑓 ∈ (Unit‘𝑃)))
113112orcomd 871 . . . . 5 ((((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ (𝑓(.r𝑃)𝑔) = (𝑀𝐴)) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))
114113ex 412 . . . 4 (((𝜑𝑓 ∈ (Base‘𝑃)) ∧ 𝑔 ∈ (Base‘𝑃)) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
115114anasss 466 . . 3 ((𝜑 ∧ (𝑓 ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃))) → ((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
116115ralrimivva 3187 . 2 (𝜑 → ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃))))
117 eqid 2735 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
118 eqid 2735 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
11914, 117, 118, 42isirred2 20381 . 2 ((𝑀𝐴) ∈ (Irred‘𝑃) ↔ ((𝑀𝐴) ∈ (Base‘𝑃) ∧ ¬ (𝑀𝐴) ∈ (Unit‘𝑃) ∧ ∀𝑓 ∈ (Base‘𝑃)∀𝑔 ∈ (Base‘𝑃)((𝑓(.r𝑃)𝑔) = (𝑀𝐴) → (𝑓 ∈ (Unit‘𝑃) ∨ 𝑔 ∈ (Unit‘𝑃)))))
12012, 27, 116, 119syl3anbrc 1344 1 (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  dom cdm 5654  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  0gc0g 17453  CRingccrg 20194  Unitcui 20315  Irredcir 20316  NzRingcnzr 20472  SubRingcsubrg 20529  Domncdomn 20652  IDomncidom 20653  DivRingcdr 20689  Fieldcfield 20690  SubDRingcsdrg 20746  LIdealclidl 21167  RSpancrsp 21168  Poly1cpl1 22112   evalSub1 ces1 22251  idlGen1pcig1p 26087   minPoly cminply 33733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-irred 20319  df-invr 20348  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-cnfld 21316  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-ig1p 26092  df-minply 33734
This theorem is referenced by:  irredminply  33750  algextdeglem4  33754
  Copyright terms: Public domain W3C validator