Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subridom Structured version   Visualization version   GIF version

Theorem subridom 33280
Description: A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
subridom.1 (𝜑𝑅 ∈ IDomn)
subridom.2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
subridom (𝜑 → (𝑅s 𝑆) ∈ IDomn)

Proof of Theorem subridom
StepHypRef Expression
1 subridom.1 . . . 4 (𝜑𝑅 ∈ IDomn)
21idomcringd 20687 . . 3 (𝜑𝑅 ∈ CRing)
3 subridom.2 . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
4 eqid 2735 . . . 4 (𝑅s 𝑆) = (𝑅s 𝑆)
54subrgcrng 20535 . . 3 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → (𝑅s 𝑆) ∈ CRing)
62, 3, 5syl2anc 584 . 2 (𝜑 → (𝑅s 𝑆) ∈ CRing)
71idomdomd 20686 . . 3 (𝜑𝑅 ∈ Domn)
87, 3subrdom 33279 . 2 (𝜑 → (𝑅s 𝑆) ∈ Domn)
9 isidom 20685 . 2 ((𝑅s 𝑆) ∈ IDomn ↔ ((𝑅s 𝑆) ∈ CRing ∧ (𝑅s 𝑆) ∈ Domn))
106, 8, 9sylanbrc 583 1 (𝜑 → (𝑅s 𝑆) ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6531  (class class class)co 7405  s cress 17251  CRingccrg 20194  SubRingcsubrg 20529  Domncdomn 20652  IDomncidom 20653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-nzr 20473  df-subrg 20530  df-domn 20655  df-idom 20656
This theorem is referenced by:  subrfld  33281
  Copyright terms: Public domain W3C validator