Proof of Theorem m1pmeq
| Step | Hyp | Ref
| Expression |
| 1 | | m1pmeq.1 |
. 2
⊢ (𝜑 → 𝐼 = (𝐾 · 𝐽)) |
| 2 | | m1pmeq.r |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Field) |
| 3 | 2 | flddrngd 20741 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ DivRing) |
| 4 | 3 | drngringd 20737 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ Ring) |
| 5 | | m1pmeq.h |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑈) |
| 6 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 7 | | m1pmeq.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑃) |
| 8 | 6, 7 | unitcl 20375 |
. . . . . 6
⊢ (𝐾 ∈ 𝑈 → 𝐾 ∈ (Base‘𝑃)) |
| 9 | 5, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (Base‘𝑃)) |
| 10 | 5, 7 | eleqtrdi 2851 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (Unit‘𝑃)) |
| 11 | | m1pmeq.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝐹) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 13 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 14 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝐹) = (0g‘𝐹) |
| 15 | | eqid 2737 |
. . . . . . . 8
⊢
(deg1‘𝐹) = (deg1‘𝐹) |
| 16 | 11, 12, 13, 14, 2, 15, 9 | ply1unit 33600 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (Unit‘𝑃) ↔ ((deg1‘𝐹)‘𝐾) = 0)) |
| 17 | 10, 16 | mpbid 232 |
. . . . . 6
⊢ (𝜑 →
((deg1‘𝐹)‘𝐾) = 0) |
| 18 | | 0le0 12367 |
. . . . . 6
⊢ 0 ≤
0 |
| 19 | 17, 18 | eqbrtrdi 5182 |
. . . . 5
⊢ (𝜑 →
((deg1‘𝐹)‘𝐾) ≤ 0) |
| 20 | 15, 11, 6, 12 | deg1le0 26150 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) →
(((deg1‘𝐹)‘𝐾) ≤ 0 ↔ 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0)))) |
| 21 | 20 | biimpa 476 |
. . . . 5
⊢ (((𝐹 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) ∧
((deg1‘𝐹)‘𝐾) ≤ 0) → 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0))) |
| 22 | 4, 9, 19, 21 | syl21anc 838 |
. . . 4
⊢ (𝜑 → 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0))) |
| 23 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝐹) = (.r‘𝐹) |
| 24 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝐹) = (1r‘𝐹) |
| 25 | 17 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) = ((coe1‘𝐾)‘0)) |
| 26 | | 0nn0 12541 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 27 | 17, 26 | eqeltrdi 2849 |
. . . . . . . . 9
⊢ (𝜑 →
((deg1‘𝐹)‘𝐾) ∈
ℕ0) |
| 28 | | eqid 2737 |
. . . . . . . . . 10
⊢
(coe1‘𝐾) = (coe1‘𝐾) |
| 29 | 28, 6, 11, 13 | coe1fvalcl 22214 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (Base‘𝑃) ∧
((deg1‘𝐹)‘𝐾) ∈ ℕ0) →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ∈ (Base‘𝐹)) |
| 30 | 9, 27, 29 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ∈ (Base‘𝐹)) |
| 31 | 25, 30 | eqeltrrd 2842 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐾)‘0) ∈ (Base‘𝐹)) |
| 32 | 13, 23, 24, 4, 31 | ringridmd 20270 |
. . . . . 6
⊢ (𝜑 →
(((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹)) =
((coe1‘𝐾)‘0)) |
| 33 | 1 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝜑 →
(coe1‘𝐼) =
(coe1‘(𝐾
·
𝐽))) |
| 34 | 1 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝜑 →
((deg1‘𝐹)‘𝐼) = ((deg1‘𝐹)‘(𝐾 · 𝐽))) |
| 35 | | eqid 2737 |
. . . . . . . . . 10
⊢
(RLReg‘𝐹) =
(RLReg‘𝐹) |
| 36 | | m1pmeq.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑃) |
| 37 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 38 | | drngnzr 20748 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ NzRing) |
| 39 | 3, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ NzRing) |
| 40 | 11 | ply1nz 26161 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ NzRing → 𝑃 ∈ NzRing) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ NzRing) |
| 42 | 7, 37, 41, 5 | unitnz 33243 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ≠ (0g‘𝑃)) |
| 43 | | fldidom 20771 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Field → 𝐹 ∈ IDomn) |
| 44 | 2, 43 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ IDomn) |
| 45 | 44 | idomdomd 20726 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ Domn) |
| 46 | 15, 11, 14, 6, 37, 4, 9, 19 | deg1le0eq0 33598 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 = (0g‘𝑃) ↔ ((coe1‘𝐾)‘0) =
(0g‘𝐹))) |
| 47 | 46 | necon3bid 2985 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ≠ (0g‘𝑃) ↔ ((coe1‘𝐾)‘0) ≠
(0g‘𝐹))) |
| 48 | 42, 47 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((coe1‘𝐾)‘0) ≠ (0g‘𝐹)) |
| 49 | 25, 48 | eqnetrd 3008 |
. . . . . . . . . . 11
⊢ (𝜑 →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ≠ (0g‘𝐹)) |
| 50 | 13, 35, 14 | domnrrg 20713 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Domn ∧
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ∈ (Base‘𝐹) ∧ ((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ≠ (0g‘𝐹)) →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ∈ (RLReg‘𝐹)) |
| 51 | 45, 30, 49, 50 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 →
((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾)) ∈ (RLReg‘𝐹)) |
| 52 | | m1pmeq.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑀) |
| 53 | | m1pmeq.m |
. . . . . . . . . . . 12
⊢ 𝑀 =
(Monic1p‘𝐹) |
| 54 | 11, 6, 53 | mon1pcl 26184 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ 𝑀 → 𝐽 ∈ (Base‘𝑃)) |
| 55 | 52, 54 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (Base‘𝑃)) |
| 56 | 11, 37, 53 | mon1pn0 26186 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ 𝑀 → 𝐽 ≠ (0g‘𝑃)) |
| 57 | 52, 56 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ≠ (0g‘𝑃)) |
| 58 | 15, 11, 35, 6, 36, 37, 4, 9, 42, 51, 55, 57 | deg1mul2 26153 |
. . . . . . . . 9
⊢ (𝜑 →
((deg1‘𝐹)‘(𝐾 · 𝐽)) = (((deg1‘𝐹)‘𝐾) + ((deg1‘𝐹)‘𝐽))) |
| 59 | 34, 58 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 →
((deg1‘𝐹)‘𝐼) = (((deg1‘𝐹)‘𝐾) + ((deg1‘𝐹)‘𝐽))) |
| 60 | 33, 59 | fveq12d 6913 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐼)‘((deg1‘𝐹)‘𝐼)) = ((coe1‘(𝐾 · 𝐽))‘(((deg1‘𝐹)‘𝐾) + ((deg1‘𝐹)‘𝐽)))) |
| 61 | | m1pmeq.f |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑀) |
| 62 | 15, 24, 53 | mon1pldg 26189 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑀 → ((coe1‘𝐼)‘((deg1‘𝐹)‘𝐼)) = (1r‘𝐹)) |
| 63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐼)‘((deg1‘𝐹)‘𝐼)) = (1r‘𝐹)) |
| 64 | 11, 36, 23, 6, 15, 37, 4, 9, 42, 55, 57 | coe1mul4 26139 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐾
·
𝐽))‘(((deg1‘𝐹)‘𝐾) + ((deg1‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾))(.r‘𝐹)((coe1‘𝐽)‘((deg1‘𝐹)‘𝐽)))) |
| 65 | 15, 24, 53 | mon1pldg 26189 |
. . . . . . . . . 10
⊢ (𝐽 ∈ 𝑀 → ((coe1‘𝐽)‘((deg1‘𝐹)‘𝐽)) = (1r‘𝐹)) |
| 66 | 52, 65 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
((coe1‘𝐽)‘((deg1‘𝐹)‘𝐽)) = (1r‘𝐹)) |
| 67 | 25, 66 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝜑 →
(((coe1‘𝐾)‘((deg1‘𝐹)‘𝐾))(.r‘𝐹)((coe1‘𝐽)‘((deg1‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹))) |
| 68 | 64, 67 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘(𝐾
·
𝐽))‘(((deg1‘𝐹)‘𝐾) + ((deg1‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹))) |
| 69 | 60, 63, 68 | 3eqtr3rd 2786 |
. . . . . 6
⊢ (𝜑 →
(((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
| 70 | 32, 69 | eqtr3d 2779 |
. . . . 5
⊢ (𝜑 →
((coe1‘𝐾)‘0) = (1r‘𝐹)) |
| 71 | 70 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → ((algSc‘𝑃)‘((coe1‘𝐾)‘0)) =
((algSc‘𝑃)‘(1r‘𝐹))) |
| 72 | | eqid 2737 |
. . . . 5
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 73 | 11, 12, 24, 72, 4 | ply1ascl1 22257 |
. . . 4
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝐹)) = (1r‘𝑃)) |
| 74 | 22, 71, 73 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → 𝐾 = (1r‘𝑃)) |
| 75 | 74 | oveq1d 7446 |
. 2
⊢ (𝜑 → (𝐾 · 𝐽) = ((1r‘𝑃) · 𝐽)) |
| 76 | 11 | ply1ring 22249 |
. . . 4
⊢ (𝐹 ∈ Ring → 𝑃 ∈ Ring) |
| 77 | 4, 76 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 78 | 6, 36, 72, 77, 55 | ringlidmd 20269 |
. 2
⊢ (𝜑 →
((1r‘𝑃)
·
𝐽) = 𝐽) |
| 79 | 1, 75, 78 | 3eqtrd 2781 |
1
⊢ (𝜑 → 𝐼 = 𝐽) |