Step | Hyp | Ref
| Expression |
1 | | rprmasso.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
2 | | rprmasso.p |
. . . 4
⊢ 𝑃 = (RPrime‘𝑅) |
3 | | rprmasso.d |
. . . 4
⊢ ∥ =
(∥r‘𝑅) |
4 | | eqid 2740 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | rprmasso.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ IDomn) |
6 | 5 | ad2antrr 725 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑅 ∈ IDomn) |
7 | | rprmasso2.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
8 | 7 | ad2antrr 725 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∈ 𝑃) |
9 | | simplr 768 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑡 ∈ 𝐵) |
10 | | rprmasso.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
11 | 1, 2, 5, 10 | rprmcl 33511 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 11 | ad2antrr 725 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑋 ∈ 𝐵) |
13 | 5 | idomringd 20750 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
14 | 1, 2, 5, 7 | rprmcl 33511 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | 1, 3 | dvdsrid 20393 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → 𝑌 ∥ 𝑌) |
16 | 13, 14, 15 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∥ 𝑌) |
17 | 16 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ 𝑌) |
18 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
19 | 17, 18 | breqtrrd 5194 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ (𝑡(.r‘𝑅)𝑋)) |
20 | 1, 2, 3, 4, 6, 8, 9, 12, 19 | rprmdvds 33512 |
. . 3
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → (𝑌 ∥ 𝑡 ∨ 𝑌 ∥ 𝑋)) |
21 | 11 | ad3antrrr 729 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑋 ∈ 𝐵) |
22 | | eqid 2740 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
23 | 9 | ad3antrrr 729 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ∈ 𝐵) |
24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑡 = (0g‘𝑅)) |
25 | 24 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → (𝑡(.r‘𝑅)𝑋) = ((0g‘𝑅)(.r‘𝑅)𝑋)) |
26 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
27 | 1, 4, 22, 13, 11 | ringlzd 20318 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((0g‘𝑅)(.r‘𝑅)𝑋) = (0g‘𝑅)) |
28 | 27 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → ((0g‘𝑅)(.r‘𝑅)𝑋) = (0g‘𝑅)) |
29 | 25, 26, 28 | 3eqtr3d 2788 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) |
30 | 2, 22, 5, 7 | rprmnz 33513 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
31 | 30 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑌 ≠ (0g‘𝑅)) |
32 | 31 | neneqd 2951 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → ¬ 𝑌 = (0g‘𝑅)) |
33 | 29, 32 | pm2.65da 816 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → ¬ 𝑡 = (0g‘𝑅)) |
34 | 33 | neqned 2953 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑡 ≠ (0g‘𝑅)) |
35 | 34 | ad3antrrr 729 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ≠ (0g‘𝑅)) |
36 | 23, 35 | eldifsnd 4812 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ∈ (𝐵 ∖ {(0g‘𝑅)})) |
37 | 13 | ad5antr 733 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ Ring) |
38 | | simplr 768 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑢 ∈ 𝐵) |
39 | 12 | ad3antrrr 729 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑋 ∈ 𝐵) |
40 | 1, 4, 37, 38, 39 | ringcld 20286 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑋) ∈ 𝐵) |
41 | | eqid 2740 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
42 | 1, 41 | ringidcl 20289 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
43 | 13, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
44 | 43 | ad5antr 733 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (1r‘𝑅) ∈ 𝐵) |
45 | 5 | idomdomd 20748 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Domn) |
46 | 45 | ad5antr 733 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ Domn) |
47 | 18 | ad3antrrr 729 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
48 | 47 | oveq2d 7464 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋)) = (𝑢(.r‘𝑅)𝑌)) |
49 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑌) = 𝑡) |
50 | 48, 49 | eqtrd 2780 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋)) = 𝑡) |
51 | 5 | idomcringd 20749 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
52 | 51 | ad5antr 733 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ CRing) |
53 | 1, 4, 52, 23, 38, 39 | crng12d 20285 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(𝑢(.r‘𝑅)𝑋)) = (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋))) |
54 | 1, 4, 41, 37, 23 | ringridmd 20296 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(1r‘𝑅)) = 𝑡) |
55 | 50, 53, 54 | 3eqtr4d 2790 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(𝑢(.r‘𝑅)𝑋)) = (𝑡(.r‘𝑅)(1r‘𝑅))) |
56 | 1, 22, 4, 36, 40, 44, 46, 55 | domnlcan 20743 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) |
57 | 14 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑌 ∈ 𝐵) |
58 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑌 ∥ 𝑡) |
59 | 1, 3, 4 | dvdsr2 20389 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝑌 ∥ 𝑡 ↔ ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡)) |
60 | 59 | biimpa 476 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡) |
61 | 57, 58, 60 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡) |
62 | 56, 61 | reximddv3 3178 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) |
63 | 1, 3, 4 | dvdsr2 20389 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥
(1r‘𝑅)
↔ ∃𝑢 ∈
𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅))) |
64 | 63 | biimpar 477 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) → 𝑋 ∥
(1r‘𝑅)) |
65 | 21, 62, 64 | syl2anc 583 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑋 ∥
(1r‘𝑅)) |
66 | 41, 3, 2, 51, 10 | rprmndvdsr1 33517 |
. . . . 5
⊢ (𝜑 → ¬ 𝑋 ∥
(1r‘𝑅)) |
67 | 66 | ad3antrrr 729 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ¬ 𝑋 ∥
(1r‘𝑅)) |
68 | 65, 67 | pm2.65da 816 |
. . 3
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → ¬ 𝑌 ∥ 𝑡) |
69 | 20, 68 | orcnd 877 |
. 2
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ 𝑋) |
70 | | rprmasso.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∥ 𝑌) |
71 | 1, 3, 4 | dvdsr 20388 |
. . . 4
⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
72 | 70, 71 | sylib 218 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
73 | 72 | simprd 495 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌) |
74 | 69, 73 | r19.29a 3168 |
1
⊢ (𝜑 → 𝑌 ∥ 𝑋) |