| Step | Hyp | Ref
| Expression |
| 1 | | rprmasso.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | rprmasso.p |
. . . 4
⊢ 𝑃 = (RPrime‘𝑅) |
| 3 | | rprmasso.d |
. . . 4
⊢ ∥ =
(∥r‘𝑅) |
| 4 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | rprmasso.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 6 | 5 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑅 ∈ IDomn) |
| 7 | | rprmasso2.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 8 | 7 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∈ 𝑃) |
| 9 | | simplr 769 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑡 ∈ 𝐵) |
| 10 | | rprmasso.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 11 | 1, 2, 5, 10 | rprmcl 33546 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑋 ∈ 𝐵) |
| 13 | 5 | idomringd 20728 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | 1, 2, 5, 7 | rprmcl 33546 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 15 | 1, 3 | dvdsrid 20367 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → 𝑌 ∥ 𝑌) |
| 16 | 13, 14, 15 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∥ 𝑌) |
| 17 | 16 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ 𝑌) |
| 18 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
| 19 | 17, 18 | breqtrrd 5171 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ (𝑡(.r‘𝑅)𝑋)) |
| 20 | 1, 2, 3, 4, 6, 8, 9, 12, 19 | rprmdvds 33547 |
. . 3
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → (𝑌 ∥ 𝑡 ∨ 𝑌 ∥ 𝑋)) |
| 21 | 11 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑋 ∈ 𝐵) |
| 22 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 23 | 9 | ad3antrrr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ∈ 𝐵) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑡 = (0g‘𝑅)) |
| 25 | 24 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → (𝑡(.r‘𝑅)𝑋) = ((0g‘𝑅)(.r‘𝑅)𝑋)) |
| 26 | | simplr 769 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
| 27 | 1, 4, 22, 13, 11 | ringlzd 20292 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((0g‘𝑅)(.r‘𝑅)𝑋) = (0g‘𝑅)) |
| 28 | 27 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → ((0g‘𝑅)(.r‘𝑅)𝑋) = (0g‘𝑅)) |
| 29 | 25, 26, 28 | 3eqtr3d 2785 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) |
| 30 | 2, 22, 5, 7 | rprmnz 33548 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
| 31 | 30 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → 𝑌 ≠ (0g‘𝑅)) |
| 32 | 31 | neneqd 2945 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g‘𝑅)) → ¬ 𝑌 = (0g‘𝑅)) |
| 33 | 29, 32 | pm2.65da 817 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → ¬ 𝑡 = (0g‘𝑅)) |
| 34 | 33 | neqned 2947 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑡 ≠ (0g‘𝑅)) |
| 35 | 34 | ad3antrrr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ≠ (0g‘𝑅)) |
| 36 | 23, 35 | eldifsnd 4787 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑡 ∈ (𝐵 ∖ {(0g‘𝑅)})) |
| 37 | 13 | ad5antr 734 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ Ring) |
| 38 | | simplr 769 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑢 ∈ 𝐵) |
| 39 | 12 | ad3antrrr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑋 ∈ 𝐵) |
| 40 | 1, 4, 37, 38, 39 | ringcld 20257 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑋) ∈ 𝐵) |
| 41 | | eqid 2737 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 42 | 1, 41 | ringidcl 20262 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
| 43 | 13, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 44 | 43 | ad5antr 734 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (1r‘𝑅) ∈ 𝐵) |
| 45 | 5 | idomdomd 20726 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 46 | 45 | ad5antr 734 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ Domn) |
| 47 | 18 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)𝑋) = 𝑌) |
| 48 | 47 | oveq2d 7447 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋)) = (𝑢(.r‘𝑅)𝑌)) |
| 49 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑌) = 𝑡) |
| 50 | 48, 49 | eqtrd 2777 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋)) = 𝑡) |
| 51 | 5 | idomcringd 20727 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 52 | 51 | ad5antr 734 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → 𝑅 ∈ CRing) |
| 53 | 1, 4, 52, 23, 38, 39 | crng12d 20255 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(𝑢(.r‘𝑅)𝑋)) = (𝑢(.r‘𝑅)(𝑡(.r‘𝑅)𝑋))) |
| 54 | 1, 4, 41, 37, 23 | ringridmd 20270 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(1r‘𝑅)) = 𝑡) |
| 55 | 50, 53, 54 | 3eqtr4d 2787 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑡(.r‘𝑅)(𝑢(.r‘𝑅)𝑋)) = (𝑡(.r‘𝑅)(1r‘𝑅))) |
| 56 | 1, 22, 4, 36, 40, 44, 46, 55 | domnlcan 20721 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢(.r‘𝑅)𝑌) = 𝑡) → (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) |
| 57 | 14 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑌 ∈ 𝐵) |
| 58 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑌 ∥ 𝑡) |
| 59 | 1, 3, 4 | dvdsr2 20363 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝑌 ∥ 𝑡 ↔ ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡)) |
| 60 | 59 | biimpa 476 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡) |
| 61 | 57, 58, 60 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑌) = 𝑡) |
| 62 | 56, 61 | reximddv3 3172 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) |
| 63 | 1, 3, 4 | dvdsr2 20363 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥
(1r‘𝑅)
↔ ∃𝑢 ∈
𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅))) |
| 64 | 63 | biimpar 477 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘𝑅)𝑋) = (1r‘𝑅)) → 𝑋 ∥
(1r‘𝑅)) |
| 65 | 21, 62, 64 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → 𝑋 ∥
(1r‘𝑅)) |
| 66 | 41, 3, 2, 51, 10 | rprmndvdsr1 33552 |
. . . . 5
⊢ (𝜑 → ¬ 𝑋 ∥
(1r‘𝑅)) |
| 67 | 66 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) ∧ 𝑌 ∥ 𝑡) → ¬ 𝑋 ∥
(1r‘𝑅)) |
| 68 | 65, 67 | pm2.65da 817 |
. . 3
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → ¬ 𝑌 ∥ 𝑡) |
| 69 | 20, 68 | orcnd 879 |
. 2
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑡(.r‘𝑅)𝑋) = 𝑌) → 𝑌 ∥ 𝑋) |
| 70 | | rprmasso.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∥ 𝑌) |
| 71 | 1, 3, 4 | dvdsr 20362 |
. . . 4
⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 72 | 70, 71 | sylib 218 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 73 | 72 | simprd 495 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌) |
| 74 | 69, 73 | r19.29a 3162 |
1
⊢ (𝜑 → 𝑌 ∥ 𝑋) |