Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmasso2 Structured version   Visualization version   GIF version

Theorem rprmasso2 33519
Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmasso.b 𝐵 = (Base‘𝑅)
rprmasso.p 𝑃 = (RPrime‘𝑅)
rprmasso.d = (∥r𝑅)
rprmasso.r (𝜑𝑅 ∈ IDomn)
rprmasso.x (𝜑𝑋𝑃)
rprmasso.1 (𝜑𝑋 𝑌)
rprmasso2.y (𝜑𝑌𝑃)
Assertion
Ref Expression
rprmasso2 (𝜑𝑌 𝑋)

Proof of Theorem rprmasso2
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmasso.b . . . 4 𝐵 = (Base‘𝑅)
2 rprmasso.p . . . 4 𝑃 = (RPrime‘𝑅)
3 rprmasso.d . . . 4 = (∥r𝑅)
4 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
5 rprmasso.r . . . . 5 (𝜑𝑅 ∈ IDomn)
65ad2antrr 725 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑅 ∈ IDomn)
7 rprmasso2.y . . . . 5 (𝜑𝑌𝑃)
87ad2antrr 725 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌𝑃)
9 simplr 768 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑡𝐵)
10 rprmasso.x . . . . . 6 (𝜑𝑋𝑃)
111, 2, 5, 10rprmcl 33511 . . . . 5 (𝜑𝑋𝐵)
1211ad2antrr 725 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑋𝐵)
135idomringd 20750 . . . . . . 7 (𝜑𝑅 ∈ Ring)
141, 2, 5, 7rprmcl 33511 . . . . . . 7 (𝜑𝑌𝐵)
151, 3dvdsrid 20393 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → 𝑌 𝑌)
1613, 14, 15syl2anc 583 . . . . . 6 (𝜑𝑌 𝑌)
1716ad2antrr 725 . . . . 5 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 𝑌)
18 simpr 484 . . . . 5 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → (𝑡(.r𝑅)𝑋) = 𝑌)
1917, 18breqtrrd 5194 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 (𝑡(.r𝑅)𝑋))
201, 2, 3, 4, 6, 8, 9, 12, 19rprmdvds 33512 . . 3 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → (𝑌 𝑡𝑌 𝑋))
2111ad3antrrr 729 . . . . 5 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑋𝐵)
22 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
239ad3antrrr 729 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡𝐵)
24 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑡 = (0g𝑅))
2524oveq1d 7463 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → (𝑡(.r𝑅)𝑋) = ((0g𝑅)(.r𝑅)𝑋))
26 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → (𝑡(.r𝑅)𝑋) = 𝑌)
271, 4, 22, 13, 11ringlzd 20318 . . . . . . . . . . . . 13 (𝜑 → ((0g𝑅)(.r𝑅)𝑋) = (0g𝑅))
2827ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → ((0g𝑅)(.r𝑅)𝑋) = (0g𝑅))
2925, 26, 283eqtr3d 2788 . . . . . . . . . . 11 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑌 = (0g𝑅))
302, 22, 5, 7rprmnz 33513 . . . . . . . . . . . . 13 (𝜑𝑌 ≠ (0g𝑅))
3130ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑌 ≠ (0g𝑅))
3231neneqd 2951 . . . . . . . . . . 11 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → ¬ 𝑌 = (0g𝑅))
3329, 32pm2.65da 816 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → ¬ 𝑡 = (0g𝑅))
3433neqned 2953 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑡 ≠ (0g𝑅))
3534ad3antrrr 729 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡 ≠ (0g𝑅))
3623, 35eldifsnd 4812 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡 ∈ (𝐵 ∖ {(0g𝑅)}))
3713ad5antr 733 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ Ring)
38 simplr 768 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑢𝐵)
3912ad3antrrr 729 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑋𝐵)
401, 4, 37, 38, 39ringcld 20286 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑋) ∈ 𝐵)
41 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
421, 41ringidcl 20289 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4313, 42syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
4443ad5antr 733 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (1r𝑅) ∈ 𝐵)
455idomdomd 20748 . . . . . . . 8 (𝜑𝑅 ∈ Domn)
4645ad5antr 733 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ Domn)
4718ad3antrrr 729 . . . . . . . . . 10 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)𝑋) = 𝑌)
4847oveq2d 7464 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)) = (𝑢(.r𝑅)𝑌))
49 simpr 484 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑌) = 𝑡)
5048, 49eqtrd 2780 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)) = 𝑡)
515idomcringd 20749 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
5251ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ CRing)
531, 4, 52, 23, 38, 39crng12d 20285 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(𝑢(.r𝑅)𝑋)) = (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)))
541, 4, 41, 37, 23ringridmd 20296 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(1r𝑅)) = 𝑡)
5550, 53, 543eqtr4d 2790 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(𝑢(.r𝑅)𝑋)) = (𝑡(.r𝑅)(1r𝑅)))
561, 22, 4, 36, 40, 44, 46, 55domnlcan 20743 . . . . . 6 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑋) = (1r𝑅))
5714ad3antrrr 729 . . . . . . 7 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑌𝐵)
58 simpr 484 . . . . . . 7 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑌 𝑡)
591, 3, 4dvdsr2 20389 . . . . . . . 8 (𝑌𝐵 → (𝑌 𝑡 ↔ ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡))
6059biimpa 476 . . . . . . 7 ((𝑌𝐵𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡)
6157, 58, 60syl2anc 583 . . . . . 6 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡)
6256, 61reximddv3 3178 . . . . 5 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅))
631, 3, 4dvdsr2 20389 . . . . . 6 (𝑋𝐵 → (𝑋 (1r𝑅) ↔ ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅)))
6463biimpar 477 . . . . 5 ((𝑋𝐵 ∧ ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅)) → 𝑋 (1r𝑅))
6521, 62, 64syl2anc 583 . . . 4 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑋 (1r𝑅))
6641, 3, 2, 51, 10rprmndvdsr1 33517 . . . . 5 (𝜑 → ¬ 𝑋 (1r𝑅))
6766ad3antrrr 729 . . . 4 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ¬ 𝑋 (1r𝑅))
6865, 67pm2.65da 816 . . 3 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → ¬ 𝑌 𝑡)
6920, 68orcnd 877 . 2 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 𝑋)
70 rprmasso.1 . . . 4 (𝜑𝑋 𝑌)
711, 3, 4dvdsr 20388 . . . 4 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌))
7270, 71sylib 218 . . 3 (𝜑 → (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌))
7372simprd 495 . 2 (𝜑 → ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌)
7469, 73r19.29a 3168 1 (𝜑𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  CRingccrg 20261  rcdsr 20380  RPrimecrpm 20458  Domncdomn 20714  IDomncidom 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-rprm 20459  df-nzr 20539  df-domn 20717  df-idom 20718
This theorem is referenced by:  rprmasso3  33520
  Copyright terms: Public domain W3C validator