Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmasso2 Structured version   Visualization version   GIF version

Theorem rprmasso2 33504
Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmasso.b 𝐵 = (Base‘𝑅)
rprmasso.p 𝑃 = (RPrime‘𝑅)
rprmasso.d = (∥r𝑅)
rprmasso.r (𝜑𝑅 ∈ IDomn)
rprmasso.x (𝜑𝑋𝑃)
rprmasso.1 (𝜑𝑋 𝑌)
rprmasso2.y (𝜑𝑌𝑃)
Assertion
Ref Expression
rprmasso2 (𝜑𝑌 𝑋)

Proof of Theorem rprmasso2
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmasso.b . . . 4 𝐵 = (Base‘𝑅)
2 rprmasso.p . . . 4 𝑃 = (RPrime‘𝑅)
3 rprmasso.d . . . 4 = (∥r𝑅)
4 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
5 rprmasso.r . . . . 5 (𝜑𝑅 ∈ IDomn)
65ad2antrr 726 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑅 ∈ IDomn)
7 rprmasso2.y . . . . 5 (𝜑𝑌𝑃)
87ad2antrr 726 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌𝑃)
9 simplr 768 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑡𝐵)
10 rprmasso.x . . . . . 6 (𝜑𝑋𝑃)
111, 2, 5, 10rprmcl 33496 . . . . 5 (𝜑𝑋𝐵)
1211ad2antrr 726 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑋𝐵)
135idomringd 20644 . . . . . . 7 (𝜑𝑅 ∈ Ring)
141, 2, 5, 7rprmcl 33496 . . . . . . 7 (𝜑𝑌𝐵)
151, 3dvdsrid 20283 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → 𝑌 𝑌)
1613, 14, 15syl2anc 584 . . . . . 6 (𝜑𝑌 𝑌)
1716ad2antrr 726 . . . . 5 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 𝑌)
18 simpr 484 . . . . 5 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → (𝑡(.r𝑅)𝑋) = 𝑌)
1917, 18breqtrrd 5138 . . . 4 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 (𝑡(.r𝑅)𝑋))
201, 2, 3, 4, 6, 8, 9, 12, 19rprmdvds 33497 . . 3 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → (𝑌 𝑡𝑌 𝑋))
2111ad3antrrr 730 . . . . 5 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑋𝐵)
22 eqid 2730 . . . . . . 7 (0g𝑅) = (0g𝑅)
239ad3antrrr 730 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡𝐵)
24 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑡 = (0g𝑅))
2524oveq1d 7405 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → (𝑡(.r𝑅)𝑋) = ((0g𝑅)(.r𝑅)𝑋))
26 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → (𝑡(.r𝑅)𝑋) = 𝑌)
271, 4, 22, 13, 11ringlzd 20211 . . . . . . . . . . . . 13 (𝜑 → ((0g𝑅)(.r𝑅)𝑋) = (0g𝑅))
2827ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → ((0g𝑅)(.r𝑅)𝑋) = (0g𝑅))
2925, 26, 283eqtr3d 2773 . . . . . . . . . . 11 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑌 = (0g𝑅))
302, 22, 5, 7rprmnz 33498 . . . . . . . . . . . . 13 (𝜑𝑌 ≠ (0g𝑅))
3130ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → 𝑌 ≠ (0g𝑅))
3231neneqd 2931 . . . . . . . . . . 11 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑡 = (0g𝑅)) → ¬ 𝑌 = (0g𝑅))
3329, 32pm2.65da 816 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → ¬ 𝑡 = (0g𝑅))
3433neqned 2933 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑡 ≠ (0g𝑅))
3534ad3antrrr 730 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡 ≠ (0g𝑅))
3623, 35eldifsnd 4754 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑡 ∈ (𝐵 ∖ {(0g𝑅)}))
3713ad5antr 734 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ Ring)
38 simplr 768 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑢𝐵)
3912ad3antrrr 730 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑋𝐵)
401, 4, 37, 38, 39ringcld 20176 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑋) ∈ 𝐵)
41 eqid 2730 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
421, 41ringidcl 20181 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4313, 42syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
4443ad5antr 734 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (1r𝑅) ∈ 𝐵)
455idomdomd 20642 . . . . . . . 8 (𝜑𝑅 ∈ Domn)
4645ad5antr 734 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ Domn)
4718ad3antrrr 730 . . . . . . . . . 10 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)𝑋) = 𝑌)
4847oveq2d 7406 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)) = (𝑢(.r𝑅)𝑌))
49 simpr 484 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑌) = 𝑡)
5048, 49eqtrd 2765 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)) = 𝑡)
515idomcringd 20643 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
5251ad5antr 734 . . . . . . . . 9 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → 𝑅 ∈ CRing)
531, 4, 52, 23, 38, 39crng12d 20174 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(𝑢(.r𝑅)𝑋)) = (𝑢(.r𝑅)(𝑡(.r𝑅)𝑋)))
541, 4, 41, 37, 23ringridmd 20189 . . . . . . . 8 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(1r𝑅)) = 𝑡)
5550, 53, 543eqtr4d 2775 . . . . . . 7 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑡(.r𝑅)(𝑢(.r𝑅)𝑋)) = (𝑡(.r𝑅)(1r𝑅)))
561, 22, 4, 36, 40, 44, 46, 55domnlcan 20637 . . . . . 6 ((((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) ∧ 𝑢𝐵) ∧ (𝑢(.r𝑅)𝑌) = 𝑡) → (𝑢(.r𝑅)𝑋) = (1r𝑅))
5714ad3antrrr 730 . . . . . . 7 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑌𝐵)
58 simpr 484 . . . . . . 7 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑌 𝑡)
591, 3, 4dvdsr2 20279 . . . . . . . 8 (𝑌𝐵 → (𝑌 𝑡 ↔ ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡))
6059biimpa 476 . . . . . . 7 ((𝑌𝐵𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡)
6157, 58, 60syl2anc 584 . . . . . 6 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑌) = 𝑡)
6256, 61reximddv3 3151 . . . . 5 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅))
631, 3, 4dvdsr2 20279 . . . . . 6 (𝑋𝐵 → (𝑋 (1r𝑅) ↔ ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅)))
6463biimpar 477 . . . . 5 ((𝑋𝐵 ∧ ∃𝑢𝐵 (𝑢(.r𝑅)𝑋) = (1r𝑅)) → 𝑋 (1r𝑅))
6521, 62, 64syl2anc 584 . . . 4 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → 𝑋 (1r𝑅))
6641, 3, 2, 51, 10rprmndvdsr1 33502 . . . . 5 (𝜑 → ¬ 𝑋 (1r𝑅))
6766ad3antrrr 730 . . . 4 ((((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) ∧ 𝑌 𝑡) → ¬ 𝑋 (1r𝑅))
6865, 67pm2.65da 816 . . 3 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → ¬ 𝑌 𝑡)
6920, 68orcnd 878 . 2 (((𝜑𝑡𝐵) ∧ (𝑡(.r𝑅)𝑋) = 𝑌) → 𝑌 𝑋)
70 rprmasso.1 . . . 4 (𝜑𝑋 𝑌)
711, 3, 4dvdsr 20278 . . . 4 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌))
7270, 71sylib 218 . . 3 (𝜑 → (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌))
7372simprd 495 . 2 (𝜑 → ∃𝑡𝐵 (𝑡(.r𝑅)𝑋) = 𝑌)
7469, 73r19.29a 3142 1 (𝜑𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  RPrimecrpm 20348  Domncdomn 20608  IDomncidom 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-rprm 20349  df-nzr 20429  df-domn 20611  df-idom 20612
This theorem is referenced by:  rprmasso3  33505
  Copyright terms: Public domain W3C validator