| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pid2 | Structured version Visualization version GIF version | ||
| Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.) Generalize to domains. (Revised by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| r1pid2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1pid2.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1pid2.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1pid2.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pid2.d | ⊢ 𝐷 = (deg1‘𝑅) |
| r1pid2.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| r1pid2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pid2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| r1pid2 | ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pid2.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2730 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 3 | eqid 2730 | . . 3 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 4 | r1pid2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 5 | domnring 20623 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | r1pid2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 8 | r1pid2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 10 | r1pid2.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 11 | r1pid2.n | . . . . 5 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 9, 10, 1, 11 | q1pcl 26069 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 6, 7, 8, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 10, 1, 11 | uc1pcl 26056 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 8, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 10, 2, 11 | uc1pn0 26058 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ≠ (0g‘𝑃)) |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑃)) |
| 18 | 15, 17 | eldifsnd 4754 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∖ {(0g‘𝑃)})) |
| 19 | 10 | ply1domn 26036 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
| 20 | 4, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Domn) |
| 21 | 1, 2, 3, 13, 18, 20 | domneq0r 20640 | . 2 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 22 | r1pid2.e | . . . . . . 7 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 23 | eqid 2730 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 24 | 10, 1, 11, 9, 22, 3, 23 | r1pid 26073 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 25 | 6, 7, 8, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 26 | 25 | eqeq2d 2741 | . . . 4 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)))) |
| 27 | eqcom 2737 | . . . 4 ⊢ ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) | |
| 28 | 26, 27 | bitr4di 289 | . . 3 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 29 | domnring 20623 | . . . . . . 7 ⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) | |
| 30 | 20, 29 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 31 | 30 | ringgrpd 20158 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 32 | 22, 10, 1, 11 | r1pcl 26071 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴𝐸𝐵) ∈ 𝑈) |
| 33 | 6, 7, 8, 32 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈) |
| 34 | 1, 23, 2, 31, 33 | grplidd 18908 | . . . 4 ⊢ (𝜑 → ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)) |
| 35 | 34 | eqeq2d 2741 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 36 | 1, 3, 30, 13, 15 | ringcld 20176 | . . . 4 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈) |
| 37 | 1, 2 | ring0cl 20183 | . . . . 5 ⊢ (𝑃 ∈ Ring → (0g‘𝑃) ∈ 𝑈) |
| 38 | 30, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝑃) ∈ 𝑈) |
| 39 | 1, 23 | grprcan 18912 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈 ∧ (0g‘𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 40 | 31, 36, 38, 33, 39 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 41 | 28, 35, 40 | 3bitr2d 307 | . 2 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 42 | 1, 3, 2, 30, 15 | ringlzd 20211 | . . . . . . 7 ⊢ (𝜑 → ((0g‘𝑃)(.r‘𝑃)𝐵) = (0g‘𝑃)) |
| 43 | 42 | oveq2d 7406 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)) = (𝐴(-g‘𝑃)(0g‘𝑃))) |
| 44 | eqid 2730 | . . . . . . . 8 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 45 | 1, 2, 44 | grpsubid1 18964 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈) → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 46 | 31, 7, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 47 | 43, 46 | eqtr2d 2766 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) |
| 48 | 47 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐴) = (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)))) |
| 49 | 48 | breq1d 5120 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵))) |
| 50 | 38 | biantrurd 532 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵) ↔ ((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)))) |
| 51 | r1pid2.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝑅) | |
| 52 | 9, 10, 1, 51, 44, 3, 11 | q1peqb 26068 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 53 | 6, 7, 8, 52 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 54 | 49, 50, 53 | 3bitrd 305 | . 2 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 55 | 21, 41, 54 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 < clt 11215 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 Ringcrg 20149 Domncdomn 20608 Poly1cpl1 22068 deg1cdg1 25966 Unic1pcuc1p 26039 quot1pcq1p 26040 rem1pcr1p 26041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-lmod 20775 df-lss 20845 df-cnfld 21272 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-mdeg 25967 df-deg1 25968 df-uc1p 26044 df-q1p 26045 df-r1p 26046 |
| This theorem is referenced by: algextdeglem7 33720 algextdeglem8 33721 |
| Copyright terms: Public domain | W3C validator |