| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pid2 | Structured version Visualization version GIF version | ||
| Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.) Generalize to domains. (Revised by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| r1pid2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1pid2.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1pid2.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1pid2.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pid2.d | ⊢ 𝐷 = (deg1‘𝑅) |
| r1pid2.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| r1pid2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pid2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| r1pid2 | ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pid2.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2733 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 3 | eqid 2733 | . . 3 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 4 | r1pid2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 5 | domnring 20624 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | r1pid2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 8 | r1pid2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 10 | r1pid2.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 11 | r1pid2.n | . . . . 5 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 9, 10, 1, 11 | q1pcl 26090 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 6, 7, 8, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 10, 1, 11 | uc1pcl 26077 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 8, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 10, 2, 11 | uc1pn0 26079 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ≠ (0g‘𝑃)) |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑃)) |
| 18 | 15, 17 | eldifsnd 4738 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∖ {(0g‘𝑃)})) |
| 19 | 10 | ply1domn 26057 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
| 20 | 4, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Domn) |
| 21 | 1, 2, 3, 13, 18, 20 | domneq0r 20641 | . 2 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 22 | r1pid2.e | . . . . . . 7 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 23 | eqid 2733 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 24 | 10, 1, 11, 9, 22, 3, 23 | r1pid 26094 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 25 | 6, 7, 8, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 26 | 25 | eqeq2d 2744 | . . . 4 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)))) |
| 27 | eqcom 2740 | . . . 4 ⊢ ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) | |
| 28 | 26, 27 | bitr4di 289 | . . 3 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 29 | domnring 20624 | . . . . . . 7 ⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) | |
| 30 | 20, 29 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 31 | 30 | ringgrpd 20162 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 32 | 22, 10, 1, 11 | r1pcl 26092 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴𝐸𝐵) ∈ 𝑈) |
| 33 | 6, 7, 8, 32 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈) |
| 34 | 1, 23, 2, 31, 33 | grplidd 18884 | . . . 4 ⊢ (𝜑 → ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)) |
| 35 | 34 | eqeq2d 2744 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 36 | 1, 3, 30, 13, 15 | ringcld 20180 | . . . 4 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈) |
| 37 | 1, 2 | ring0cl 20187 | . . . . 5 ⊢ (𝑃 ∈ Ring → (0g‘𝑃) ∈ 𝑈) |
| 38 | 30, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝑃) ∈ 𝑈) |
| 39 | 1, 23 | grprcan 18888 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈 ∧ (0g‘𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 40 | 31, 36, 38, 33, 39 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 41 | 28, 35, 40 | 3bitr2d 307 | . 2 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 42 | 1, 3, 2, 30, 15 | ringlzd 20215 | . . . . . . 7 ⊢ (𝜑 → ((0g‘𝑃)(.r‘𝑃)𝐵) = (0g‘𝑃)) |
| 43 | 42 | oveq2d 7368 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)) = (𝐴(-g‘𝑃)(0g‘𝑃))) |
| 44 | eqid 2733 | . . . . . . . 8 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 45 | 1, 2, 44 | grpsubid1 18940 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈) → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 46 | 31, 7, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 47 | 43, 46 | eqtr2d 2769 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) |
| 48 | 47 | fveq2d 6832 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐴) = (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)))) |
| 49 | 48 | breq1d 5103 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵))) |
| 50 | 38 | biantrurd 532 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵) ↔ ((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)))) |
| 51 | r1pid2.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝑅) | |
| 52 | 9, 10, 1, 51, 44, 3, 11 | q1peqb 26089 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 53 | 6, 7, 8, 52 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 54 | 49, 50, 53 | 3bitrd 305 | . 2 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 55 | 21, 41, 54 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 < clt 11153 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 0gc0g 17345 Grpcgrp 18848 -gcsg 18850 Ringcrg 20153 Domncdomn 20609 Poly1cpl1 22090 deg1cdg1 25987 Unic1pcuc1p 26060 quot1pcq1p 26061 rem1pcr1p 26062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-nzr 20430 df-subrng 20463 df-subrg 20487 df-rlreg 20611 df-domn 20612 df-lmod 20797 df-lss 20867 df-cnfld 21294 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-mdeg 25988 df-deg1 25989 df-uc1p 26065 df-q1p 26066 df-r1p 26067 |
| This theorem is referenced by: algextdeglem7 33757 algextdeglem8 33758 |
| Copyright terms: Public domain | W3C validator |