Step | Hyp | Ref
| Expression |
1 | | r1pid2.r |
. . . . . . . 8
β’ (π β π
β IDomn) |
2 | 1 | idomringd 32645 |
. . . . . . 7
β’ (π β π
β Ring) |
3 | | r1pid2.p |
. . . . . . 7
β’ (π β π΄ β π) |
4 | | r1pid2.q |
. . . . . . 7
β’ (π β π΅ β π) |
5 | | r1padd1.p |
. . . . . . . 8
β’ π = (Poly1βπ
) |
6 | | r1padd1.u |
. . . . . . . 8
β’ π = (Baseβπ) |
7 | | r1padd1.n |
. . . . . . . 8
β’ π =
(Unic1pβπ
) |
8 | | eqid 2730 |
. . . . . . . 8
β’
(quot1pβπ
) = (quot1pβπ
) |
9 | | r1padd1.e |
. . . . . . . 8
β’ πΈ = (rem1pβπ
) |
10 | | eqid 2730 |
. . . . . . . 8
β’
(.rβπ) = (.rβπ) |
11 | | eqid 2730 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
12 | 5, 6, 7, 8, 9, 10,
11 | r1pid 25912 |
. . . . . . 7
β’ ((π
β Ring β§ π΄ β π β§ π΅ β π) β π΄ = (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅))) |
13 | 2, 3, 4, 12 | syl3anc 1369 |
. . . . . 6
β’ (π β π΄ = (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅))) |
14 | 13 | eqeq2d 2741 |
. . . . 5
β’ (π β ((π΄πΈπ΅) = π΄ β (π΄πΈπ΅) = (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)))) |
15 | | eqcom 2737 |
. . . . 5
β’ ((((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = (π΄πΈπ΅) β (π΄πΈπ΅) = (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅))) |
16 | 14, 15 | bitr4di 288 |
. . . 4
β’ (π β ((π΄πΈπ΅) = π΄ β (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = (π΄πΈπ΅))) |
17 | | eqid 2730 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
18 | 5 | ply1ring 21990 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
19 | 2, 18 | syl 17 |
. . . . . . 7
β’ (π β π β Ring) |
20 | 19 | ringgrpd 20136 |
. . . . . 6
β’ (π β π β Grp) |
21 | 9, 5, 6, 7 | r1pcl 25910 |
. . . . . . 7
β’ ((π
β Ring β§ π΄ β π β§ π΅ β π) β (π΄πΈπ΅) β π) |
22 | 2, 3, 4, 21 | syl3anc 1369 |
. . . . . 6
β’ (π β (π΄πΈπ΅) β π) |
23 | 6, 11, 17, 20, 22 | grplidd 18890 |
. . . . 5
β’ (π β
((0gβπ)(+gβπ)(π΄πΈπ΅)) = (π΄πΈπ΅)) |
24 | 23 | eqeq2d 2741 |
. . . 4
β’ (π β ((((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = ((0gβπ)(+gβπ)(π΄πΈπ΅)) β (((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = (π΄πΈπ΅))) |
25 | 8, 5, 6, 7 | q1pcl 25908 |
. . . . . . 7
β’ ((π
β Ring β§ π΄ β π β§ π΅ β π) β (π΄(quot1pβπ
)π΅) β π) |
26 | 2, 3, 4, 25 | syl3anc 1369 |
. . . . . 6
β’ (π β (π΄(quot1pβπ
)π΅) β π) |
27 | 5, 6, 7 | uc1pcl 25896 |
. . . . . . 7
β’ (π΅ β π β π΅ β π) |
28 | 4, 27 | syl 17 |
. . . . . 6
β’ (π β π΅ β π) |
29 | 6, 10, 19, 26, 28 | ringcld 20151 |
. . . . 5
β’ (π β ((π΄(quot1pβπ
)π΅)(.rβπ)π΅) β π) |
30 | 6, 17 | ring0cl 20155 |
. . . . . 6
β’ (π β Ring β
(0gβπ)
β π) |
31 | 2, 18, 30 | 3syl 18 |
. . . . 5
β’ (π β (0gβπ) β π) |
32 | 6, 11 | grprcan 18894 |
. . . . 5
β’ ((π β Grp β§ (((π΄(quot1pβπ
)π΅)(.rβπ)π΅) β π β§ (0gβπ) β π β§ (π΄πΈπ΅) β π)) β ((((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = ((0gβπ)(+gβπ)(π΄πΈπ΅)) β ((π΄(quot1pβπ
)π΅)(.rβπ)π΅) = (0gβπ))) |
33 | 20, 29, 31, 22, 32 | syl13anc 1370 |
. . . 4
β’ (π β ((((π΄(quot1pβπ
)π΅)(.rβπ)π΅)(+gβπ)(π΄πΈπ΅)) = ((0gβπ)(+gβπ)(π΄πΈπ΅)) β ((π΄(quot1pβπ
)π΅)(.rβπ)π΅) = (0gβπ))) |
34 | 16, 24, 33 | 3bitr2d 306 |
. . 3
β’ (π β ((π΄πΈπ΅) = π΄ β ((π΄(quot1pβπ
)π΅)(.rβπ)π΅) = (0gβπ))) |
35 | | isidom 21122 |
. . . . . . . 8
β’ (π
β IDomn β (π
β CRing β§ π
β Domn)) |
36 | 1, 35 | sylib 217 |
. . . . . . 7
β’ (π β (π
β CRing β§ π
β Domn)) |
37 | 36 | simpld 493 |
. . . . . 6
β’ (π β π
β CRing) |
38 | 5 | ply1crng 21941 |
. . . . . 6
β’ (π
β CRing β π β CRing) |
39 | 37, 38 | syl 17 |
. . . . 5
β’ (π β π β CRing) |
40 | 6, 10 | crngcom 20145 |
. . . . 5
β’ ((π β CRing β§ π΅ β π β§ (π΄(quot1pβπ
)π΅) β π) β (π΅(.rβπ)(π΄(quot1pβπ
)π΅)) = ((π΄(quot1pβπ
)π΅)(.rβπ)π΅)) |
41 | 39, 28, 26, 40 | syl3anc 1369 |
. . . 4
β’ (π β (π΅(.rβπ)(π΄(quot1pβπ
)π΅)) = ((π΄(quot1pβπ
)π΅)(.rβπ)π΅)) |
42 | 41 | eqeq1d 2732 |
. . 3
β’ (π β ((π΅(.rβπ)(π΄(quot1pβπ
)π΅)) = (0gβπ) β ((π΄(quot1pβπ
)π΅)(.rβπ)π΅) = (0gβπ))) |
43 | 1 | idomdomd 32644 |
. . . . . 6
β’ (π β π
β Domn) |
44 | 5 | ply1domn 25876 |
. . . . . 6
β’ (π
β Domn β π β Domn) |
45 | 43, 44 | syl 17 |
. . . . 5
β’ (π β π β Domn) |
46 | 5, 17, 7 | uc1pn0 25898 |
. . . . . 6
β’ (π΅ β π β π΅ β (0gβπ)) |
47 | 4, 46 | syl 17 |
. . . . 5
β’ (π β π΅ β (0gβπ)) |
48 | | eqid 2730 |
. . . . . 6
β’
(RLRegβπ) =
(RLRegβπ) |
49 | 6, 48, 17 | domnrrg 21116 |
. . . . 5
β’ ((π β Domn β§ π΅ β π β§ π΅ β (0gβπ)) β π΅ β (RLRegβπ)) |
50 | 45, 28, 47, 49 | syl3anc 1369 |
. . . 4
β’ (π β π΅ β (RLRegβπ)) |
51 | 48, 6, 10, 17 | rrgeq0 21106 |
. . . 4
β’ ((π β Ring β§ π΅ β (RLRegβπ) β§ (π΄(quot1pβπ
)π΅) β π) β ((π΅(.rβπ)(π΄(quot1pβπ
)π΅)) = (0gβπ) β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
52 | 19, 50, 26, 51 | syl3anc 1369 |
. . 3
β’ (π β ((π΅(.rβπ)(π΄(quot1pβπ
)π΅)) = (0gβπ) β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
53 | 34, 42, 52 | 3bitr2d 306 |
. 2
β’ (π β ((π΄πΈπ΅) = π΄ β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
54 | 6, 10, 17, 19, 28 | ringlzd 20183 |
. . . . . . 7
β’ (π β
((0gβπ)(.rβπ)π΅) = (0gβπ)) |
55 | 54 | oveq2d 7427 |
. . . . . 6
β’ (π β (π΄(-gβπ)((0gβπ)(.rβπ)π΅)) = (π΄(-gβπ)(0gβπ))) |
56 | | eqid 2730 |
. . . . . . . 8
β’
(-gβπ) = (-gβπ) |
57 | 6, 17, 56 | grpsubid1 18944 |
. . . . . . 7
β’ ((π β Grp β§ π΄ β π) β (π΄(-gβπ)(0gβπ)) = π΄) |
58 | 20, 3, 57 | syl2anc 582 |
. . . . . 6
β’ (π β (π΄(-gβπ)(0gβπ)) = π΄) |
59 | 55, 58 | eqtr2d 2771 |
. . . . 5
β’ (π β π΄ = (π΄(-gβπ)((0gβπ)(.rβπ)π΅))) |
60 | 59 | fveq2d 6894 |
. . . 4
β’ (π β (π·βπ΄) = (π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅)))) |
61 | 60 | breq1d 5157 |
. . 3
β’ (π β ((π·βπ΄) < (π·βπ΅) β (π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅))) < (π·βπ΅))) |
62 | 31 | biantrurd 531 |
. . 3
β’ (π β ((π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅))) < (π·βπ΅) β ((0gβπ) β π β§ (π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅))) < (π·βπ΅)))) |
63 | | r1pid2.d |
. . . . 5
β’ π· = ( deg1
βπ
) |
64 | 8, 5, 6, 63, 56, 10, 7 | q1peqb 25907 |
. . . 4
β’ ((π
β Ring β§ π΄ β π β§ π΅ β π) β (((0gβπ) β π β§ (π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅))) < (π·βπ΅)) β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
65 | 2, 3, 4, 64 | syl3anc 1369 |
. . 3
β’ (π β
(((0gβπ)
β π β§ (π·β(π΄(-gβπ)((0gβπ)(.rβπ)π΅))) < (π·βπ΅)) β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
66 | 61, 62, 65 | 3bitrd 304 |
. 2
β’ (π β ((π·βπ΄) < (π·βπ΅) β (π΄(quot1pβπ
)π΅) = (0gβπ))) |
67 | 53, 66 | bitr4d 281 |
1
β’ (π β ((π΄πΈπ΅) = π΄ β (π·βπ΄) < (π·βπ΅))) |