| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pid2 | Structured version Visualization version GIF version | ||
| Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.) Generalize to domains. (Revised by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| r1pid2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1pid2.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1pid2.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1pid2.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pid2.d | ⊢ 𝐷 = (deg1‘𝑅) |
| r1pid2.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| r1pid2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pid2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| r1pid2 | ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pid2.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2735 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 3 | eqid 2735 | . . 3 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 4 | r1pid2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 5 | domnring 20667 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | r1pid2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 8 | r1pid2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 10 | r1pid2.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 11 | r1pid2.n | . . . . 5 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 9, 10, 1, 11 | q1pcl 26114 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 6, 7, 8, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 10, 1, 11 | uc1pcl 26101 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 8, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 10, 2, 11 | uc1pn0 26103 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ≠ (0g‘𝑃)) |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑃)) |
| 18 | 15, 17 | eldifsnd 4763 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∖ {(0g‘𝑃)})) |
| 19 | 10 | ply1domn 26081 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
| 20 | 4, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Domn) |
| 21 | 1, 2, 3, 13, 18, 20 | domneq0r 20684 | . 2 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 22 | r1pid2.e | . . . . . . 7 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 23 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 24 | 10, 1, 11, 9, 22, 3, 23 | r1pid 26118 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 25 | 6, 7, 8, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
| 26 | 25 | eqeq2d 2746 | . . . 4 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)))) |
| 27 | eqcom 2742 | . . . 4 ⊢ ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) | |
| 28 | 26, 27 | bitr4di 289 | . . 3 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 29 | domnring 20667 | . . . . . . 7 ⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) | |
| 30 | 20, 29 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 31 | 30 | ringgrpd 20202 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 32 | 22, 10, 1, 11 | r1pcl 26116 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴𝐸𝐵) ∈ 𝑈) |
| 33 | 6, 7, 8, 32 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈) |
| 34 | 1, 23, 2, 31, 33 | grplidd 18952 | . . . 4 ⊢ (𝜑 → ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)) |
| 35 | 34 | eqeq2d 2746 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
| 36 | 1, 3, 30, 13, 15 | ringcld 20220 | . . . 4 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈) |
| 37 | 1, 2 | ring0cl 20227 | . . . . 5 ⊢ (𝑃 ∈ Ring → (0g‘𝑃) ∈ 𝑈) |
| 38 | 30, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝑃) ∈ 𝑈) |
| 39 | 1, 23 | grprcan 18956 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈 ∧ (0g‘𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 40 | 31, 36, 38, 33, 39 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 41 | 28, 35, 40 | 3bitr2d 307 | . 2 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
| 42 | 1, 3, 2, 30, 15 | ringlzd 20255 | . . . . . . 7 ⊢ (𝜑 → ((0g‘𝑃)(.r‘𝑃)𝐵) = (0g‘𝑃)) |
| 43 | 42 | oveq2d 7421 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)) = (𝐴(-g‘𝑃)(0g‘𝑃))) |
| 44 | eqid 2735 | . . . . . . . 8 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 45 | 1, 2, 44 | grpsubid1 19008 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈) → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 46 | 31, 7, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
| 47 | 43, 46 | eqtr2d 2771 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) |
| 48 | 47 | fveq2d 6880 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐴) = (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)))) |
| 49 | 48 | breq1d 5129 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵))) |
| 50 | 38 | biantrurd 532 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵) ↔ ((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)))) |
| 51 | r1pid2.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝑅) | |
| 52 | 9, 10, 1, 51, 44, 3, 11 | q1peqb 26113 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 53 | 6, 7, 8, 52 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 54 | 49, 50, 53 | 3bitrd 305 | . 2 ⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
| 55 | 21, 41, 54 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 < clt 11269 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 0gc0g 17453 Grpcgrp 18916 -gcsg 18918 Ringcrg 20193 Domncdomn 20652 Poly1cpl1 22112 deg1cdg1 26011 Unic1pcuc1p 26084 quot1pcq1p 26085 rem1pcr1p 26086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-nzr 20473 df-subrng 20506 df-subrg 20530 df-rlreg 20654 df-domn 20655 df-lmod 20819 df-lss 20889 df-cnfld 21316 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-mdeg 26012 df-deg1 26013 df-uc1p 26089 df-q1p 26090 df-r1p 26091 |
| This theorem is referenced by: algextdeglem7 33757 algextdeglem8 33758 |
| Copyright terms: Public domain | W3C validator |