MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pid2 Structured version   Visualization version   GIF version

Theorem r1pid2 26074
Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.) Generalize to domains. (Revised by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1pid2.p 𝑃 = (Poly1𝑅)
r1pid2.u 𝑈 = (Base‘𝑃)
r1pid2.n 𝑁 = (Unic1p𝑅)
r1pid2.e 𝐸 = (rem1p𝑅)
r1pid2.d 𝐷 = (deg1𝑅)
r1pid2.r (𝜑𝑅 ∈ Domn)
r1pid2.a (𝜑𝐴𝑈)
r1pid2.b (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2
StepHypRef Expression
1 r1pid2.u . . 3 𝑈 = (Base‘𝑃)
2 eqid 2730 . . 3 (0g𝑃) = (0g𝑃)
3 eqid 2730 . . 3 (.r𝑃) = (.r𝑃)
4 r1pid2.r . . . . 5 (𝜑𝑅 ∈ Domn)
5 domnring 20623 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
64, 5syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
7 r1pid2.a . . . 4 (𝜑𝐴𝑈)
8 r1pid2.b . . . 4 (𝜑𝐵𝑁)
9 eqid 2730 . . . . 5 (quot1p𝑅) = (quot1p𝑅)
10 r1pid2.p . . . . 5 𝑃 = (Poly1𝑅)
11 r1pid2.n . . . . 5 𝑁 = (Unic1p𝑅)
129, 10, 1, 11q1pcl 26069 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
136, 7, 8, 12syl3anc 1373 . . 3 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
1410, 1, 11uc1pcl 26056 . . . . 5 (𝐵𝑁𝐵𝑈)
158, 14syl 17 . . . 4 (𝜑𝐵𝑈)
1610, 2, 11uc1pn0 26058 . . . . 5 (𝐵𝑁𝐵 ≠ (0g𝑃))
178, 16syl 17 . . . 4 (𝜑𝐵 ≠ (0g𝑃))
1815, 17eldifsnd 4754 . . 3 (𝜑𝐵 ∈ (𝑈 ∖ {(0g𝑃)}))
1910ply1domn 26036 . . . 4 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
204, 19syl 17 . . 3 (𝜑𝑃 ∈ Domn)
211, 2, 3, 13, 18, 20domneq0r 20640 . 2 (𝜑 → (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
22 r1pid2.e . . . . . . 7 𝐸 = (rem1p𝑅)
23 eqid 2730 . . . . . . 7 (+g𝑃) = (+g𝑃)
2410, 1, 11, 9, 22, 3, 23r1pid 26073 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
256, 7, 8, 24syl3anc 1373 . . . . 5 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
2625eqeq2d 2741 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
27 eqcom 2737 . . . 4 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
2826, 27bitr4di 289 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
29 domnring 20623 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
3020, 29syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
3130ringgrpd 20158 . . . . 5 (𝜑𝑃 ∈ Grp)
3222, 10, 1, 11r1pcl 26071 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
336, 7, 8, 32syl3anc 1373 . . . . 5 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
341, 23, 2, 31, 33grplidd 18908 . . . 4 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
3534eqeq2d 2741 . . 3 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
361, 3, 30, 13, 15ringcld 20176 . . . 4 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
371, 2ring0cl 20183 . . . . 5 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
3830, 37syl 17 . . . 4 (𝜑 → (0g𝑃) ∈ 𝑈)
391, 23grprcan 18912 . . . 4 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
4031, 36, 38, 33, 39syl13anc 1374 . . 3 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
4128, 35, 403bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
421, 3, 2, 30, 15ringlzd 20211 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
4342oveq2d 7406 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
44 eqid 2730 . . . . . . . 8 (-g𝑃) = (-g𝑃)
451, 2, 44grpsubid1 18964 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
4631, 7, 45syl2anc 584 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
4743, 46eqtr2d 2766 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
4847fveq2d 6865 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
4948breq1d 5120 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
5038biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
51 r1pid2.d . . . . 5 𝐷 = (deg1𝑅)
529, 10, 1, 51, 44, 3, 11q1peqb 26068 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
536, 7, 8, 52syl3anc 1373 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5449, 50, 533bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5521, 41, 543bitr4d 311 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390   < clt 11215  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  -gcsg 18874  Ringcrg 20149  Domncdomn 20608  Poly1cpl1 22068  deg1cdg1 25966  Unic1pcuc1p 26039  quot1pcq1p 26040  rem1pcr1p 26041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-lmod 20775  df-lss 20845  df-cnfld 21272  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-uc1p 26044  df-q1p 26045  df-r1p 26046
This theorem is referenced by:  algextdeglem7  33720  algextdeglem8  33721
  Copyright terms: Public domain W3C validator