Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pid2 Structured version   Visualization version   GIF version

Theorem r1pid2 32969
Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pid2.r (𝜑𝑅 ∈ IDomn)
r1pid2.d 𝐷 = ( deg1𝑅)
r1pid2.p (𝜑𝐴𝑈)
r1pid2.q (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2
StepHypRef Expression
1 r1pid2.r . . . . . . . 8 (𝜑𝑅 ∈ IDomn)
21idomringd 32660 . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 r1pid2.p . . . . . . 7 (𝜑𝐴𝑈)
4 r1pid2.q . . . . . . 7 (𝜑𝐵𝑁)
5 r1padd1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
6 r1padd1.u . . . . . . . 8 𝑈 = (Base‘𝑃)
7 r1padd1.n . . . . . . . 8 𝑁 = (Unic1p𝑅)
8 eqid 2731 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2731 . . . . . . . 8 (.r𝑃) = (.r𝑃)
11 eqid 2731 . . . . . . . 8 (+g𝑃) = (+g𝑃)
125, 6, 7, 8, 9, 10, 11r1pid 25926 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
132, 3, 4, 12syl3anc 1370 . . . . . 6 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1413eqeq2d 2742 . . . . 5 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
15 eqcom 2738 . . . . 5 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1614, 15bitr4di 289 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
17 eqid 2731 . . . . . 6 (0g𝑃) = (0g𝑃)
185ply1ring 22003 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
192, 18syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2019ringgrpd 20140 . . . . . 6 (𝜑𝑃 ∈ Grp)
219, 5, 6, 7r1pcl 25924 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
222, 3, 4, 21syl3anc 1370 . . . . . 6 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
236, 11, 17, 20, 22grplidd 18894 . . . . 5 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
2423eqeq2d 2742 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
258, 5, 6, 7q1pcl 25922 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
262, 3, 4, 25syl3anc 1370 . . . . . 6 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
275, 6, 7uc1pcl 25910 . . . . . . 7 (𝐵𝑁𝐵𝑈)
284, 27syl 17 . . . . . 6 (𝜑𝐵𝑈)
296, 10, 19, 26, 28ringcld 20155 . . . . 5 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
306, 17ring0cl 20159 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
312, 18, 303syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑈)
326, 11grprcan 18898 . . . . 5 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3320, 29, 31, 22, 32syl13anc 1371 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3416, 24, 333bitr2d 307 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
35 isidom 21126 . . . . . . . 8 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
361, 35sylib 217 . . . . . . 7 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3736simpld 494 . . . . . 6 (𝜑𝑅 ∈ CRing)
385ply1crng 21954 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
3937, 38syl 17 . . . . 5 (𝜑𝑃 ∈ CRing)
406, 10crngcom 20149 . . . . 5 ((𝑃 ∈ CRing ∧ 𝐵𝑈 ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4139, 28, 26, 40syl3anc 1370 . . . 4 (𝜑 → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4241eqeq1d 2733 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
431idomdomd 32659 . . . . . 6 (𝜑𝑅 ∈ Domn)
445ply1domn 25890 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
4543, 44syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
465, 17, 7uc1pn0 25912 . . . . . 6 (𝐵𝑁𝐵 ≠ (0g𝑃))
474, 46syl 17 . . . . 5 (𝜑𝐵 ≠ (0g𝑃))
48 eqid 2731 . . . . . 6 (RLReg‘𝑃) = (RLReg‘𝑃)
496, 48, 17domnrrg 21120 . . . . 5 ((𝑃 ∈ Domn ∧ 𝐵𝑈𝐵 ≠ (0g𝑃)) → 𝐵 ∈ (RLReg‘𝑃))
5045, 28, 47, 49syl3anc 1370 . . . 4 (𝜑𝐵 ∈ (RLReg‘𝑃))
5148, 6, 10, 17rrgeq0 21110 . . . 4 ((𝑃 ∈ Ring ∧ 𝐵 ∈ (RLReg‘𝑃) ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5219, 50, 26, 51syl3anc 1370 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5334, 42, 523bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
546, 10, 17, 19, 28ringlzd 20187 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
5554oveq2d 7428 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
56 eqid 2731 . . . . . . . 8 (-g𝑃) = (-g𝑃)
576, 17, 56grpsubid1 18948 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5820, 3, 57syl2anc 583 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5955, 58eqtr2d 2772 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
6059fveq2d 6895 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
6160breq1d 5158 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
6231biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
63 r1pid2.d . . . . 5 𝐷 = ( deg1𝑅)
648, 5, 6, 63, 56, 10, 7q1peqb 25921 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
652, 3, 4, 64syl3anc 1370 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6661, 62, 653bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6753, 66bitr4d 282 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939   class class class wbr 5148  cfv 6543  (class class class)co 7412   < clt 11255  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  0gc0g 17392  Grpcgrp 18858  -gcsg 18860  Ringcrg 20131  CRingccrg 20132  RLRegcrlreg 21099  Domncdomn 21100  IDomncidom 21101  Poly1cpl1 21933   deg1 cdg1 25818  Unic1pcuc1p 25893  quot1pcq1p 25894  rem1pcr1p 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-nzr 20408  df-subrng 20438  df-subrg 20463  df-lmod 20620  df-lss 20691  df-rlreg 21103  df-domn 21104  df-idom 21105  df-cnfld 21149  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-mdeg 25819  df-deg1 25820  df-uc1p 25898  df-q1p 25899  df-r1p 25900
This theorem is referenced by:  algextdeglem7  33083  algextdeglem8  33084
  Copyright terms: Public domain W3C validator