MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pid2 Structured version   Visualization version   GIF version

Theorem r1pid2 26215
Description: Identity law for polynomial remainder operation: it leaves a polynomial 𝐴 unchanged iff the degree of 𝐴 is less than the degree of the divisor 𝐵. (Contributed by Thierry Arnoux, 2-Apr-2025.) Generalize to domains. (Revised by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1pid2.p 𝑃 = (Poly1𝑅)
r1pid2.u 𝑈 = (Base‘𝑃)
r1pid2.n 𝑁 = (Unic1p𝑅)
r1pid2.e 𝐸 = (rem1p𝑅)
r1pid2.d 𝐷 = (deg1𝑅)
r1pid2.r (𝜑𝑅 ∈ Domn)
r1pid2.a (𝜑𝐴𝑈)
r1pid2.b (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2
StepHypRef Expression
1 r1pid2.u . . 3 𝑈 = (Base‘𝑃)
2 eqid 2734 . . 3 (0g𝑃) = (0g𝑃)
3 eqid 2734 . . 3 (.r𝑃) = (.r𝑃)
4 r1pid2.r . . . . 5 (𝜑𝑅 ∈ Domn)
5 domnring 20723 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
64, 5syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
7 r1pid2.a . . . 4 (𝜑𝐴𝑈)
8 r1pid2.b . . . 4 (𝜑𝐵𝑁)
9 eqid 2734 . . . . 5 (quot1p𝑅) = (quot1p𝑅)
10 r1pid2.p . . . . 5 𝑃 = (Poly1𝑅)
11 r1pid2.n . . . . 5 𝑁 = (Unic1p𝑅)
129, 10, 1, 11q1pcl 26210 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
136, 7, 8, 12syl3anc 1370 . . 3 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
1410, 1, 11uc1pcl 26197 . . . . 5 (𝐵𝑁𝐵𝑈)
158, 14syl 17 . . . 4 (𝜑𝐵𝑈)
1610, 2, 11uc1pn0 26199 . . . . 5 (𝐵𝑁𝐵 ≠ (0g𝑃))
178, 16syl 17 . . . 4 (𝜑𝐵 ≠ (0g𝑃))
1815, 17eldifsnd 4791 . . 3 (𝜑𝐵 ∈ (𝑈 ∖ {(0g𝑃)}))
1910ply1domn 26177 . . . 4 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
204, 19syl 17 . . 3 (𝜑𝑃 ∈ Domn)
211, 2, 3, 13, 18, 20domneq0r 20740 . 2 (𝜑 → (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
22 r1pid2.e . . . . . . 7 𝐸 = (rem1p𝑅)
23 eqid 2734 . . . . . . 7 (+g𝑃) = (+g𝑃)
2410, 1, 11, 9, 22, 3, 23r1pid 26214 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
256, 7, 8, 24syl3anc 1370 . . . . 5 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
2625eqeq2d 2745 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
27 eqcom 2741 . . . 4 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
2826, 27bitr4di 289 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
29 domnring 20723 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
3020, 29syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
3130ringgrpd 20259 . . . . 5 (𝜑𝑃 ∈ Grp)
3222, 10, 1, 11r1pcl 26212 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
336, 7, 8, 32syl3anc 1370 . . . . 5 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
341, 23, 2, 31, 33grplidd 18999 . . . 4 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
3534eqeq2d 2745 . . 3 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
361, 3, 30, 13, 15ringcld 20276 . . . 4 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
371, 2ring0cl 20280 . . . . 5 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
3830, 37syl 17 . . . 4 (𝜑 → (0g𝑃) ∈ 𝑈)
391, 23grprcan 19003 . . . 4 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
4031, 36, 38, 33, 39syl13anc 1371 . . 3 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
4128, 35, 403bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
421, 3, 2, 30, 15ringlzd 20308 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
4342oveq2d 7446 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
44 eqid 2734 . . . . . . . 8 (-g𝑃) = (-g𝑃)
451, 2, 44grpsubid1 19055 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
4631, 7, 45syl2anc 584 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
4743, 46eqtr2d 2775 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
4847fveq2d 6910 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
4948breq1d 5157 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
5038biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
51 r1pid2.d . . . . 5 𝐷 = (deg1𝑅)
529, 10, 1, 51, 44, 3, 11q1peqb 26209 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
536, 7, 8, 52syl3anc 1370 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5449, 50, 533bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5521, 41, 543bitr4d 311 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430   < clt 11292  Basecbs 17244  +gcplusg 17297  .rcmulr 17298  0gc0g 17485  Grpcgrp 18963  -gcsg 18965  Ringcrg 20250  Domncdomn 20708  Poly1cpl1 22193  deg1cdg1 26107  Unic1pcuc1p 26180  quot1pcq1p 26181  rem1pcr1p 26182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-nzr 20529  df-subrng 20562  df-subrg 20586  df-rlreg 20710  df-domn 20711  df-lmod 20876  df-lss 20947  df-cnfld 21382  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-psr1 22196  df-vr1 22197  df-ply1 22198  df-coe1 22199  df-mdeg 26108  df-deg1 26109  df-uc1p 26185  df-q1p 26186  df-r1p 26187
This theorem is referenced by:  algextdeglem7  33728  algextdeglem8  33729
  Copyright terms: Public domain W3C validator