Proof of Theorem r1pid2
Step | Hyp | Ref
| Expression |
1 | | r1pid2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ IDomn) |
2 | 1 | idomringd 32660 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | | r1pid2.p |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
4 | | r1pid2.q |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑁) |
5 | | r1padd1.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
6 | | r1padd1.u |
. . . . . . . 8
⊢ 𝑈 = (Base‘𝑃) |
7 | | r1padd1.n |
. . . . . . . 8
⊢ 𝑁 =
(Unic1p‘𝑅) |
8 | | eqid 2731 |
. . . . . . . 8
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
9 | | r1padd1.e |
. . . . . . . 8
⊢ 𝐸 = (rem1p‘𝑅) |
10 | | eqid 2731 |
. . . . . . . 8
⊢
(.r‘𝑃) = (.r‘𝑃) |
11 | | eqid 2731 |
. . . . . . . 8
⊢
(+g‘𝑃) = (+g‘𝑃) |
12 | 5, 6, 7, 8, 9, 10,
11 | r1pid 25926 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
13 | 2, 3, 4, 12 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → 𝐴 = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
14 | 13 | eqeq2d 2742 |
. . . . 5
⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)))) |
15 | | eqcom 2738 |
. . . . 5
⊢ ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵))) |
16 | 14, 15 | bitr4di 289 |
. . . 4
⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
17 | | eqid 2731 |
. . . . . 6
⊢
(0g‘𝑃) = (0g‘𝑃) |
18 | 5 | ply1ring 22003 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
19 | 2, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
20 | 19 | ringgrpd 20140 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Grp) |
21 | 9, 5, 6, 7 | r1pcl 25924 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴𝐸𝐵) ∈ 𝑈) |
22 | 2, 3, 4, 21 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈) |
23 | 6, 11, 17, 20, 22 | grplidd 18894 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)) |
24 | 23 | eqeq2d 2742 |
. . . 4
⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))) |
25 | 8, 5, 6, 7 | q1pcl 25922 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
26 | 2, 3, 4, 25 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
27 | 5, 6, 7 | uc1pcl 25910 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
28 | 4, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑈) |
29 | 6, 10, 19, 26, 28 | ringcld 20155 |
. . . . 5
⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈) |
30 | 6, 17 | ring0cl 20159 |
. . . . . 6
⊢ (𝑃 ∈ Ring →
(0g‘𝑃)
∈ 𝑈) |
31 | 2, 18, 30 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0g‘𝑃) ∈ 𝑈) |
32 | 6, 11 | grprcan 18898 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧ (((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) ∈ 𝑈 ∧ (0g‘𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
33 | 20, 29, 31, 22, 32 | syl13anc 1371 |
. . . 4
⊢ (𝜑 → ((((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)(+g‘𝑃)(𝐴𝐸𝐵)) = ((0g‘𝑃)(+g‘𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
34 | 16, 24, 33 | 3bitr2d 307 |
. . 3
⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
35 | | isidom 21126 |
. . . . . . . 8
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
36 | 1, 35 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
37 | 36 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
38 | 5 | ply1crng 21954 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
39 | 37, 38 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CRing) |
40 | 6, 10 | crngcom 20149 |
. . . . 5
⊢ ((𝑃 ∈ CRing ∧ 𝐵 ∈ 𝑈 ∧ (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) → (𝐵(.r‘𝑃)(𝐴(quot1p‘𝑅)𝐵)) = ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)) |
41 | 39, 28, 26, 40 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐵(.r‘𝑃)(𝐴(quot1p‘𝑅)𝐵)) = ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵)) |
42 | 41 | eqeq1d 2733 |
. . 3
⊢ (𝜑 → ((𝐵(.r‘𝑃)(𝐴(quot1p‘𝑅)𝐵)) = (0g‘𝑃) ↔ ((𝐴(quot1p‘𝑅)𝐵)(.r‘𝑃)𝐵) = (0g‘𝑃))) |
43 | 1 | idomdomd 32659 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) |
44 | 5 | ply1domn 25890 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
45 | 43, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Domn) |
46 | 5, 17, 7 | uc1pn0 25912 |
. . . . . 6
⊢ (𝐵 ∈ 𝑁 → 𝐵 ≠ (0g‘𝑃)) |
47 | 4, 46 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ (0g‘𝑃)) |
48 | | eqid 2731 |
. . . . . 6
⊢
(RLReg‘𝑃) =
(RLReg‘𝑃) |
49 | 6, 48, 17 | domnrrg 21120 |
. . . . 5
⊢ ((𝑃 ∈ Domn ∧ 𝐵 ∈ 𝑈 ∧ 𝐵 ≠ (0g‘𝑃)) → 𝐵 ∈ (RLReg‘𝑃)) |
50 | 45, 28, 47, 49 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (RLReg‘𝑃)) |
51 | 48, 6, 10, 17 | rrgeq0 21110 |
. . . 4
⊢ ((𝑃 ∈ Ring ∧ 𝐵 ∈ (RLReg‘𝑃) ∧ (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) → ((𝐵(.r‘𝑃)(𝐴(quot1p‘𝑅)𝐵)) = (0g‘𝑃) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
52 | 19, 50, 26, 51 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝐵(.r‘𝑃)(𝐴(quot1p‘𝑅)𝐵)) = (0g‘𝑃) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
53 | 34, 42, 52 | 3bitr2d 307 |
. 2
⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
54 | 6, 10, 17, 19, 28 | ringlzd 20187 |
. . . . . . 7
⊢ (𝜑 →
((0g‘𝑃)(.r‘𝑃)𝐵) = (0g‘𝑃)) |
55 | 54 | oveq2d 7428 |
. . . . . 6
⊢ (𝜑 → (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)) = (𝐴(-g‘𝑃)(0g‘𝑃))) |
56 | | eqid 2731 |
. . . . . . . 8
⊢
(-g‘𝑃) = (-g‘𝑃) |
57 | 6, 17, 56 | grpsubid1 18948 |
. . . . . . 7
⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈) → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
58 | 20, 3, 57 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐴(-g‘𝑃)(0g‘𝑃)) = 𝐴) |
59 | 55, 58 | eqtr2d 2772 |
. . . . 5
⊢ (𝜑 → 𝐴 = (𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) |
60 | 59 | fveq2d 6895 |
. . . 4
⊢ (𝜑 → (𝐷‘𝐴) = (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵)))) |
61 | 60 | breq1d 5158 |
. . 3
⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵))) |
62 | 31 | biantrurd 532 |
. . 3
⊢ (𝜑 → ((𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵) ↔ ((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)))) |
63 | | r1pid2.d |
. . . . 5
⊢ 𝐷 = ( deg1
‘𝑅) |
64 | 8, 5, 6, 63, 56, 10, 7 | q1peqb 25921 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (((0g‘𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
65 | 2, 3, 4, 64 | syl3anc 1370 |
. . 3
⊢ (𝜑 →
(((0g‘𝑃)
∈ 𝑈 ∧ (𝐷‘(𝐴(-g‘𝑃)((0g‘𝑃)(.r‘𝑃)𝐵))) < (𝐷‘𝐵)) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
66 | 61, 62, 65 | 3bitrd 305 |
. 2
⊢ (𝜑 → ((𝐷‘𝐴) < (𝐷‘𝐵) ↔ (𝐴(quot1p‘𝑅)𝐵) = (0g‘𝑃))) |
67 | 53, 66 | bitr4d 282 |
1
⊢ (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷‘𝐴) < (𝐷‘𝐵))) |