Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1pow Structured version   Visualization version   GIF version

Theorem deg1pow 42159
Description: Exact degree of a power of a polynomial in an integral domain. (Contributed by metakunt, 6-May-2025.)
Hypotheses
Ref Expression
deg1pow.1 (𝜑𝑅 ∈ IDomn)
deg1pow.2 (𝜑𝐹 ∈ (Base‘(Poly1𝑅)))
deg1pow.3 (𝜑𝐹 ≠ (0g‘(Poly1𝑅)))
deg1pow.4 (𝜑𝐴 ∈ ℕ0)
deg1pow.5 = (.g‘(mulGrp‘(Poly1𝑅)))
deg1pow.6 𝐷 = (deg1𝑅)
Assertion
Ref Expression
deg1pow (𝜑 → (𝐷‘(𝐴 𝐹)) = (𝐴 · (𝐷𝐹)))

Proof of Theorem deg1pow
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1pow.4 . 2 (𝜑𝐴 ∈ ℕ0)
2 fvoveq1 7433 . . . . 5 (𝑥 = 0 → (𝐷‘(𝑥 𝐹)) = (𝐷‘(0 𝐹)))
3 oveq1 7417 . . . . 5 (𝑥 = 0 → (𝑥 · (𝐷𝐹)) = (0 · (𝐷𝐹)))
42, 3eqeq12d 2752 . . . 4 (𝑥 = 0 → ((𝐷‘(𝑥 𝐹)) = (𝑥 · (𝐷𝐹)) ↔ (𝐷‘(0 𝐹)) = (0 · (𝐷𝐹))))
5 fvoveq1 7433 . . . . 5 (𝑥 = 𝑦 → (𝐷‘(𝑥 𝐹)) = (𝐷‘(𝑦 𝐹)))
6 oveq1 7417 . . . . 5 (𝑥 = 𝑦 → (𝑥 · (𝐷𝐹)) = (𝑦 · (𝐷𝐹)))
75, 6eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((𝐷‘(𝑥 𝐹)) = (𝑥 · (𝐷𝐹)) ↔ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))))
8 fvoveq1 7433 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐷‘(𝑥 𝐹)) = (𝐷‘((𝑦 + 1) 𝐹)))
9 oveq1 7417 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐷𝐹)) = ((𝑦 + 1) · (𝐷𝐹)))
108, 9eqeq12d 2752 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐷‘(𝑥 𝐹)) = (𝑥 · (𝐷𝐹)) ↔ (𝐷‘((𝑦 + 1) 𝐹)) = ((𝑦 + 1) · (𝐷𝐹))))
11 fvoveq1 7433 . . . . 5 (𝑥 = 𝐴 → (𝐷‘(𝑥 𝐹)) = (𝐷‘(𝐴 𝐹)))
12 oveq1 7417 . . . . 5 (𝑥 = 𝐴 → (𝑥 · (𝐷𝐹)) = (𝐴 · (𝐷𝐹)))
1311, 12eqeq12d 2752 . . . 4 (𝑥 = 𝐴 → ((𝐷‘(𝑥 𝐹)) = (𝑥 · (𝐷𝐹)) ↔ (𝐷‘(𝐴 𝐹)) = (𝐴 · (𝐷𝐹))))
14 deg1pow.2 . . . . . . . 8 (𝜑𝐹 ∈ (Base‘(Poly1𝑅)))
15 eqid 2736 . . . . . . . . . 10 (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1𝑅))
16 eqid 2736 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1715, 16mgpbas 20110 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(mulGrp‘(Poly1𝑅)))
18 eqid 2736 . . . . . . . . . 10 (1r‘(Poly1𝑅)) = (1r‘(Poly1𝑅))
1915, 18ringidval 20148 . . . . . . . . 9 (1r‘(Poly1𝑅)) = (0g‘(mulGrp‘(Poly1𝑅)))
20 deg1pow.5 . . . . . . . . 9 = (.g‘(mulGrp‘(Poly1𝑅)))
2117, 19, 20mulg0 19062 . . . . . . . 8 (𝐹 ∈ (Base‘(Poly1𝑅)) → (0 𝐹) = (1r‘(Poly1𝑅)))
2214, 21syl 17 . . . . . . 7 (𝜑 → (0 𝐹) = (1r‘(Poly1𝑅)))
2322fveq2d 6885 . . . . . 6 (𝜑 → (𝐷‘(0 𝐹)) = (𝐷‘(1r‘(Poly1𝑅))))
24 deg1pow.1 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
25 isidom 20690 . . . . . . . . . . . . 13 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
2625simprbi 496 . . . . . . . . . . . 12 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
27 domnring 20672 . . . . . . . . . . . 12 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2826, 27syl 17 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
2924, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
30 eqid 2736 . . . . . . . . . . 11 (Poly1𝑅) = (Poly1𝑅)
31 eqid 2736 . . . . . . . . . . 11 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
32 eqid 2736 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
3330, 31, 32, 18ply1scl1 22235 . . . . . . . . . 10 (𝑅 ∈ Ring → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (1r‘(Poly1𝑅)))
3429, 33syl 17 . . . . . . . . 9 (𝜑 → ((algSc‘(Poly1𝑅))‘(1r𝑅)) = (1r‘(Poly1𝑅)))
3534eqcomd 2742 . . . . . . . 8 (𝜑 → (1r‘(Poly1𝑅)) = ((algSc‘(Poly1𝑅))‘(1r𝑅)))
3635fveq2d 6885 . . . . . . 7 (𝜑 → (𝐷‘(1r‘(Poly1𝑅))) = (𝐷‘((algSc‘(Poly1𝑅))‘(1r𝑅))))
37 eqid 2736 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
3837, 32ringidcl 20230 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3929, 38syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
4024, 26syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Domn)
41 domnnzr 20671 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
4240, 41syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
43 eqid 2736 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
4432, 43nzrnz 20480 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
4542, 44syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ≠ (0g𝑅))
46 deg1pow.6 . . . . . . . . 9 𝐷 = (deg1𝑅)
4746, 30, 37, 31, 43deg1scl 26075 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐷‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
4829, 39, 45, 47syl3anc 1373 . . . . . . 7 (𝜑 → (𝐷‘((algSc‘(Poly1𝑅))‘(1r𝑅))) = 0)
4936, 48eqtrd 2771 . . . . . 6 (𝜑 → (𝐷‘(1r‘(Poly1𝑅))) = 0)
5023, 49eqtrd 2771 . . . . 5 (𝜑 → (𝐷‘(0 𝐹)) = 0)
51 deg1pow.3 . . . . . . . . 9 (𝜑𝐹 ≠ (0g‘(Poly1𝑅)))
52 eqid 2736 . . . . . . . . . 10 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
5346, 30, 52, 16deg1nn0cl 26050 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘(Poly1𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1𝑅))) → (𝐷𝐹) ∈ ℕ0)
5429, 14, 51, 53syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐷𝐹) ∈ ℕ0)
5554nn0cnd 12569 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℂ)
5655mul02d 11438 . . . . . 6 (𝜑 → (0 · (𝐷𝐹)) = 0)
5756eqcomd 2742 . . . . 5 (𝜑 → 0 = (0 · (𝐷𝐹)))
5850, 57eqtrd 2771 . . . 4 (𝜑 → (𝐷‘(0 𝐹)) = (0 · (𝐷𝐹)))
5930ply1idom 26087 . . . . . . . . . . . 12 (𝑅 ∈ IDomn → (Poly1𝑅) ∈ IDomn)
6024, 59syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝑅) ∈ IDomn)
6160idomringd 20693 . . . . . . . . . 10 (𝜑 → (Poly1𝑅) ∈ Ring)
6261adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (Poly1𝑅) ∈ Ring)
6362adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (Poly1𝑅) ∈ Ring)
6415ringmgp 20204 . . . . . . . 8 ((Poly1𝑅) ∈ Ring → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
6563, 64syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
66 simplr 768 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → 𝑦 ∈ ℕ0)
6714ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → 𝐹 ∈ (Base‘(Poly1𝑅)))
68 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘(Poly1𝑅))) = (+g‘(mulGrp‘(Poly1𝑅)))
6917, 20, 68mulgnn0p1 19073 . . . . . . 7 (((mulGrp‘(Poly1𝑅)) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐹 ∈ (Base‘(Poly1𝑅))) → ((𝑦 + 1) 𝐹) = ((𝑦 𝐹)(+g‘(mulGrp‘(Poly1𝑅)))𝐹))
7065, 66, 67, 69syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → ((𝑦 + 1) 𝐹) = ((𝑦 𝐹)(+g‘(mulGrp‘(Poly1𝑅)))𝐹))
7170fveq2d 6885 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷‘((𝑦 + 1) 𝐹)) = (𝐷‘((𝑦 𝐹)(+g‘(mulGrp‘(Poly1𝑅)))𝐹)))
72 eqid 2736 . . . . . . . . 9 (.r‘(Poly1𝑅)) = (.r‘(Poly1𝑅))
7315, 72mgpplusg 20109 . . . . . . . 8 (.r‘(Poly1𝑅)) = (+g‘(mulGrp‘(Poly1𝑅)))
7473eqcomi 2745 . . . . . . 7 (+g‘(mulGrp‘(Poly1𝑅))) = (.r‘(Poly1𝑅))
7524idomdomd 20691 . . . . . . . . 9 (𝜑𝑅 ∈ Domn)
7675adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → 𝑅 ∈ Domn)
7776adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → 𝑅 ∈ Domn)
7817, 20, 65, 66, 67mulgnn0cld 19083 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝑦 𝐹) ∈ (Base‘(Poly1𝑅)))
7960adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (Poly1𝑅) ∈ IDomn)
8079adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (Poly1𝑅) ∈ IDomn)
8151ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → 𝐹 ≠ (0g‘(Poly1𝑅)))
8280, 67, 81, 66, 20idomnnzpownz 42150 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝑦 𝐹) ≠ (0g‘(Poly1𝑅)))
8346, 30, 16, 74, 52, 77, 78, 82, 67, 81deg1mul 26077 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷‘((𝑦 𝐹)(+g‘(mulGrp‘(Poly1𝑅)))𝐹)) = ((𝐷‘(𝑦 𝐹)) + (𝐷𝐹)))
84 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹)))
8584oveq1d 7425 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → ((𝐷‘(𝑦 𝐹)) + (𝐷𝐹)) = ((𝑦 · (𝐷𝐹)) + (𝐷𝐹)))
8666nn0cnd 12569 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → 𝑦 ∈ ℂ)
8755ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷𝐹) ∈ ℂ)
8886, 87adddirp1d 11266 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → ((𝑦 + 1) · (𝐷𝐹)) = ((𝑦 · (𝐷𝐹)) + (𝐷𝐹)))
8988eqcomd 2742 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → ((𝑦 · (𝐷𝐹)) + (𝐷𝐹)) = ((𝑦 + 1) · (𝐷𝐹)))
9085, 89eqtrd 2771 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → ((𝐷‘(𝑦 𝐹)) + (𝐷𝐹)) = ((𝑦 + 1) · (𝐷𝐹)))
9183, 90eqtrd 2771 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷‘((𝑦 𝐹)(+g‘(mulGrp‘(Poly1𝑅)))𝐹)) = ((𝑦 + 1) · (𝐷𝐹)))
9271, 91eqtrd 2771 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 𝐹)) = (𝑦 · (𝐷𝐹))) → (𝐷‘((𝑦 + 1) 𝐹)) = ((𝑦 + 1) · (𝐷𝐹)))
934, 7, 10, 13, 58, 92nn0indd 12695 . . 3 ((𝜑𝐴 ∈ ℕ0) → (𝐷‘(𝐴 𝐹)) = (𝐴 · (𝐷𝐹)))
9493ex 412 . 2 (𝜑 → (𝐴 ∈ ℕ0 → (𝐷‘(𝐴 𝐹)) = (𝐴 · (𝐷𝐹))))
951, 94mpd 15 1 (𝜑 → (𝐷‘(𝐴 𝐹)) = (𝐴 · (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717  .gcmg 19055  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  NzRingcnzr 20477  Domncdomn 20657  IDomncidom 20658  algSccascl 21817  Poly1cpl1 22117  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-lmod 20824  df-lss 20894  df-cnfld 21321  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  aks6d1c6lem1  42188
  Copyright terms: Public domain W3C validator