| Step | Hyp | Ref
| Expression |
| 1 | | deg1pow.4 |
. 2
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
| 2 | | fvoveq1 7433 |
. . . . 5
⊢ (𝑥 = 0 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(0 ↑ 𝐹))) |
| 3 | | oveq1 7417 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 · (𝐷‘𝐹)) = (0 · (𝐷‘𝐹))) |
| 4 | 2, 3 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 0 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(0 ↑ 𝐹)) = (0 · (𝐷‘𝐹)))) |
| 5 | | fvoveq1 7433 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(𝑦 ↑ 𝐹))) |
| 6 | | oveq1 7417 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · (𝐷‘𝐹)) = (𝑦 · (𝐷‘𝐹))) |
| 7 | 5, 6 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹)))) |
| 8 | | fvoveq1 7433 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘((𝑦 + 1) ↑ 𝐹))) |
| 9 | | oveq1 7417 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
| 10 | 8, 9 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘((𝑦 + 1) ↑ 𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹)))) |
| 11 | | fvoveq1 7433 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(𝐴 ↑ 𝐹))) |
| 12 | | oveq1 7417 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 · (𝐷‘𝐹)) = (𝐴 · (𝐷‘𝐹))) |
| 13 | 11, 12 | eqeq12d 2752 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹)))) |
| 14 | | deg1pow.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈
(Base‘(Poly1‘𝑅))) |
| 15 | | eqid 2736 |
. . . . . . . . . 10
⊢
(mulGrp‘(Poly1‘𝑅)) =
(mulGrp‘(Poly1‘𝑅)) |
| 16 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
| 17 | 15, 16 | mgpbas 20110 |
. . . . . . . . 9
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(mulGrp‘(Poly1‘𝑅))) |
| 18 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1r‘(Poly1‘𝑅)) =
(1r‘(Poly1‘𝑅)) |
| 19 | 15, 18 | ringidval 20148 |
. . . . . . . . 9
⊢
(1r‘(Poly1‘𝑅)) =
(0g‘(mulGrp‘(Poly1‘𝑅))) |
| 20 | | deg1pow.5 |
. . . . . . . . 9
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘𝑅))) |
| 21 | 17, 19, 20 | mulg0 19062 |
. . . . . . . 8
⊢ (𝐹 ∈
(Base‘(Poly1‘𝑅)) → (0 ↑ 𝐹) =
(1r‘(Poly1‘𝑅))) |
| 22 | 14, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0 ↑ 𝐹) =
(1r‘(Poly1‘𝑅))) |
| 23 | 22 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = (𝐷‘(1r‘(Poly1‘𝑅)))) |
| 24 | | deg1pow.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 25 | | isidom 20690 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 26 | 25 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
| 27 | | domnring 20672 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Ring) |
| 29 | 24, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 30 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
| 31 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(algSc‘(Poly1‘𝑅)) =
(algSc‘(Poly1‘𝑅)) |
| 32 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 33 | 30, 31, 32, 18 | ply1scl1 22235 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)) =
(1r‘(Poly1‘𝑅))) |
| 34 | 29, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)) =
(1r‘(Poly1‘𝑅))) |
| 35 | 34 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Poly1‘𝑅)) =
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) |
| 36 | 35 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘(1r‘(Poly1‘𝑅))) = (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)))) |
| 37 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 38 | 37, 32 | ringidcl 20230 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 39 | 29, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 40 | 24, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 41 | | domnnzr 20671 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 43 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 44 | 32, 43 | nzrnz 20480 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 45 | 42, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) |
| 46 | | deg1pow.6 |
. . . . . . . . 9
⊢ 𝐷 = (deg1‘𝑅) |
| 47 | 46, 30, 37, 31, 43 | deg1scl 26075 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) = 0) |
| 48 | 29, 39, 45, 47 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) = 0) |
| 49 | 36, 48 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(1r‘(Poly1‘𝑅))) = 0) |
| 50 | 23, 49 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = 0) |
| 51 | | deg1pow.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ≠
(0g‘(Poly1‘𝑅))) |
| 52 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘(Poly1‘𝑅)) =
(0g‘(Poly1‘𝑅)) |
| 53 | 46, 30, 52, 16 | deg1nn0cl 26050 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈
(Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠
(0g‘(Poly1‘𝑅))) → (𝐷‘𝐹) ∈
ℕ0) |
| 54 | 29, 14, 51, 53 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
| 55 | 54 | nn0cnd 12569 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐹) ∈ ℂ) |
| 56 | 55 | mul02d 11438 |
. . . . . 6
⊢ (𝜑 → (0 · (𝐷‘𝐹)) = 0) |
| 57 | 56 | eqcomd 2742 |
. . . . 5
⊢ (𝜑 → 0 = (0 · (𝐷‘𝐹))) |
| 58 | 50, 57 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = (0 · (𝐷‘𝐹))) |
| 59 | 30 | ply1idom 26087 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ IDomn →
(Poly1‘𝑅)
∈ IDomn) |
| 60 | 24, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Poly1‘𝑅)
∈ IDomn) |
| 61 | 60 | idomringd 20693 |
. . . . . . . . . 10
⊢ (𝜑 →
(Poly1‘𝑅)
∈ Ring) |
| 62 | 61 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(Poly1‘𝑅)
∈ Ring) |
| 63 | 62 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (Poly1‘𝑅) ∈ Ring) |
| 64 | 15 | ringmgp 20204 |
. . . . . . . 8
⊢
((Poly1‘𝑅) ∈ Ring →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
| 65 | 63, 64 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
| 66 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑦 ∈ ℕ0) |
| 67 | 14 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝐹 ∈
(Base‘(Poly1‘𝑅))) |
| 68 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘(Poly1‘𝑅))) =
(+g‘(mulGrp‘(Poly1‘𝑅))) |
| 69 | 17, 20, 68 | mulgnn0p1 19073 |
. . . . . . 7
⊢
(((mulGrp‘(Poly1‘𝑅)) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐹 ∈
(Base‘(Poly1‘𝑅))) → ((𝑦 + 1) ↑ 𝐹) = ((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) |
| 70 | 65, 66, 67, 69 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 + 1) ↑ 𝐹) = ((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) |
| 71 | 70 | fveq2d 6885 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 + 1) ↑ 𝐹)) = (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹))) |
| 72 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘(Poly1‘𝑅)) =
(.r‘(Poly1‘𝑅)) |
| 73 | 15, 72 | mgpplusg 20109 |
. . . . . . . 8
⊢
(.r‘(Poly1‘𝑅)) =
(+g‘(mulGrp‘(Poly1‘𝑅))) |
| 74 | 73 | eqcomi 2745 |
. . . . . . 7
⊢
(+g‘(mulGrp‘(Poly1‘𝑅))) =
(.r‘(Poly1‘𝑅)) |
| 75 | 24 | idomdomd 20691 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 76 | 75 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Domn) |
| 77 | 76 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑅 ∈ Domn) |
| 78 | 17, 20, 65, 66, 67 | mulgnn0cld 19083 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝑦 ↑ 𝐹) ∈
(Base‘(Poly1‘𝑅))) |
| 79 | 60 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(Poly1‘𝑅)
∈ IDomn) |
| 80 | 79 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (Poly1‘𝑅) ∈ IDomn) |
| 81 | 51 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝐹 ≠
(0g‘(Poly1‘𝑅))) |
| 82 | 80, 67, 81, 66, 20 | idomnnzpownz 42150 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝑦 ↑ 𝐹) ≠
(0g‘(Poly1‘𝑅))) |
| 83 | 46, 30, 16, 74, 52, 77, 78, 82, 67, 81 | deg1mul 26077 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) = ((𝐷‘(𝑦
↑ 𝐹)) + (𝐷‘𝐹))) |
| 84 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) |
| 85 | 84 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝐷‘(𝑦 ↑ 𝐹)) + (𝐷‘𝐹)) = ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹))) |
| 86 | 66 | nn0cnd 12569 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑦 ∈ ℂ) |
| 87 | 55 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘𝐹) ∈ ℂ) |
| 88 | 86, 87 | adddirp1d 11266 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 + 1) · (𝐷‘𝐹)) = ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹))) |
| 89 | 88 | eqcomd 2742 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
| 90 | 85, 89 | eqtrd 2771 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝐷‘(𝑦 ↑ 𝐹)) + (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
| 91 | 83, 90 | eqtrd 2771 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) = ((𝑦 + 1)
· (𝐷‘𝐹))) |
| 92 | 71, 91 | eqtrd 2771 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 + 1) ↑ 𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
| 93 | 4, 7, 10, 13, 58, 92 | nn0indd 12695 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹))) |
| 94 | 93 | ex 412 |
. 2
⊢ (𝜑 → (𝐴 ∈ ℕ0 → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹)))) |
| 95 | 1, 94 | mpd 15 |
1
⊢ (𝜑 → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹))) |