Step | Hyp | Ref
| Expression |
1 | | deg1pow.4 |
. 2
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
2 | | fvoveq1 7449 |
. . . . 5
⊢ (𝑥 = 0 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(0 ↑ 𝐹))) |
3 | | oveq1 7433 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 · (𝐷‘𝐹)) = (0 · (𝐷‘𝐹))) |
4 | 2, 3 | eqeq12d 2744 |
. . . 4
⊢ (𝑥 = 0 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(0 ↑ 𝐹)) = (0 · (𝐷‘𝐹)))) |
5 | | fvoveq1 7449 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(𝑦 ↑ 𝐹))) |
6 | | oveq1 7433 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · (𝐷‘𝐹)) = (𝑦 · (𝐷‘𝐹))) |
7 | 5, 6 | eqeq12d 2744 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹)))) |
8 | | fvoveq1 7449 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘((𝑦 + 1) ↑ 𝐹))) |
9 | | oveq1 7433 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
10 | 8, 9 | eqeq12d 2744 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘((𝑦 + 1) ↑ 𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹)))) |
11 | | fvoveq1 7449 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝐷‘(𝑥 ↑ 𝐹)) = (𝐷‘(𝐴 ↑ 𝐹))) |
12 | | oveq1 7433 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 · (𝐷‘𝐹)) = (𝐴 · (𝐷‘𝐹))) |
13 | 11, 12 | eqeq12d 2744 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐷‘(𝑥 ↑ 𝐹)) = (𝑥 · (𝐷‘𝐹)) ↔ (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹)))) |
14 | | deg1pow.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈
(Base‘(Poly1‘𝑅))) |
15 | | eqid 2728 |
. . . . . . . . . 10
⊢
(mulGrp‘(Poly1‘𝑅)) =
(mulGrp‘(Poly1‘𝑅)) |
16 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
17 | 15, 16 | mgpbas 20087 |
. . . . . . . . 9
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(mulGrp‘(Poly1‘𝑅))) |
18 | | eqid 2728 |
. . . . . . . . . 10
⊢
(1r‘(Poly1‘𝑅)) =
(1r‘(Poly1‘𝑅)) |
19 | 15, 18 | ringidval 20130 |
. . . . . . . . 9
⊢
(1r‘(Poly1‘𝑅)) =
(0g‘(mulGrp‘(Poly1‘𝑅))) |
20 | | deg1pow.5 |
. . . . . . . . 9
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘𝑅))) |
21 | 17, 19, 20 | mulg0 19037 |
. . . . . . . 8
⊢ (𝐹 ∈
(Base‘(Poly1‘𝑅)) → (0 ↑ 𝐹) =
(1r‘(Poly1‘𝑅))) |
22 | 14, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0 ↑ 𝐹) =
(1r‘(Poly1‘𝑅))) |
23 | 22 | fveq2d 6906 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = (𝐷‘(1r‘(Poly1‘𝑅)))) |
24 | | deg1pow.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ IDomn) |
25 | | isidom 21261 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
26 | 25 | simprbi 495 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
27 | | domnring 21250 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Ring) |
29 | 24, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
30 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
31 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(algSc‘(Poly1‘𝑅)) =
(algSc‘(Poly1‘𝑅)) |
32 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
33 | 30, 31, 32, 18 | ply1scl1 22219 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)) =
(1r‘(Poly1‘𝑅))) |
34 | 29, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)) =
(1r‘(Poly1‘𝑅))) |
35 | 34 | eqcomd 2734 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Poly1‘𝑅)) =
((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) |
36 | 35 | fveq2d 6906 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘(1r‘(Poly1‘𝑅))) = (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅)))) |
37 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
38 | 37, 32 | ringidcl 20209 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
39 | 29, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
40 | 24, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Domn) |
41 | | domnnzr 21249 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) |
43 | | eqid 2728 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
44 | 32, 43 | nzrnz 20461 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
45 | 42, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) |
46 | | deg1pow.6 |
. . . . . . . . 9
⊢ 𝐷 = ( deg1
‘𝑅) |
47 | 46, 30, 37, 31, 43 | deg1scl 26069 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) = 0) |
48 | 29, 39, 45, 47 | syl3anc 1368 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘((algSc‘(Poly1‘𝑅))‘(1r‘𝑅))) = 0) |
49 | 36, 48 | eqtrd 2768 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(1r‘(Poly1‘𝑅))) = 0) |
50 | 23, 49 | eqtrd 2768 |
. . . . 5
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = 0) |
51 | | deg1pow.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ≠
(0g‘(Poly1‘𝑅))) |
52 | | eqid 2728 |
. . . . . . . . . 10
⊢
(0g‘(Poly1‘𝑅)) =
(0g‘(Poly1‘𝑅)) |
53 | 46, 30, 52, 16 | deg1nn0cl 26044 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈
(Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠
(0g‘(Poly1‘𝑅))) → (𝐷‘𝐹) ∈
ℕ0) |
54 | 29, 14, 51, 53 | syl3anc 1368 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
55 | 54 | nn0cnd 12572 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐹) ∈ ℂ) |
56 | 55 | mul02d 11450 |
. . . . . 6
⊢ (𝜑 → (0 · (𝐷‘𝐹)) = 0) |
57 | 56 | eqcomd 2734 |
. . . . 5
⊢ (𝜑 → 0 = (0 · (𝐷‘𝐹))) |
58 | 50, 57 | eqtrd 2768 |
. . . 4
⊢ (𝜑 → (𝐷‘(0 ↑ 𝐹)) = (0 · (𝐷‘𝐹))) |
59 | 30 | ply1idom 26080 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ IDomn →
(Poly1‘𝑅)
∈ IDomn) |
60 | 24, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Poly1‘𝑅)
∈ IDomn) |
61 | 60 | idomringd 21264 |
. . . . . . . . . 10
⊢ (𝜑 →
(Poly1‘𝑅)
∈ Ring) |
62 | 61 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(Poly1‘𝑅)
∈ Ring) |
63 | 62 | adantr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (Poly1‘𝑅) ∈ Ring) |
64 | 15 | ringmgp 20186 |
. . . . . . . 8
⊢
((Poly1‘𝑅) ∈ Ring →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
65 | 63, 64 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
66 | | simplr 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑦 ∈ ℕ0) |
67 | 14 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝐹 ∈
(Base‘(Poly1‘𝑅))) |
68 | | eqid 2728 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘(Poly1‘𝑅))) =
(+g‘(mulGrp‘(Poly1‘𝑅))) |
69 | 17, 20, 68 | mulgnn0p1 19047 |
. . . . . . 7
⊢
(((mulGrp‘(Poly1‘𝑅)) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐹 ∈
(Base‘(Poly1‘𝑅))) → ((𝑦 + 1) ↑ 𝐹) = ((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) |
70 | 65, 66, 67, 69 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 + 1) ↑ 𝐹) = ((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) |
71 | 70 | fveq2d 6906 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 + 1) ↑ 𝐹)) = (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹))) |
72 | | eqid 2728 |
. . . . . . . . 9
⊢
(.r‘(Poly1‘𝑅)) =
(.r‘(Poly1‘𝑅)) |
73 | 15, 72 | mgpplusg 20085 |
. . . . . . . 8
⊢
(.r‘(Poly1‘𝑅)) =
(+g‘(mulGrp‘(Poly1‘𝑅))) |
74 | 73 | eqcomi 2737 |
. . . . . . 7
⊢
(+g‘(mulGrp‘(Poly1‘𝑅))) =
(.r‘(Poly1‘𝑅)) |
75 | 24 | idomdomd 21262 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Domn) |
76 | 75 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Domn) |
77 | 76 | adantr 479 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑅 ∈ Domn) |
78 | 17, 20, 65, 66, 67 | mulgnn0cld 19057 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝑦 ↑ 𝐹) ∈
(Base‘(Poly1‘𝑅))) |
79 | 60 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(Poly1‘𝑅)
∈ IDomn) |
80 | 79 | adantr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (Poly1‘𝑅) ∈ IDomn) |
81 | 51 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝐹 ≠
(0g‘(Poly1‘𝑅))) |
82 | 80, 67, 81, 66, 20 | idomnnzpownz 41635 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝑦 ↑ 𝐹) ≠
(0g‘(Poly1‘𝑅))) |
83 | 46, 30, 16, 74, 52, 77, 78, 82, 67, 81 | deg1mul 41643 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) = ((𝐷‘(𝑦
↑ 𝐹)) + (𝐷‘𝐹))) |
84 | | simpr 483 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) |
85 | 84 | oveq1d 7441 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝐷‘(𝑦 ↑ 𝐹)) + (𝐷‘𝐹)) = ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹))) |
86 | 66 | nn0cnd 12572 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → 𝑦 ∈ ℂ) |
87 | 55 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘𝐹) ∈ ℂ) |
88 | 86, 87 | adddirp1d 11278 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 + 1) · (𝐷‘𝐹)) = ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹))) |
89 | 88 | eqcomd 2734 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝑦 · (𝐷‘𝐹)) + (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
90 | 85, 89 | eqtrd 2768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → ((𝐷‘(𝑦 ↑ 𝐹)) + (𝐷‘𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
91 | 83, 90 | eqtrd 2768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 ↑ 𝐹)(+g‘(mulGrp‘(Poly1‘𝑅)))𝐹)) = ((𝑦 + 1)
· (𝐷‘𝐹))) |
92 | 71, 91 | eqtrd 2768 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐷‘(𝑦 ↑ 𝐹)) = (𝑦 · (𝐷‘𝐹))) → (𝐷‘((𝑦 + 1) ↑ 𝐹)) = ((𝑦 + 1) · (𝐷‘𝐹))) |
93 | 4, 7, 10, 13, 58, 92 | nn0indd 12697 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹))) |
94 | 93 | ex 411 |
. 2
⊢ (𝜑 → (𝐴 ∈ ℕ0 → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹)))) |
95 | 1, 94 | mpd 15 |
1
⊢ (𝜑 → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹))) |