![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifexd | Structured version Visualization version GIF version |
Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024.) |
Ref | Expression |
---|---|
ifexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ifexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
ifexd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | 1 | elexd 3485 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | ifexd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | 3 | elexd 3485 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | 2, 4 | ifcld 4579 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3462 ifcif 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-if 4534 |
This theorem is referenced by: ifexg 4582 evlslem3 22095 mhpsclcl 22141 psgnfzto1stlem 32978 prjspnfv01 42278 prjspner01 42279 prjspner1 42280 sge0val 45987 hsphoival 46200 hspmbllem2 46248 |
Copyright terms: Public domain | W3C validator |