![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifexd | Structured version Visualization version GIF version |
Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024.) |
Ref | Expression |
---|---|
ifexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ifexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
ifexd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | 1 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | ifexd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | 3 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | 2, 4 | ifcld 4594 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-if 4549 |
This theorem is referenced by: ifexg 4597 evlslem3 22127 mhpsclcl 22174 psgnfzto1stlem 33093 prjspnfv01 42579 prjspner01 42580 prjspner1 42581 sge0val 46287 hsphoival 46500 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |