MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifexd Structured version   Visualization version   GIF version

Theorem ifexd 4579
Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024.)
Hypotheses
Ref Expression
ifexd.1 (𝜑𝐴𝑉)
ifexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
ifexd (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V)

Proof of Theorem ifexd
StepHypRef Expression
1 ifexd.1 . . 3 (𝜑𝐴𝑉)
21elexd 3502 . 2 (𝜑𝐴 ∈ V)
3 ifexd.2 . . 3 (𝜑𝐵𝑊)
43elexd 3502 . 2 (𝜑𝐵 ∈ V)
52, 4ifcld 4577 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  ifcif 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-if 4532
This theorem is referenced by:  ifexg  4580  evlslem3  22122  mhpsclcl  22169  psgnfzto1stlem  33103  prjspnfv01  42611  prjspner01  42612  prjspner1  42613  sge0val  46322  hsphoival  46535  hspmbllem2  46583
  Copyright terms: Public domain W3C validator