Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifcld | Structured version Visualization version GIF version |
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
ifcld.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ifcld.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
ifcld | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcld.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | ifcld.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | ifcl 4469 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Copyright terms: Public domain | W3C validator |