![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4574. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4587 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4574 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-if 4530 |
This theorem is referenced by: ifex 4579 xaddf 13235 sadcf 16427 ramcl 16997 setcepi 18076 abvtrivd 20724 mvrf1 21935 mplcoe3 21983 psrbagsn 22014 evlslem1 22035 psdmplcl 22094 psdmul 22098 marep01ma 22592 dscmet 24511 dscopn 24512 i1f1lem 25648 i1f1 25649 itg2const 25700 cxpval 26628 cxpcl 26638 recxpcl 26639 sqff1o 27144 chtublem 27174 dchrmullid 27215 bposlem1 27247 lgsval 27264 lgsfcl2 27266 lgscllem 27267 lgsval2lem 27270 lgsneg 27284 lgsdilem 27287 lgsdir2 27293 lgsdir 27295 lgsdi 27297 lgsne0 27298 dchrisum0flblem1 27471 dchrisum0flblem2 27472 dchrisum0fno1 27474 rpvmasum2 27475 omlsi 31270 psgnfzto1stlem 32878 sgnsf 32940 indfval 33705 ddemeas 33925 eulerpartlemb 34058 eulerpartlemgs2 34070 ex-sategoelel12 35107 sqdivzi 35392 poimirlem16 37179 poimirlem19 37182 pw2f1ocnv 42523 flcidc 42663 arearect 42708 sqrtcval 43136 sqrtcval2 43137 resqrtval 43138 imsqrtval 43139 limsup10exlem 45223 sqwvfourb 45680 fouriersw 45682 hspval 46060 |
Copyright terms: Public domain | W3C validator |