| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4530. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4543 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4530 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 |
| This theorem is referenced by: ifex 4535 xaddf 13160 sadcf 16399 ramcl 16976 setcepi 18030 abvtrivd 20752 mvrf1 21928 mplcoe3 21978 psrbagsn 22003 evlslem1 22022 psdmplcl 22082 psdmul 22086 psdmvr 22089 marep01ma 22580 dscmet 24493 dscopn 24494 i1f1lem 25623 i1f1 25624 itg2const 25674 cxpval 26606 cxpcl 26616 recxpcl 26617 sqff1o 27125 chtublem 27155 dchrmullid 27196 bposlem1 27228 lgsval 27245 lgsfcl2 27247 lgscllem 27248 lgsval2lem 27251 lgsneg 27265 lgsdilem 27268 lgsdir2 27274 lgsdir 27276 lgsdi 27278 lgsne0 27279 dchrisum0flblem1 27452 dchrisum0flblem2 27453 dchrisum0fno1 27455 rpvmasum2 27456 omlsi 31383 indfval 32829 psgnfzto1stlem 33072 sgnsf 33134 ddemeas 34219 eulerpartlemb 34352 eulerpartlemgs2 34364 ex-sategoelel12 35407 sqdivzi 35708 poimirlem16 37623 poimirlem19 37626 pw2f1ocnv 43019 flcidc 43152 arearect 43197 sqrtcval 43623 sqrtcval2 43624 resqrtval 43625 imsqrtval 43626 limsup10exlem 45763 sqwvfourb 46220 fouriersw 46222 hspval 46600 |
| Copyright terms: Public domain | W3C validator |