![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4574. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4587 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4574 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: ifex 4579 xaddf 13203 sadcf 16394 ramcl 16962 setcepi 18038 abvtrivd 20448 mvrf1 21545 mplcoe3 21593 psrbagsn 21624 evlslem1 21645 marep01ma 22162 dscmet 24081 dscopn 24082 i1f1lem 25206 i1f1 25207 itg2const 25258 cxpval 26172 cxpcl 26182 recxpcl 26183 sqff1o 26686 chtublem 26714 dchrmullid 26755 bposlem1 26787 lgsval 26804 lgsfcl2 26806 lgscllem 26807 lgsval2lem 26810 lgsneg 26824 lgsdilem 26827 lgsdir2 26833 lgsdir 26835 lgsdi 26837 lgsne0 26838 dchrisum0flblem1 27011 dchrisum0flblem2 27012 dchrisum0fno1 27014 rpvmasum2 27015 omlsi 30657 psgnfzto1stlem 32259 sgnsf 32321 indfval 33014 ddemeas 33234 eulerpartlemb 33367 eulerpartlemgs2 33379 ex-sategoelel12 34418 sqdivzi 34697 poimirlem16 36504 poimirlem19 36507 pw2f1ocnv 41776 flcidc 41916 arearect 41964 sqrtcval 42392 sqrtcval2 42393 resqrtval 42394 imsqrtval 42395 limsup10exlem 44488 sqwvfourb 44945 fouriersw 44947 hspval 45325 |
Copyright terms: Public domain | W3C validator |