Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4504. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4517 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4504 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 |
This theorem is referenced by: ifex 4509 xaddf 12958 sadcf 16160 ramcl 16730 setcepi 17803 abvtrivd 20100 mvrf1 21194 mplcoe3 21239 psrbagsn 21271 evlslem1 21292 marep01ma 21809 dscmet 23728 dscopn 23729 i1f1lem 24853 i1f1 24854 itg2const 24905 cxpval 25819 cxpcl 25829 recxpcl 25830 sqff1o 26331 chtublem 26359 dchrmulid2 26400 bposlem1 26432 lgsval 26449 lgsfcl2 26451 lgscllem 26452 lgsval2lem 26455 lgsneg 26469 lgsdilem 26472 lgsdir2 26478 lgsdir 26480 lgsdi 26482 lgsne0 26483 dchrisum0flblem1 26656 dchrisum0flblem2 26657 dchrisum0fno1 26659 rpvmasum2 26660 omlsi 29766 psgnfzto1stlem 31367 sgnsf 31429 indfval 31984 ddemeas 32204 eulerpartlemb 32335 eulerpartlemgs2 32347 ex-sategoelel12 33389 sqdivzi 33693 poimirlem16 35793 poimirlem19 35796 pw2f1ocnv 40859 flcidc 40999 arearect 41046 sqrtcval 41249 sqrtcval2 41250 resqrtval 41251 imsqrtval 41252 limsup10exlem 43313 sqwvfourb 43770 fouriersw 43772 hspval 44147 |
Copyright terms: Public domain | W3C validator |