![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4593. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4606 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4593 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: ifex 4598 xaddf 13286 sadcf 16499 ramcl 17076 setcepi 18155 abvtrivd 20855 mvrf1 22029 mplcoe3 22079 psrbagsn 22110 evlslem1 22129 psdmplcl 22189 psdmul 22193 marep01ma 22687 dscmet 24606 dscopn 24607 i1f1lem 25743 i1f1 25744 itg2const 25795 cxpval 26724 cxpcl 26734 recxpcl 26735 sqff1o 27243 chtublem 27273 dchrmullid 27314 bposlem1 27346 lgsval 27363 lgsfcl2 27365 lgscllem 27366 lgsval2lem 27369 lgsneg 27383 lgsdilem 27386 lgsdir2 27392 lgsdir 27394 lgsdi 27396 lgsne0 27397 dchrisum0flblem1 27570 dchrisum0flblem2 27571 dchrisum0fno1 27573 rpvmasum2 27574 omlsi 31436 psgnfzto1stlem 33093 sgnsf 33155 indfval 33980 ddemeas 34200 eulerpartlemb 34333 eulerpartlemgs2 34345 ex-sategoelel12 35395 sqdivzi 35690 poimirlem16 37596 poimirlem19 37599 pw2f1ocnv 42994 flcidc 43131 arearect 43176 sqrtcval 43603 sqrtcval2 43604 resqrtval 43605 imsqrtval 43606 limsup10exlem 45693 sqwvfourb 46150 fouriersw 46152 hspval 46530 |
Copyright terms: Public domain | W3C validator |