Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4501. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4514 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4501 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: ifex 4506 xaddf 12887 sadcf 16088 ramcl 16658 setcepi 17719 abvtrivd 20015 mvrf1 21104 mplcoe3 21149 psrbagsn 21181 evlslem1 21202 marep01ma 21717 dscmet 23634 dscopn 23635 i1f1lem 24758 i1f1 24759 itg2const 24810 cxpval 25724 cxpcl 25734 recxpcl 25735 sqff1o 26236 chtublem 26264 dchrmulid2 26305 bposlem1 26337 lgsval 26354 lgsfcl2 26356 lgscllem 26357 lgsval2lem 26360 lgsneg 26374 lgsdilem 26377 lgsdir2 26383 lgsdir 26385 lgsdi 26387 lgsne0 26388 dchrisum0flblem1 26561 dchrisum0flblem2 26562 dchrisum0fno1 26564 rpvmasum2 26565 omlsi 29667 psgnfzto1stlem 31269 sgnsf 31331 indfval 31884 ddemeas 32104 eulerpartlemb 32235 eulerpartlemgs2 32247 ex-sategoelel12 33289 sqdivzi 33599 poimirlem16 35720 poimirlem19 35723 pw2f1ocnv 40775 flcidc 40915 arearect 40962 sqrtcval 41138 sqrtcval2 41139 resqrtval 41140 imsqrtval 41141 limsup10exlem 43203 sqwvfourb 43660 fouriersw 43662 hspval 44037 |
Copyright terms: Public domain | W3C validator |