![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4573. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4586 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4573 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4529 |
This theorem is referenced by: ifex 4578 xaddf 13202 sadcf 16393 ramcl 16961 setcepi 18037 abvtrivd 20447 mvrf1 21544 mplcoe3 21592 psrbagsn 21623 evlslem1 21644 marep01ma 22161 dscmet 24080 dscopn 24081 i1f1lem 25205 i1f1 25206 itg2const 25257 cxpval 26171 cxpcl 26181 recxpcl 26182 sqff1o 26683 chtublem 26711 dchrmullid 26752 bposlem1 26784 lgsval 26801 lgsfcl2 26803 lgscllem 26804 lgsval2lem 26807 lgsneg 26821 lgsdilem 26824 lgsdir2 26830 lgsdir 26832 lgsdi 26834 lgsne0 26835 dchrisum0flblem1 27008 dchrisum0flblem2 27009 dchrisum0fno1 27011 rpvmasum2 27012 omlsi 30652 psgnfzto1stlem 32254 sgnsf 32316 indfval 33009 ddemeas 33229 eulerpartlemb 33362 eulerpartlemgs2 33374 ex-sategoelel12 34413 sqdivzi 34692 poimirlem16 36499 poimirlem19 36502 pw2f1ocnv 41766 flcidc 41906 arearect 41954 sqrtcval 42382 sqrtcval2 42383 resqrtval 42384 imsqrtval 42385 limsup10exlem 44478 sqwvfourb 44935 fouriersw 44937 hspval 45315 |
Copyright terms: Public domain | W3C validator |