![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4569. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4582 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4569 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ifcif 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-if 4525 |
This theorem is referenced by: ifex 4574 xaddf 13227 sadcf 16419 ramcl 16989 setcepi 18068 abvtrivd 20709 mvrf1 21915 mplcoe3 21963 psrbagsn 21994 evlslem1 22015 psdmplcl 22073 psdmul 22077 marep01ma 22549 dscmet 24468 dscopn 24469 i1f1lem 25605 i1f1 25606 itg2const 25657 cxpval 26585 cxpcl 26595 recxpcl 26596 sqff1o 27101 chtublem 27131 dchrmullid 27172 bposlem1 27204 lgsval 27221 lgsfcl2 27223 lgscllem 27224 lgsval2lem 27227 lgsneg 27241 lgsdilem 27244 lgsdir2 27250 lgsdir 27252 lgsdi 27254 lgsne0 27255 dchrisum0flblem1 27428 dchrisum0flblem2 27429 dchrisum0fno1 27431 rpvmasum2 27432 omlsi 31201 psgnfzto1stlem 32799 sgnsf 32861 indfval 33571 ddemeas 33791 eulerpartlemb 33924 eulerpartlemgs2 33936 ex-sategoelel12 34973 sqdivzi 35258 poimirlem16 37044 poimirlem19 37047 pw2f1ocnv 42380 flcidc 42520 arearect 42566 sqrtcval 42994 sqrtcval2 42995 resqrtval 42996 imsqrtval 42997 limsup10exlem 45083 sqwvfourb 45540 fouriersw 45542 hspval 45920 |
Copyright terms: Public domain | W3C validator |