| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4518. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4531 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4518 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ifcif 4472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4473 |
| This theorem is referenced by: ifex 4523 xaddf 13123 sadcf 16364 ramcl 16941 setcepi 17995 abvtrivd 20747 mvrf1 21923 mplcoe3 21973 psrbagsn 21998 evlslem1 22017 psdmplcl 22077 psdmul 22081 psdmvr 22084 marep01ma 22575 dscmet 24487 dscopn 24488 i1f1lem 25617 i1f1 25618 itg2const 25668 cxpval 26600 cxpcl 26610 recxpcl 26611 sqff1o 27119 chtublem 27149 dchrmullid 27190 bposlem1 27222 lgsval 27239 lgsfcl2 27241 lgscllem 27242 lgsval2lem 27245 lgsneg 27259 lgsdilem 27262 lgsdir2 27268 lgsdir 27270 lgsdi 27272 lgsne0 27273 dchrisum0flblem1 27446 dchrisum0flblem2 27447 dchrisum0fno1 27449 rpvmasum2 27450 omlsi 31384 indfval 32837 psgnfzto1stlem 33069 sgnsf 33131 ddemeas 34249 eulerpartlemb 34381 eulerpartlemgs2 34393 ex-sategoelel12 35471 sqdivzi 35772 poimirlem16 37686 poimirlem19 37689 pw2f1ocnv 43140 flcidc 43273 arearect 43318 sqrtcval 43744 sqrtcval2 43745 resqrtval 43746 imsqrtval 43747 limsup10exlem 45880 sqwvfourb 46337 fouriersw 46339 hspval 46717 |
| Copyright terms: Public domain | W3C validator |