![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4576. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4589 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4576 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: ifex 4581 xaddf 13263 sadcf 16487 ramcl 17063 setcepi 18142 abvtrivd 20850 mvrf1 22024 mplcoe3 22074 psrbagsn 22105 evlslem1 22124 psdmplcl 22184 psdmul 22188 marep01ma 22682 dscmet 24601 dscopn 24602 i1f1lem 25738 i1f1 25739 itg2const 25790 cxpval 26721 cxpcl 26731 recxpcl 26732 sqff1o 27240 chtublem 27270 dchrmullid 27311 bposlem1 27343 lgsval 27360 lgsfcl2 27362 lgscllem 27363 lgsval2lem 27366 lgsneg 27380 lgsdilem 27383 lgsdir2 27389 lgsdir 27391 lgsdi 27393 lgsne0 27394 dchrisum0flblem1 27567 dchrisum0flblem2 27568 dchrisum0fno1 27570 rpvmasum2 27571 omlsi 31433 psgnfzto1stlem 33103 sgnsf 33165 indfval 33997 ddemeas 34217 eulerpartlemb 34350 eulerpartlemgs2 34362 ex-sategoelel12 35412 sqdivzi 35708 poimirlem16 37623 poimirlem19 37626 pw2f1ocnv 43026 flcidc 43159 arearect 43204 sqrtcval 43631 sqrtcval2 43632 resqrtval 43633 imsqrtval 43634 limsup10exlem 45728 sqwvfourb 46185 fouriersw 46187 hspval 46565 |
Copyright terms: Public domain | W3C validator |