| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4522. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4535 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4522 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4477 |
| This theorem is referenced by: ifex 4527 xaddf 13126 sadcf 16364 ramcl 16941 setcepi 17995 abvtrivd 20717 mvrf1 21893 mplcoe3 21943 psrbagsn 21968 evlslem1 21987 psdmplcl 22047 psdmul 22051 psdmvr 22054 marep01ma 22545 dscmet 24458 dscopn 24459 i1f1lem 25588 i1f1 25589 itg2const 25639 cxpval 26571 cxpcl 26581 recxpcl 26582 sqff1o 27090 chtublem 27120 dchrmullid 27161 bposlem1 27193 lgsval 27210 lgsfcl2 27212 lgscllem 27213 lgsval2lem 27216 lgsneg 27230 lgsdilem 27233 lgsdir2 27239 lgsdir 27241 lgsdi 27243 lgsne0 27244 dchrisum0flblem1 27417 dchrisum0flblem2 27418 dchrisum0fno1 27420 rpvmasum2 27421 omlsi 31348 indfval 32800 psgnfzto1stlem 33043 sgnsf 33105 ddemeas 34209 eulerpartlemb 34342 eulerpartlemgs2 34354 ex-sategoelel12 35410 sqdivzi 35711 poimirlem16 37626 poimirlem19 37629 pw2f1ocnv 43020 flcidc 43153 arearect 43198 sqrtcval 43624 sqrtcval2 43625 resqrtval 43626 imsqrtval 43627 limsup10exlem 45763 sqwvfourb 46220 fouriersw 46222 hspval 46600 |
| Copyright terms: Public domain | W3C validator |