| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4570. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4583 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4570 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-if 4525 |
| This theorem is referenced by: ifex 4575 xaddf 13267 sadcf 16491 ramcl 17068 setcepi 18134 abvtrivd 20834 mvrf1 22007 mplcoe3 22057 psrbagsn 22088 evlslem1 22107 psdmplcl 22167 psdmul 22171 psdmvr 22174 marep01ma 22667 dscmet 24586 dscopn 24587 i1f1lem 25725 i1f1 25726 itg2const 25776 cxpval 26707 cxpcl 26717 recxpcl 26718 sqff1o 27226 chtublem 27256 dchrmullid 27297 bposlem1 27329 lgsval 27346 lgsfcl2 27348 lgscllem 27349 lgsval2lem 27352 lgsneg 27366 lgsdilem 27369 lgsdir2 27375 lgsdir 27377 lgsdi 27379 lgsne0 27380 dchrisum0flblem1 27553 dchrisum0flblem2 27554 dchrisum0fno1 27556 rpvmasum2 27557 omlsi 31424 indfval 32842 psgnfzto1stlem 33121 sgnsf 33183 ddemeas 34238 eulerpartlemb 34371 eulerpartlemgs2 34383 ex-sategoelel12 35433 sqdivzi 35729 poimirlem16 37644 poimirlem19 37647 pw2f1ocnv 43054 flcidc 43187 arearect 43232 sqrtcval 43659 sqrtcval2 43660 resqrtval 43661 imsqrtval 43662 limsup10exlem 45792 sqwvfourb 46249 fouriersw 46251 hspval 46629 |
| Copyright terms: Public domain | W3C validator |