![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version |
Description: Inference associated with ifcl 4593. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4606 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
3 | ifcl 4593 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-if 4549 |
This theorem is referenced by: ifex 4598 xaddf 13282 sadcf 16493 ramcl 17071 setcepi 18150 abvtrivd 20850 mvrf1 22023 mplcoe3 22073 psrbagsn 22104 evlslem1 22123 psdmplcl 22182 psdmul 22186 marep01ma 22680 dscmet 24599 dscopn 24600 i1f1lem 25736 i1f1 25737 itg2const 25788 cxpval 26715 cxpcl 26725 recxpcl 26726 sqff1o 27234 chtublem 27264 dchrmullid 27305 bposlem1 27337 lgsval 27354 lgsfcl2 27356 lgscllem 27357 lgsval2lem 27360 lgsneg 27374 lgsdilem 27377 lgsdir2 27383 lgsdir 27385 lgsdi 27387 lgsne0 27388 dchrisum0flblem1 27561 dchrisum0flblem2 27562 dchrisum0fno1 27564 rpvmasum2 27565 omlsi 31427 psgnfzto1stlem 33085 sgnsf 33147 indfval 33972 ddemeas 34192 eulerpartlemb 34325 eulerpartlemgs2 34337 ex-sategoelel12 35387 sqdivzi 35682 poimirlem16 37544 poimirlem19 37547 pw2f1ocnv 42931 flcidc 43071 arearect 43116 sqrtcval 43543 sqrtcval2 43544 resqrtval 43545 imsqrtval 43546 limsup10exlem 45627 sqwvfourb 46084 fouriersw 46086 hspval 46464 |
Copyright terms: Public domain | W3C validator |