| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4551. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4564 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4551 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: ifex 4556 xaddf 13245 sadcf 16477 ramcl 17054 setcepi 18106 abvtrivd 20797 mvrf1 21951 mplcoe3 22001 psrbagsn 22026 evlslem1 22045 psdmplcl 22105 psdmul 22109 psdmvr 22112 marep01ma 22603 dscmet 24516 dscopn 24517 i1f1lem 25647 i1f1 25648 itg2const 25698 cxpval 26630 cxpcl 26640 recxpcl 26641 sqff1o 27149 chtublem 27179 dchrmullid 27220 bposlem1 27252 lgsval 27269 lgsfcl2 27271 lgscllem 27272 lgsval2lem 27275 lgsneg 27289 lgsdilem 27292 lgsdir2 27298 lgsdir 27300 lgsdi 27302 lgsne0 27303 dchrisum0flblem1 27476 dchrisum0flblem2 27477 dchrisum0fno1 27479 rpvmasum2 27480 omlsi 31390 indfval 32838 psgnfzto1stlem 33116 sgnsf 33178 ddemeas 34272 eulerpartlemb 34405 eulerpartlemgs2 34417 ex-sategoelel12 35454 sqdivzi 35750 poimirlem16 37665 poimirlem19 37668 pw2f1ocnv 43028 flcidc 43161 arearect 43206 sqrtcval 43632 sqrtcval2 43633 resqrtval 43634 imsqrtval 43635 limsup10exlem 45768 sqwvfourb 46225 fouriersw 46227 hspval 46605 |
| Copyright terms: Public domain | W3C validator |