| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcli | Structured version Visualization version GIF version | ||
| Description: Inference associated with ifcl 4536. Membership (closure) of a conditional operator. Also usable to keep a membership hypothesis for the weak deduction theorem dedth 4549 when the special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifcli.1 | ⊢ 𝐴 ∈ 𝐶 |
| ifcli.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| ifcli | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcli.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | ifcli.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | ifcl 4536 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4491 |
| This theorem is referenced by: ifex 4541 xaddf 13190 sadcf 16429 ramcl 17006 setcepi 18056 abvtrivd 20747 mvrf1 21901 mplcoe3 21951 psrbagsn 21976 evlslem1 21995 psdmplcl 22055 psdmul 22059 psdmvr 22062 marep01ma 22553 dscmet 24466 dscopn 24467 i1f1lem 25596 i1f1 25597 itg2const 25647 cxpval 26579 cxpcl 26589 recxpcl 26590 sqff1o 27098 chtublem 27128 dchrmullid 27169 bposlem1 27201 lgsval 27218 lgsfcl2 27220 lgscllem 27221 lgsval2lem 27224 lgsneg 27238 lgsdilem 27241 lgsdir2 27247 lgsdir 27249 lgsdi 27251 lgsne0 27252 dchrisum0flblem1 27425 dchrisum0flblem2 27426 dchrisum0fno1 27428 rpvmasum2 27429 omlsi 31339 indfval 32785 psgnfzto1stlem 33063 sgnsf 33125 ddemeas 34232 eulerpartlemb 34365 eulerpartlemgs2 34377 ex-sategoelel12 35414 sqdivzi 35710 poimirlem16 37625 poimirlem19 37628 pw2f1ocnv 43019 flcidc 43152 arearect 43197 sqrtcval 43623 sqrtcval2 43624 resqrtval 43625 imsqrtval 43626 limsup10exlem 45763 sqwvfourb 46220 fouriersw 46222 hspval 46600 |
| Copyright terms: Public domain | W3C validator |