Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifexg | Structured version Visualization version GIF version |
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | ifexd 4504 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-if 4457 |
This theorem is referenced by: fsuppmptif 9088 cantnfp1lem1 9366 cantnfp1lem3 9368 symgextfv 18941 pmtrfv 18975 marrepeval 21620 gsummatr01lem3 21714 stdbdmetval 23576 stdbdxmet 23577 ellimc2 24946 cdleme31fv 38331 |
Copyright terms: Public domain | W3C validator |