MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifexg Structured version   Visualization version   GIF version

Theorem ifexg 4550
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.)
Assertion
Ref Expression
ifexg ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)

Proof of Theorem ifexg
StepHypRef Expression
1 simpl 482 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 simpr 484 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
31, 2ifexd 4549 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3459  ifcif 4500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-if 4501
This theorem is referenced by:  fsuppmptif  9411  cantnfp1lem1  9692  cantnfp1lem3  9694  symgextfv  19399  pmtrfv  19433  marrepeval  22501  gsummatr01lem3  22595  stdbdmetval  24453  stdbdxmet  24454  ellimc2  25830  cdleme31fv  40409
  Copyright terms: Public domain W3C validator