| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifexg | Structured version Visualization version GIF version | ||
| Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 2 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | ifexd 4519 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-if 4471 |
| This theorem is referenced by: fsuppmptif 9278 cantnfp1lem1 9563 cantnfp1lem3 9565 symgextfv 19325 pmtrfv 19359 marrepeval 22473 gsummatr01lem3 22567 stdbdmetval 24424 stdbdxmet 24425 ellimc2 25800 cdleme31fv 40429 |
| Copyright terms: Public domain | W3C validator |