MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifexg Structured version   Visualization version   GIF version

Theorem ifexg 4508
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.)
Assertion
Ref Expression
ifexg ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)

Proof of Theorem ifexg
StepHypRef Expression
1 simpl 483 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 simpr 485 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
31, 2ifexd 4507 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-if 4460
This theorem is referenced by:  fsuppmptif  9158  cantnfp1lem1  9436  cantnfp1lem3  9438  symgextfv  19026  pmtrfv  19060  marrepeval  21712  gsummatr01lem3  21806  stdbdmetval  23670  stdbdxmet  23671  ellimc2  25041  cdleme31fv  38404
  Copyright terms: Public domain W3C validator