MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifexg Structured version   Visualization version   GIF version

Theorem ifexg 4520
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.)
Assertion
Ref Expression
ifexg ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)

Proof of Theorem ifexg
StepHypRef Expression
1 simpl 482 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 simpr 484 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
31, 2ifexd 4519 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  ifcif 4470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-if 4471
This theorem is referenced by:  fsuppmptif  9278  cantnfp1lem1  9563  cantnfp1lem3  9565  symgextfv  19325  pmtrfv  19359  marrepeval  22473  gsummatr01lem3  22567  stdbdmetval  24424  stdbdxmet  24425  ellimc2  25800  cdleme31fv  40429
  Copyright terms: Public domain W3C validator