![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifexg | Structured version Visualization version GIF version |
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | ifexd 4577 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 Vcvv 3471 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-if 4530 |
This theorem is referenced by: fsuppmptif 9422 cantnfp1lem1 9701 cantnfp1lem3 9703 symgextfv 19372 pmtrfv 19406 marrepeval 22464 gsummatr01lem3 22558 stdbdmetval 24422 stdbdxmet 24423 ellimc2 25805 cdleme31fv 39863 |
Copyright terms: Public domain | W3C validator |