![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifexg | Structured version Visualization version GIF version |
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ifexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | ifexd 4579 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-if 4532 |
This theorem is referenced by: fsuppmptif 9437 cantnfp1lem1 9716 cantnfp1lem3 9718 symgextfv 19451 pmtrfv 19485 marrepeval 22585 gsummatr01lem3 22679 stdbdmetval 24543 stdbdxmet 24544 ellimc2 25927 cdleme31fv 40373 |
Copyright terms: Public domain | W3C validator |