MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsclcl Structured version   Visualization version   GIF version

Theorem mhpsclcl 21672
Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 25613. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 21658 the zero polynomial can be any degree (see mhp0cl 21671) so there is no exception. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpsclcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsclcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsclcl.a 𝐴 = (algSc‘𝑃)
mhpsclcl.k 𝐾 = (Base‘𝑅)
mhpsclcl.i (𝜑𝐼𝑉)
mhpsclcl.r (𝜑𝑅 ∈ Ring)
mhpsclcl.c (𝜑𝐶𝐾)
Assertion
Ref Expression
mhpsclcl (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))

Proof of Theorem mhpsclcl
Dummy variables 𝑑 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsclcl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2733 . . . . . . 7 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
4 mhpsclcl.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 mhpsclcl.a . . . . . . 7 𝐴 = (algSc‘𝑃)
6 mhpsclcl.i . . . . . . . 8 (𝜑𝐼𝑉)
76adantr 482 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
8 mhpsclcl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98adantr 482 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpsclcl.c . . . . . . . 8 (𝜑𝐶𝐾)
1110adantr 482 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
121, 2, 3, 4, 5, 7, 9, 11mplascl 21607 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐴𝐶) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅))))
13 eqeq1 2737 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0})))
1413ifbid 4550 . . . . . . 7 (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
1514adantl 483 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
16 simpr 486 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17 fvexd 6903 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ V)
1810, 17ifexd 4575 . . . . . . 7 (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
1918adantr 482 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
2012, 15, 16, 19fvmptd 7001 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐴𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
2120neeq1d 3001 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅)))
22 iffalse 4536 . . . . . 6 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) = (0g𝑅))
2322necon1ai 2969 . . . . 5 (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → 𝑑 = (𝐼 × {0}))
24 fconstmpt 5736 . . . . . . . 8 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
2524oveq2i 7415 . . . . . . 7 ((ℂflds0) Σg (𝐼 × {0})) = ((ℂflds0) Σg (𝑘𝐼 ↦ 0))
26 nn0subm 20985 . . . . . . . . 9 0 ∈ (SubMnd‘ℂfld)
27 eqid 2733 . . . . . . . . . 10 (ℂflds0) = (ℂflds0)
2827submmnd 18690 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2926, 28ax-mp 5 . . . . . . . 8 (ℂflds0) ∈ Mnd
30 cnfld0 20954 . . . . . . . . . . 11 0 = (0g‘ℂfld)
3127, 30subm0 18692 . . . . . . . . . 10 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
3226, 31ax-mp 5 . . . . . . . . 9 0 = (0g‘(ℂflds0))
3332gsumz 18713 . . . . . . . 8 (((ℂflds0) ∈ Mnd ∧ 𝐼𝑉) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3429, 7, 33sylancr 588 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3525, 34eqtrid 2785 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝐼 × {0})) = 0)
36 oveq2 7412 . . . . . . 7 (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝐼 × {0})))
3736eqeq1d 2735 . . . . . 6 (𝑑 = (𝐼 × {0}) → (((ℂflds0) Σg 𝑑) = 0 ↔ ((ℂflds0) Σg (𝐼 × {0})) = 0))
3835, 37syl5ibrcom 246 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = 0))
3923, 38syl5 34 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4021, 39sylbid 239 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4140ralrimiva 3147 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
42 mhpsclcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
43 eqid 2733 . . 3 (Base‘𝑃) = (Base‘𝑃)
44 0nn0 12483 . . . 4 0 ∈ ℕ0
4544a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
461, 43, 4, 5, 6, 8mplasclf 21608 . . . 4 (𝜑𝐴:𝐾⟶(Base‘𝑃))
4746, 10ffvelcdmd 7083 . . 3 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑃))
4842, 1, 43, 3, 2, 6, 8, 45, 47ismhp3 21668 . 2 (𝜑 → ((𝐴𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0)))
4941, 48mpbird 257 1 (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  {crab 3433  Vcvv 3475  ifcif 4527  {csn 4627  cmpt 5230   × cxp 5673  ccnv 5674  cima 5678  cfv 6540  (class class class)co 7404  m cmap 8816  Fincfn 8935  0cc0 11106  cn 12208  0cn0 12468  Basecbs 17140  s cress 17169  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621  SubMndcsubmnd 18666  Ringcrg 20047  fldccnfld 20929  algSccascl 21391   mPoly cmpl 21441   mHomP cmhp 21654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-subrg 20349  df-lmod 20461  df-lss 20531  df-cnfld 20930  df-ascl 21394  df-psr 21444  df-mpl 21446  df-mhp 21658
This theorem is referenced by:  mhppwdeg  21675
  Copyright terms: Public domain W3C validator