MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsclcl Structured version   Visualization version   GIF version

Theorem mhpsclcl 21247
Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 25183. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 21233 the zero polynomial can be any degree (see mhp0cl 21246) so there is no exception. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpsclcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsclcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsclcl.a 𝐴 = (algSc‘𝑃)
mhpsclcl.k 𝐾 = (Base‘𝑅)
mhpsclcl.i (𝜑𝐼𝑉)
mhpsclcl.r (𝜑𝑅 ∈ Ring)
mhpsclcl.c (𝜑𝐶𝐾)
Assertion
Ref Expression
mhpsclcl (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))

Proof of Theorem mhpsclcl
Dummy variables 𝑑 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsclcl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2738 . . . . . . 7 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
4 mhpsclcl.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 mhpsclcl.a . . . . . . 7 𝐴 = (algSc‘𝑃)
6 mhpsclcl.i . . . . . . . 8 (𝜑𝐼𝑉)
76adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
8 mhpsclcl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpsclcl.c . . . . . . . 8 (𝜑𝐶𝐾)
1110adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
121, 2, 3, 4, 5, 7, 9, 11mplascl 21182 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐴𝐶) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅))))
13 eqeq1 2742 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0})))
1413ifbid 4479 . . . . . . 7 (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
1514adantl 481 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
16 simpr 484 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17 fvexd 6771 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ V)
1810, 17ifexd 4504 . . . . . . 7 (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
1918adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
2012, 15, 16, 19fvmptd 6864 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐴𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
2120neeq1d 3002 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅)))
22 iffalse 4465 . . . . . 6 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) = (0g𝑅))
2322necon1ai 2970 . . . . 5 (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → 𝑑 = (𝐼 × {0}))
24 fconstmpt 5640 . . . . . . . 8 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
2524oveq2i 7266 . . . . . . 7 ((ℂflds0) Σg (𝐼 × {0})) = ((ℂflds0) Σg (𝑘𝐼 ↦ 0))
26 nn0subm 20565 . . . . . . . . 9 0 ∈ (SubMnd‘ℂfld)
27 eqid 2738 . . . . . . . . . 10 (ℂflds0) = (ℂflds0)
2827submmnd 18367 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2926, 28ax-mp 5 . . . . . . . 8 (ℂflds0) ∈ Mnd
30 cnfld0 20534 . . . . . . . . . . 11 0 = (0g‘ℂfld)
3127, 30subm0 18369 . . . . . . . . . 10 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
3226, 31ax-mp 5 . . . . . . . . 9 0 = (0g‘(ℂflds0))
3332gsumz 18389 . . . . . . . 8 (((ℂflds0) ∈ Mnd ∧ 𝐼𝑉) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3429, 7, 33sylancr 586 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3525, 34eqtrid 2790 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝐼 × {0})) = 0)
36 oveq2 7263 . . . . . . 7 (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝐼 × {0})))
3736eqeq1d 2740 . . . . . 6 (𝑑 = (𝐼 × {0}) → (((ℂflds0) Σg 𝑑) = 0 ↔ ((ℂflds0) Σg (𝐼 × {0})) = 0))
3835, 37syl5ibrcom 246 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = 0))
3923, 38syl5 34 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4021, 39sylbid 239 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4140ralrimiva 3107 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
42 mhpsclcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
43 eqid 2738 . . 3 (Base‘𝑃) = (Base‘𝑃)
44 0nn0 12178 . . . 4 0 ∈ ℕ0
4544a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
461, 43, 4, 5, 6, 8mplasclf 21183 . . . 4 (𝜑𝐴:𝐾⟶(Base‘𝑃))
4746, 10ffvelrnd 6944 . . 3 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑃))
4842, 1, 43, 3, 2, 6, 8, 45, 47ismhp3 21243 . 2 (𝜑 → ((𝐴𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0)))
4941, 48mpbird 256 1 (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cc0 10802  cn 11903  0cn0 12163  Basecbs 16840  s cress 16867  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  SubMndcsubmnd 18344  Ringcrg 19698  fldccnfld 20510  algSccascl 20969   mPoly cmpl 21019   mHomP cmhp 21229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-cnfld 20511  df-ascl 20972  df-psr 21022  df-mpl 21024  df-mhp 21233
This theorem is referenced by:  mhppwdeg  21250
  Copyright terms: Public domain W3C validator