Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsclcl Structured version   Visualization version   GIF version

Theorem mhpsclcl 20895
 Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 24818. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 20881 the zero polynomial can be any degree (see mhp0cl 20894) so there is no exception. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpsclcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsclcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsclcl.a 𝐴 = (algSc‘𝑃)
mhpsclcl.k 𝐾 = (Base‘𝑅)
mhpsclcl.i (𝜑𝐼𝑉)
mhpsclcl.r (𝜑𝑅 ∈ Ring)
mhpsclcl.c (𝜑𝐶𝐾)
Assertion
Ref Expression
mhpsclcl (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))

Proof of Theorem mhpsclcl
Dummy variables 𝑑 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsclcl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2758 . . . . . . 7 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2758 . . . . . . 7 (0g𝑅) = (0g𝑅)
4 mhpsclcl.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 mhpsclcl.a . . . . . . 7 𝐴 = (algSc‘𝑃)
6 mhpsclcl.i . . . . . . . 8 (𝜑𝐼𝑉)
76adantr 484 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
8 mhpsclcl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98adantr 484 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpsclcl.c . . . . . . . 8 (𝜑𝐶𝐾)
1110adantr 484 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
121, 2, 3, 4, 5, 7, 9, 11mplascl 20830 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐴𝐶) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅))))
13 eqeq1 2762 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0})))
1413ifbid 4446 . . . . . . 7 (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
1514adantl 485 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
16 simpr 488 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17 fvexd 6677 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ V)
1810, 17ifexd 4471 . . . . . . 7 (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
1918adantr 484 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
2012, 15, 16, 19fvmptd 6770 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐴𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
2120neeq1d 3010 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅)))
22 iffalse 4432 . . . . . 6 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) = (0g𝑅))
2322necon1ai 2978 . . . . 5 (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → 𝑑 = (𝐼 × {0}))
24 fconstmpt 5587 . . . . . . . 8 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
2524oveq2i 7166 . . . . . . 7 ((ℂflds0) Σg (𝐼 × {0})) = ((ℂflds0) Σg (𝑘𝐼 ↦ 0))
26 nn0subm 20226 . . . . . . . . 9 0 ∈ (SubMnd‘ℂfld)
27 eqid 2758 . . . . . . . . . 10 (ℂflds0) = (ℂflds0)
2827submmnd 18049 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2926, 28ax-mp 5 . . . . . . . 8 (ℂflds0) ∈ Mnd
30 cnfld0 20195 . . . . . . . . . . 11 0 = (0g‘ℂfld)
3127, 30subm0 18051 . . . . . . . . . 10 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
3226, 31ax-mp 5 . . . . . . . . 9 0 = (0g‘(ℂflds0))
3332gsumz 18071 . . . . . . . 8 (((ℂflds0) ∈ Mnd ∧ 𝐼𝑉) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3429, 7, 33sylancr 590 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3525, 34syl5eq 2805 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝐼 × {0})) = 0)
36 oveq2 7163 . . . . . . 7 (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝐼 × {0})))
3736eqeq1d 2760 . . . . . 6 (𝑑 = (𝐼 × {0}) → (((ℂflds0) Σg 𝑑) = 0 ↔ ((ℂflds0) Σg (𝐼 × {0})) = 0))
3835, 37syl5ibrcom 250 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = 0))
3923, 38syl5 34 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4021, 39sylbid 243 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4140ralrimiva 3113 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
42 mhpsclcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
43 eqid 2758 . . 3 (Base‘𝑃) = (Base‘𝑃)
44 0nn0 11954 . . . 4 0 ∈ ℕ0
4544a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
461, 43, 4, 5, 6, 8mplasclf 20831 . . . 4 (𝜑𝐴:𝐾⟶(Base‘𝑃))
4746, 10ffvelrnd 6848 . . 3 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑃))
4842, 1, 43, 3, 2, 6, 8, 45, 47ismhp3 20891 . 2 (𝜑 → ((𝐴𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0)))
4941, 48mpbird 260 1 (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074  Vcvv 3409  ifcif 4423  {csn 4525   ↦ cmpt 5115   × cxp 5525  ◡ccnv 5526   “ cima 5530  ‘cfv 6339  (class class class)co 7155   ↑m cmap 8421  Fincfn 8532  0cc0 10580  ℕcn 11679  ℕ0cn0 11939  Basecbs 16546   ↾s cress 16547  0gc0g 16776   Σg cgsu 16777  Mndcmnd 17982  SubMndcsubmnd 18026  Ringcrg 19370  ℂfldccnfld 20171  algSccascl 20622   mPoly cmpl 20673   mHomP cmhp 20877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-addf 10659  ax-mulf 10660 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-0g 16778  df-gsum 16779  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mulg 18297  df-subg 18348  df-ghm 18428  df-cntz 18519  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-subrg 19606  df-lmod 19709  df-lss 19777  df-cnfld 20172  df-ascl 20625  df-psr 20676  df-mpl 20678  df-mhp 20881 This theorem is referenced by:  mhppwdeg  20898
 Copyright terms: Public domain W3C validator