| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpsclcl | Structured version Visualization version GIF version | ||
| Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 26018. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 22023 the zero polynomial can be any degree (see mhp0cl 22033) so there is no exception. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| mhpsclcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpsclcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpsclcl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| mhpsclcl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpsclcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpsclcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpsclcl.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| mhpsclcl | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpsclcl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | mhpsclcl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | mhpsclcl.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
| 6 | mhpsclcl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
| 8 | mhpsclcl.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
| 10 | mhpsclcl.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐶 ∈ 𝐾) |
| 12 | 1, 2, 3, 4, 5, 7, 9, 11 | mplascl 21971 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐴‘𝐶) = (𝑦 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)))) |
| 13 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0}))) | |
| 14 | 13 | ifbid 4512 | . . . . . . 7 ⊢ (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 17 | fvexd 6873 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 18 | 10, 17 | ifexd 4537 | . . . . . . 7 ⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
| 20 | 12, 15, 16, 19 | fvmptd 6975 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐴‘𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 21 | 20 | neeq1d 2984 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅))) |
| 22 | iffalse 4497 | . . . . . 6 ⊢ (¬ 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = (0g‘𝑅)) | |
| 23 | 22 | necon1ai 2952 | . . . . 5 ⊢ (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → 𝑑 = (𝐼 × {0})) |
| 24 | fconstmpt 5700 | . . . . . . . 8 ⊢ (𝐼 × {0}) = (𝑘 ∈ 𝐼 ↦ 0) | |
| 25 | 24 | oveq2i 7398 | . . . . . . 7 ⊢ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) |
| 26 | nn0subm 21339 | . . . . . . . . 9 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 27 | eqid 2729 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
| 28 | 27 | submmnd 18740 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 29 | 26, 28 | ax-mp 5 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) ∈ Mnd |
| 30 | cnfld0 21304 | . . . . . . . . . . 11 ⊢ 0 = (0g‘ℂfld) | |
| 31 | 27, 30 | subm0 18742 | . . . . . . . . . 10 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
| 32 | 26, 31 | ax-mp 5 | . . . . . . . . 9 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
| 33 | 32 | gsumz 18763 | . . . . . . . 8 ⊢ (((ℂfld ↾s ℕ0) ∈ Mnd ∧ 𝐼 ∈ 𝑉) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
| 34 | 29, 7, 33 | sylancr 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
| 35 | 25, 34 | eqtrid 2776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0) |
| 36 | oveq2 7395 | . . . . . . 7 ⊢ (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝐼 × {0}))) | |
| 37 | 36 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑑 = (𝐼 × {0}) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 0 ↔ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0)) |
| 38 | 35, 37 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 39 | 23, 38 | syl5 34 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 40 | 21, 39 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 41 | 40 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 42 | mhpsclcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 43 | eqid 2729 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 44 | 0nn0 12457 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 46 | 1, 43, 4, 5, 6, 8 | mplasclf 21972 | . . . 4 ⊢ (𝜑 → 𝐴:𝐾⟶(Base‘𝑃)) |
| 47 | 46, 10 | ffvelcdmd 7057 | . . 3 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑃)) |
| 48 | 42, 1, 43, 3, 2, 45, 47 | ismhp3 22029 | . 2 ⊢ (𝜑 → ((𝐴‘𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0))) |
| 49 | 41, 48 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 Vcvv 3447 ifcif 4488 {csn 4589 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Σg cgsu 17403 Mndcmnd 18661 SubMndcsubmnd 18709 Ringcrg 20142 ℂfldccnfld 21264 algSccascl 21761 mPoly cmpl 21815 mHomP cmhp 22016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-cnfld 21265 df-ascl 21764 df-psr 21818 df-mpl 21820 df-mhp 22023 |
| This theorem is referenced by: mhppwdeg 22037 |
| Copyright terms: Public domain | W3C validator |