MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsclcl Structured version   Visualization version   GIF version

Theorem mhpsclcl 22010
Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 25994. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 21999 the zero polynomial can be any degree (see mhp0cl 22009) so there is no exception. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpsclcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsclcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsclcl.a 𝐴 = (algSc‘𝑃)
mhpsclcl.k 𝐾 = (Base‘𝑅)
mhpsclcl.i (𝜑𝐼𝑉)
mhpsclcl.r (𝜑𝑅 ∈ Ring)
mhpsclcl.c (𝜑𝐶𝐾)
Assertion
Ref Expression
mhpsclcl (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))

Proof of Theorem mhpsclcl
Dummy variables 𝑑 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsclcl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2729 . . . . . . 7 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
4 mhpsclcl.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 mhpsclcl.a . . . . . . 7 𝐴 = (algSc‘𝑃)
6 mhpsclcl.i . . . . . . . 8 (𝜑𝐼𝑉)
76adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
8 mhpsclcl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpsclcl.c . . . . . . . 8 (𝜑𝐶𝐾)
1110adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
121, 2, 3, 4, 5, 7, 9, 11mplascl 21947 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐴𝐶) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅))))
13 eqeq1 2733 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0})))
1413ifbid 4508 . . . . . . 7 (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
1514adantl 481 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
16 simpr 484 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17 fvexd 6855 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ V)
1810, 17ifexd 4533 . . . . . . 7 (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
1918adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
2012, 15, 16, 19fvmptd 6957 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐴𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
2120neeq1d 2984 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅)))
22 iffalse 4493 . . . . . 6 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) = (0g𝑅))
2322necon1ai 2952 . . . . 5 (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → 𝑑 = (𝐼 × {0}))
24 fconstmpt 5693 . . . . . . . 8 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
2524oveq2i 7380 . . . . . . 7 ((ℂflds0) Σg (𝐼 × {0})) = ((ℂflds0) Σg (𝑘𝐼 ↦ 0))
26 nn0subm 21315 . . . . . . . . 9 0 ∈ (SubMnd‘ℂfld)
27 eqid 2729 . . . . . . . . . 10 (ℂflds0) = (ℂflds0)
2827submmnd 18716 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2926, 28ax-mp 5 . . . . . . . 8 (ℂflds0) ∈ Mnd
30 cnfld0 21280 . . . . . . . . . . 11 0 = (0g‘ℂfld)
3127, 30subm0 18718 . . . . . . . . . 10 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
3226, 31ax-mp 5 . . . . . . . . 9 0 = (0g‘(ℂflds0))
3332gsumz 18739 . . . . . . . 8 (((ℂflds0) ∈ Mnd ∧ 𝐼𝑉) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3429, 7, 33sylancr 587 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3525, 34eqtrid 2776 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝐼 × {0})) = 0)
36 oveq2 7377 . . . . . . 7 (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝐼 × {0})))
3736eqeq1d 2731 . . . . . 6 (𝑑 = (𝐼 × {0}) → (((ℂflds0) Σg 𝑑) = 0 ↔ ((ℂflds0) Σg (𝐼 × {0})) = 0))
3835, 37syl5ibrcom 247 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = 0))
3923, 38syl5 34 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4021, 39sylbid 240 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4140ralrimiva 3125 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
42 mhpsclcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
43 eqid 2729 . . 3 (Base‘𝑃) = (Base‘𝑃)
44 0nn0 12433 . . . 4 0 ∈ ℕ0
4544a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
461, 43, 4, 5, 6, 8mplasclf 21948 . . . 4 (𝜑𝐴:𝐾⟶(Base‘𝑃))
4746, 10ffvelcdmd 7039 . . 3 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑃))
4842, 1, 43, 3, 2, 45, 47ismhp3 22005 . 2 (𝜑 → ((𝐴𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0)))
4941, 48mpbird 257 1 (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  ifcif 4484  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  SubMndcsubmnd 18685  Ringcrg 20118  fldccnfld 21240  algSccascl 21737   mPoly cmpl 21791   mHomP cmhp 21992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-cnfld 21241  df-ascl 21740  df-psr 21794  df-mpl 21796  df-mhp 21999
This theorem is referenced by:  mhppwdeg  22013
  Copyright terms: Public domain W3C validator