| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpsclcl | Structured version Visualization version GIF version | ||
| Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 26045. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 22051 the zero polynomial can be any degree (see mhp0cl 22061) so there is no exception. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| mhpsclcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpsclcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpsclcl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| mhpsclcl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpsclcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpsclcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpsclcl.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| mhpsclcl | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpsclcl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | mhpsclcl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | mhpsclcl.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
| 6 | mhpsclcl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
| 8 | mhpsclcl.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
| 10 | mhpsclcl.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐶 ∈ 𝐾) |
| 12 | 1, 2, 3, 4, 5, 7, 9, 11 | mplascl 21999 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐴‘𝐶) = (𝑦 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)))) |
| 13 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0}))) | |
| 14 | 13 | ifbid 4496 | . . . . . . 7 ⊢ (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 17 | fvexd 6837 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 18 | 10, 17 | ifexd 4521 | . . . . . . 7 ⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
| 20 | 12, 15, 16, 19 | fvmptd 6936 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐴‘𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
| 21 | 20 | neeq1d 2987 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅))) |
| 22 | iffalse 4481 | . . . . . 6 ⊢ (¬ 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = (0g‘𝑅)) | |
| 23 | 22 | necon1ai 2955 | . . . . 5 ⊢ (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → 𝑑 = (𝐼 × {0})) |
| 24 | fconstmpt 5676 | . . . . . . . 8 ⊢ (𝐼 × {0}) = (𝑘 ∈ 𝐼 ↦ 0) | |
| 25 | 24 | oveq2i 7357 | . . . . . . 7 ⊢ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) |
| 26 | nn0subm 21359 | . . . . . . . . 9 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 27 | eqid 2731 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
| 28 | 27 | submmnd 18721 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
| 29 | 26, 28 | ax-mp 5 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) ∈ Mnd |
| 30 | cnfld0 21329 | . . . . . . . . . . 11 ⊢ 0 = (0g‘ℂfld) | |
| 31 | 27, 30 | subm0 18723 | . . . . . . . . . 10 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
| 32 | 26, 31 | ax-mp 5 | . . . . . . . . 9 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
| 33 | 32 | gsumz 18744 | . . . . . . . 8 ⊢ (((ℂfld ↾s ℕ0) ∈ Mnd ∧ 𝐼 ∈ 𝑉) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
| 34 | 29, 7, 33 | sylancr 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
| 35 | 25, 34 | eqtrid 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0) |
| 36 | oveq2 7354 | . . . . . . 7 ⊢ (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝐼 × {0}))) | |
| 37 | 36 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑑 = (𝐼 × {0}) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 0 ↔ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0)) |
| 38 | 35, 37 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 39 | 23, 38 | syl5 34 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 40 | 21, 39 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 41 | 40 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
| 42 | mhpsclcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 43 | eqid 2731 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 44 | 0nn0 12396 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 46 | 1, 43, 4, 5, 6, 8 | mplasclf 22000 | . . . 4 ⊢ (𝜑 → 𝐴:𝐾⟶(Base‘𝑃)) |
| 47 | 46, 10 | ffvelcdmd 7018 | . . 3 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑃)) |
| 48 | 42, 1, 43, 3, 2, 45, 47 | ismhp3 22057 | . 2 ⊢ (𝜑 → ((𝐴‘𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0))) |
| 49 | 41, 48 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ifcif 4472 {csn 4573 ↦ cmpt 5170 × cxp 5612 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11006 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 ↾s cress 17141 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18642 SubMndcsubmnd 18690 Ringcrg 20151 ℂfldccnfld 21291 algSccascl 21789 mPoly cmpl 21843 mHomP cmhp 22044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-cnfld 21292 df-ascl 21792 df-psr 21846 df-mpl 21848 df-mhp 22051 |
| This theorem is referenced by: mhppwdeg 22065 |
| Copyright terms: Public domain | W3C validator |