Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   GIF version

Theorem sge0val 46351
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Distinct variable groups:   𝑤,𝐹,𝑦   𝑦,𝑋
Allowed substitution hints:   𝑉(𝑦,𝑤)   𝑋(𝑤)

Proof of Theorem sge0val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 46348 . . 3 Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
21a1i 11 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ))))
3 rneq 5882 . . . . 5 (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹)
43eleq2d 2814 . . . 4 (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
54adantl 481 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
6 dmeq 5850 . . . . . . . . . . . 12 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
76adantl 481 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹)
8 fdm 6665 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
98adantr 480 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋)
107, 9eqtrd 2764 . . . . . . . . . 10 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋)
1110pweqd 4570 . . . . . . . . 9 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋)
1211ineq1d 4172 . . . . . . . 8 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
1312mpteq1d 5185 . . . . . . 7 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
1413adantll 714 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
15 fveq1 6825 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
1615sumeq2sdv 15628 . . . . . . . 8 (𝑥 = 𝐹 → Σ𝑤𝑦 (𝑥𝑤) = Σ𝑤𝑦 (𝐹𝑤))
1716mpteq2dv 5189 . . . . . . 7 (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1817adantl 481 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1914, 18eqtrd 2764 . . . . 5 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2019rneqd 5884 . . . 4 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2120supeq1d 9355 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ))
225, 21ifbieq2d 4505 . 2 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
23 simpr 484 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞))
24 simpl 482 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝑋𝑉)
2523, 24fexd 7167 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V)
26 pnfxr 11188 . . . 4 +∞ ∈ ℝ*
2726a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → +∞ ∈ ℝ*)
28 xrltso 13061 . . . . 5 < Or ℝ*
2928supex 9373 . . . 4 sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V
3029a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V)
3127, 30ifexd 4527 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
322, 22, 25, 31fvmptd 6941 1 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  ifcif 4478  𝒫 cpw 4553  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  [,]cicc 13269  Σcsu 15611  Σ^csumge0 46347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-seq 13927  df-sum 15612  df-sumge0 46348
This theorem is referenced by:  sge0vald  46354
  Copyright terms: Public domain W3C validator