Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   GIF version

Theorem sge0val 46491
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Distinct variable groups:   𝑤,𝐹,𝑦   𝑦,𝑋
Allowed substitution hints:   𝑉(𝑦,𝑤)   𝑋(𝑤)

Proof of Theorem sge0val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 46488 . . 3 Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
21a1i 11 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ))))
3 rneq 5882 . . . . 5 (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹)
43eleq2d 2819 . . . 4 (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
54adantl 481 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
6 dmeq 5849 . . . . . . . . . . . 12 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
76adantl 481 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹)
8 fdm 6667 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
98adantr 480 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋)
107, 9eqtrd 2768 . . . . . . . . . 10 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋)
1110pweqd 4568 . . . . . . . . 9 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋)
1211ineq1d 4168 . . . . . . . 8 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
1312mpteq1d 5185 . . . . . . 7 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
1413adantll 714 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
15 fveq1 6829 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
1615sumeq2sdv 15614 . . . . . . . 8 (𝑥 = 𝐹 → Σ𝑤𝑦 (𝑥𝑤) = Σ𝑤𝑦 (𝐹𝑤))
1716mpteq2dv 5189 . . . . . . 7 (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1817adantl 481 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1914, 18eqtrd 2768 . . . . 5 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2019rneqd 5884 . . . 4 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2120supeq1d 9339 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ))
225, 21ifbieq2d 4503 . 2 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
23 simpr 484 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞))
24 simpl 482 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝑋𝑉)
2523, 24fexd 7169 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V)
26 pnfxr 11175 . . . 4 +∞ ∈ ℝ*
2726a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → +∞ ∈ ℝ*)
28 xrltso 13044 . . . . 5 < Or ℝ*
2928supex 9357 . . . 4 sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V
3029a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V)
3127, 30ifexd 4525 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
322, 22, 25, 31fvmptd 6944 1 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  ifcif 4476  𝒫 cpw 4551  cmpt 5176  dom cdm 5621  ran crn 5622  wf 6484  cfv 6488  (class class class)co 7354  Fincfn 8877  supcsup 9333  0cc0 11015  +∞cpnf 11152  *cxr 11154   < clt 11155  [,]cicc 13252  Σcsu 15597  Σ^csumge0 46487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-pre-lttri 11089  ax-pre-lttrn 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-seq 13913  df-sum 15598  df-sumge0 46488
This theorem is referenced by:  sge0vald  46494
  Copyright terms: Public domain W3C validator