Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   GIF version

Theorem sge0val 46395
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Distinct variable groups:   𝑤,𝐹,𝑦   𝑦,𝑋
Allowed substitution hints:   𝑉(𝑦,𝑤)   𝑋(𝑤)

Proof of Theorem sge0val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 46392 . . 3 Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
21a1i 11 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ))))
3 rneq 5916 . . . . 5 (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹)
43eleq2d 2820 . . . 4 (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
54adantl 481 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
6 dmeq 5883 . . . . . . . . . . . 12 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
76adantl 481 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹)
8 fdm 6715 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
98adantr 480 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋)
107, 9eqtrd 2770 . . . . . . . . . 10 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋)
1110pweqd 4592 . . . . . . . . 9 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋)
1211ineq1d 4194 . . . . . . . 8 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
1312mpteq1d 5210 . . . . . . 7 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
1413adantll 714 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
15 fveq1 6875 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
1615sumeq2sdv 15719 . . . . . . . 8 (𝑥 = 𝐹 → Σ𝑤𝑦 (𝑥𝑤) = Σ𝑤𝑦 (𝐹𝑤))
1716mpteq2dv 5215 . . . . . . 7 (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1817adantl 481 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1914, 18eqtrd 2770 . . . . 5 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2019rneqd 5918 . . . 4 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2120supeq1d 9458 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ))
225, 21ifbieq2d 4527 . 2 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
23 simpr 484 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞))
24 simpl 482 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝑋𝑉)
2523, 24fexd 7219 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V)
26 pnfxr 11289 . . . 4 +∞ ∈ ℝ*
2726a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → +∞ ∈ ℝ*)
28 xrltso 13157 . . . . 5 < Or ℝ*
2928supex 9476 . . . 4 sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V
3029a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V)
3127, 30ifexd 4549 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
322, 22, 25, 31fvmptd 6993 1 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  ifcif 4500  𝒫 cpw 4575  cmpt 5201  dom cdm 5654  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  supcsup 9452  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  [,]cicc 13365  Σcsu 15702  Σ^csumge0 46391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-seq 14020  df-sum 15703  df-sumge0 46392
This theorem is referenced by:  sge0vald  46398
  Copyright terms: Public domain W3C validator