| Step | Hyp | Ref
| Expression |
| 1 | | df-sumge0 46378 |
. . 3
⊢
Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran
𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, <
))) |
| 2 | 1 | a1i 11 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) →
Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran
𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, <
)))) |
| 3 | | rneq 5947 |
. . . . 5
⊢ (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹) |
| 4 | 3 | eleq2d 2827 |
. . . 4
⊢ (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran
𝐹)) |
| 5 | 4 | adantl 481 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran
𝐹)) |
| 6 | | dmeq 5914 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹) |
| 8 | | fdm 6745 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋) |
| 10 | 7, 9 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋) |
| 11 | 10 | pweqd 4617 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋) |
| 12 | 11 | ineq1d 4219 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin)) |
| 13 | 12 | mpteq1d 5237 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤))) |
| 14 | 13 | adantll 714 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤))) |
| 15 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑥 = 𝐹 → (𝑥‘𝑤) = (𝐹‘𝑤)) |
| 16 | 15 | sumeq2sdv 15739 |
. . . . . . . 8
⊢ (𝑥 = 𝐹 → Σ𝑤 ∈ 𝑦 (𝑥‘𝑤) = Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)) |
| 17 | 16 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤))) |
| 18 | 17 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤))) |
| 19 | 14, 18 | eqtrd 2777 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤))) |
| 20 | 19 | rneqd 5949 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤))) |
| 21 | 20 | supeq1d 9486 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, < ) = sup(ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, <
)) |
| 22 | 5, 21 | ifbieq2d 4552 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, < )) =
if(+∞ ∈ ran 𝐹,
+∞, sup(ran (𝑦 ∈
(𝒫 𝑋 ∩ Fin)
↦ Σ𝑤 ∈
𝑦 (𝐹‘𝑤)), ℝ*, <
))) |
| 23 | | simpr 484 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 24 | | simpl 482 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → 𝑋 ∈ 𝑉) |
| 25 | 23, 24 | fexd 7247 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V) |
| 26 | | pnfxr 11315 |
. . . 4
⊢ +∞
∈ ℝ* |
| 27 | 26 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → +∞
∈ ℝ*) |
| 28 | | xrltso 13183 |
. . . . 5
⊢ < Or
ℝ* |
| 29 | 28 | supex 9503 |
. . . 4
⊢ sup(ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, < ) ∈
V |
| 30 | 29 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → sup(ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, < ) ∈
V) |
| 31 | 27, 30 | ifexd 4574 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → if(+∞
∈ ran 𝐹, +∞,
sup(ran (𝑦 ∈
(𝒫 𝑋 ∩ Fin)
↦ Σ𝑤 ∈
𝑦 (𝐹‘𝑤)), ℝ*, < )) ∈
V) |
| 32 | 2, 22, 25, 31 | fvmptd 7023 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) →
(Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, <
))) |