Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoival Structured version   Visualization version   GIF version

Theorem hsphoival 44007
Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoival.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoival.a (𝜑𝐴 ∈ ℝ)
hsphoival.x (𝜑𝑋𝑉)
hsphoival.b (𝜑𝐵:𝑋⟶ℝ)
hsphoival.k (𝜑𝐾𝑋)
Assertion
Ref Expression
hsphoival (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑗,𝐾   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑗,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝐾(𝑥,𝑎)   𝑉(𝑥,𝑗,𝑎)

Proof of Theorem hsphoival
StepHypRef Expression
1 hsphoival.h . . . 4 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
2 breq2 5074 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
3 id 22 . . . . . . . 8 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3ifbieq2d 4482 . . . . . . 7 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
54ifeq2d 4476 . . . . . 6 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
65mpteq2dv 5172 . . . . 5 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
76mpteq2dv 5172 . . . 4 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
8 hsphoival.a . . . 4 (𝜑𝐴 ∈ ℝ)
9 ovex 7288 . . . . . 6 (ℝ ↑m 𝑋) ∈ V
109mptex 7081 . . . . 5 (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
1110a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
121, 7, 8, 11fvmptd3 6880 . . 3 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
13 fveq1 6755 . . . . . 6 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
1413breq1d 5080 . . . . . . 7 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
1514, 13ifbieq1d 4480 . . . . . 6 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
1613, 15ifeq12d 4477 . . . . 5 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
1716mpteq2dv 5172 . . . 4 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
1817adantl 481 . . 3 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
19 hsphoival.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
20 reex 10893 . . . . . . 7 ℝ ∈ V
2120a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
22 hsphoival.x . . . . . 6 (𝜑𝑋𝑉)
2321, 22jca 511 . . . . 5 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
24 elmapg 8586 . . . . 5 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2523, 24syl 17 . . . 4 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2619, 25mpbird 256 . . 3 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
27 mptexg 7079 . . . 4 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
2822, 27syl 17 . . 3 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
2912, 18, 26, 28fvmptd 6864 . 2 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
30 eleq1 2826 . . . 4 (𝑗 = 𝐾 → (𝑗𝑌𝐾𝑌))
31 fveq2 6756 . . . 4 (𝑗 = 𝐾 → (𝐵𝑗) = (𝐵𝐾))
3231breq1d 5080 . . . . 5 (𝑗 = 𝐾 → ((𝐵𝑗) ≤ 𝐴 ↔ (𝐵𝐾) ≤ 𝐴))
3332, 31ifbieq1d 4480 . . . 4 (𝑗 = 𝐾 → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) = if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴))
3430, 31, 33ifbieq12d 4484 . . 3 (𝑗 = 𝐾 → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
3534adantl 481 . 2 ((𝜑𝑗 = 𝐾) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
36 hsphoival.k . 2 (𝜑𝐾𝑋)
3719, 36ffvelrnd 6944 . . 3 (𝜑 → (𝐵𝐾) ∈ ℝ)
3837, 8ifcld 4502 . . 3 (𝜑 → if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴) ∈ ℝ)
3937, 38ifexd 4504 . 2 (𝜑 → if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)) ∈ V)
4029, 35, 36, 39fvmptd 6864 1 (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  hsphoidmvle2  44013  hsphoidmvle  44014  hoidmvlelem2  44024  hspmbllem1  44054
  Copyright terms: Public domain W3C validator