Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoival Structured version   Visualization version   GIF version

Theorem hsphoival 41433
Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoival.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoival.a (𝜑𝐴 ∈ ℝ)
hsphoival.x (𝜑𝑋𝑉)
hsphoival.b (𝜑𝐵:𝑋⟶ℝ)
hsphoival.k (𝜑𝐾𝑋)
Assertion
Ref Expression
hsphoival (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑗,𝐾   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑗,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝐾(𝑥,𝑎)   𝑉(𝑥,𝑗,𝑎)

Proof of Theorem hsphoival
StepHypRef Expression
1 hsphoival.h . . . . 5 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
21a1i 11 . . . 4 (𝜑𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))))))
3 breq2 4813 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
4 id 22 . . . . . . . . 9 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4ifbieq2d 4268 . . . . . . . 8 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
65ifeq2d 4262 . . . . . . 7 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
76mpteq2dv 4904 . . . . . 6 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
87mpteq2dv 4904 . . . . 5 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
98adantl 473 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
10 hsphoival.a . . . 4 (𝜑𝐴 ∈ ℝ)
11 ovex 6874 . . . . . 6 (ℝ ↑𝑚 𝑋) ∈ V
1211mptex 6679 . . . . 5 (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
1312a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
142, 9, 10, 13fvmptd 6477 . . 3 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
15 fveq1 6374 . . . . . 6 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
1615breq1d 4819 . . . . . . 7 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
1716, 15ifbieq1d 4266 . . . . . 6 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
1815, 17ifeq12d 4263 . . . . 5 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
1918mpteq2dv 4904 . . . 4 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2019adantl 473 . . 3 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
21 hsphoival.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
22 reex 10280 . . . . . . 7 ℝ ∈ V
2322a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
24 hsphoival.x . . . . . 6 (𝜑𝑋𝑉)
2523, 24jca 507 . . . . 5 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
26 elmapg 8073 . . . . 5 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2725, 26syl 17 . . . 4 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2821, 27mpbird 248 . . 3 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
29 mptexg 6677 . . . 4 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3024, 29syl 17 . . 3 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3114, 20, 28, 30fvmptd 6477 . 2 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
32 eleq1 2832 . . . 4 (𝑗 = 𝐾 → (𝑗𝑌𝐾𝑌))
33 fveq2 6375 . . . 4 (𝑗 = 𝐾 → (𝐵𝑗) = (𝐵𝐾))
3433breq1d 4819 . . . . 5 (𝑗 = 𝐾 → ((𝐵𝑗) ≤ 𝐴 ↔ (𝐵𝐾) ≤ 𝐴))
3534, 33ifbieq1d 4266 . . . 4 (𝑗 = 𝐾 → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) = if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴))
3632, 33, 35ifbieq12d 4270 . . 3 (𝑗 = 𝐾 → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
3736adantl 473 . 2 ((𝜑𝑗 = 𝐾) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
38 hsphoival.k . 2 (𝜑𝐾𝑋)
3921, 38ffvelrnd 6550 . . 3 (𝜑 → (𝐵𝐾) ∈ ℝ)
4039, 10ifcld 4288 . . 3 (𝜑 → if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴) ∈ ℝ)
41 ifexg 4290 . . 3 (((𝐵𝐾) ∈ ℝ ∧ if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴) ∈ ℝ) → if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)) ∈ V)
4239, 40, 41syl2anc 579 . 2 (𝜑 → if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)) ∈ V)
4331, 37, 38, 42fvmptd 6477 1 (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  ifcif 4243   class class class wbr 4809  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  cr 10188  cle 10329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-map 8062
This theorem is referenced by:  hsphoidmvle2  41439  hsphoidmvle  41440  hoidmvlelem2  41450  hspmbllem1  41480
  Copyright terms: Public domain W3C validator