Proof of Theorem hsphoival
Step | Hyp | Ref
| Expression |
1 | | hsphoival.h |
. . . 4
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))))) |
2 | | breq2 5037 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑎‘𝑗) ≤ 𝑥 ↔ (𝑎‘𝑗) ≤ 𝐴)) |
3 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
4 | 2, 3 | ifbieq2d 4447 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥) = if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)) |
5 | 4 | ifeq2d 4441 |
. . . . . 6
⊢ (𝑥 = 𝐴 → if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥)) = if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) |
6 | 5 | mpteq2dv 5129 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) |
7 | 6 | mpteq2dv 5129 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))))) |
8 | | hsphoival.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | | ovex 7184 |
. . . . . 6
⊢ (ℝ
↑m 𝑋)
∈ V |
10 | 9 | mptex 6978 |
. . . . 5
⊢ (𝑎 ∈ (ℝ
↑m 𝑋)
↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) ∈ V |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) ∈ V) |
12 | 1, 7, 8, 11 | fvmptd3 6783 |
. . 3
⊢ (𝜑 → (𝐻‘𝐴) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))))) |
13 | | fveq1 6658 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎‘𝑗) = (𝐵‘𝑗)) |
14 | 13 | breq1d 5043 |
. . . . . . 7
⊢ (𝑎 = 𝐵 → ((𝑎‘𝑗) ≤ 𝐴 ↔ (𝐵‘𝑗) ≤ 𝐴)) |
15 | 14, 13 | ifbieq1d 4445 |
. . . . . 6
⊢ (𝑎 = 𝐵 → if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴) = if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) |
16 | 13, 15 | ifeq12d 4442 |
. . . . 5
⊢ (𝑎 = 𝐵 → if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)) = if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) |
17 | 16 | mpteq2dv 5129 |
. . . 4
⊢ (𝑎 = 𝐵 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
18 | 17 | adantl 486 |
. . 3
⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
19 | | hsphoival.b |
. . . 4
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
20 | | reex 10659 |
. . . . . . 7
⊢ ℝ
∈ V |
21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
22 | | hsphoival.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
23 | 21, 22 | jca 516 |
. . . . 5
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈ 𝑉)) |
24 | | elmapg 8430 |
. . . . 5
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
𝑉) → (𝐵 ∈ (ℝ
↑m 𝑋)
↔ 𝐵:𝑋⟶ℝ)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
26 | 19, 25 | mpbird 260 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
27 | | mptexg 6976 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) ∈ V) |
28 | 22, 27 | syl 17 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) ∈ V) |
29 | 12, 18, 26, 28 | fvmptd 6767 |
. 2
⊢ (𝜑 → ((𝐻‘𝐴)‘𝐵) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
30 | | eleq1 2840 |
. . . 4
⊢ (𝑗 = 𝐾 → (𝑗 ∈ 𝑌 ↔ 𝐾 ∈ 𝑌)) |
31 | | fveq2 6659 |
. . . 4
⊢ (𝑗 = 𝐾 → (𝐵‘𝑗) = (𝐵‘𝐾)) |
32 | 31 | breq1d 5043 |
. . . . 5
⊢ (𝑗 = 𝐾 → ((𝐵‘𝑗) ≤ 𝐴 ↔ (𝐵‘𝐾) ≤ 𝐴)) |
33 | 32, 31 | ifbieq1d 4445 |
. . . 4
⊢ (𝑗 = 𝐾 → if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴) = if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴)) |
34 | 30, 31, 33 | ifbieq12d 4449 |
. . 3
⊢ (𝑗 = 𝐾 → if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |
35 | 34 | adantl 486 |
. 2
⊢ ((𝜑 ∧ 𝑗 = 𝐾) → if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |
36 | | hsphoival.k |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
37 | 19, 36 | ffvelrnd 6844 |
. . 3
⊢ (𝜑 → (𝐵‘𝐾) ∈ ℝ) |
38 | 37, 8 | ifcld 4467 |
. . 3
⊢ (𝜑 → if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴) ∈ ℝ) |
39 | 37, 38 | ifexd 4469 |
. 2
⊢ (𝜑 → if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴)) ∈ V) |
40 | 29, 35, 36, 39 | fvmptd 6767 |
1
⊢ (𝜑 → (((𝐻‘𝐴)‘𝐵)‘𝐾) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |