Proof of Theorem hsphoival
| Step | Hyp | Ref
| Expression |
| 1 | | hsphoival.h |
. . . 4
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))))) |
| 2 | | breq2 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑎‘𝑗) ≤ 𝑥 ↔ (𝑎‘𝑗) ≤ 𝐴)) |
| 3 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
| 4 | 2, 3 | ifbieq2d 4551 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥) = if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)) |
| 5 | 4 | ifeq2d 4545 |
. . . . . 6
⊢ (𝑥 = 𝐴 → if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥)) = if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) |
| 6 | 5 | mpteq2dv 5243 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) |
| 7 | 6 | mpteq2dv 5243 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝑥, (𝑎‘𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))))) |
| 8 | | hsphoival.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 9 | | ovex 7465 |
. . . . . 6
⊢ (ℝ
↑m 𝑋)
∈ V |
| 10 | 9 | mptex 7244 |
. . . . 5
⊢ (𝑎 ∈ (ℝ
↑m 𝑋)
↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) ∈ V |
| 11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)))) ∈ V) |
| 12 | 1, 7, 8, 11 | fvmptd3 7038 |
. . 3
⊢ (𝜑 → (𝐻‘𝐴) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))))) |
| 13 | | fveq1 6904 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎‘𝑗) = (𝐵‘𝑗)) |
| 14 | 13 | breq1d 5152 |
. . . . . . 7
⊢ (𝑎 = 𝐵 → ((𝑎‘𝑗) ≤ 𝐴 ↔ (𝐵‘𝑗) ≤ 𝐴)) |
| 15 | 14, 13 | ifbieq1d 4549 |
. . . . . 6
⊢ (𝑎 = 𝐵 → if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴) = if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) |
| 16 | 13, 15 | ifeq12d 4546 |
. . . . 5
⊢ (𝑎 = 𝐵 → if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴)) = if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) |
| 17 | 16 | mpteq2dv 5243 |
. . . 4
⊢ (𝑎 = 𝐵 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
| 18 | 17 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑎‘𝑗), if((𝑎‘𝑗) ≤ 𝐴, (𝑎‘𝑗), 𝐴))) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
| 19 | | hsphoival.b |
. . . 4
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 20 | | reex 11247 |
. . . . . . 7
⊢ ℝ
∈ V |
| 21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
| 22 | | hsphoival.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 23 | 21, 22 | jca 511 |
. . . . 5
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈ 𝑉)) |
| 24 | | elmapg 8880 |
. . . . 5
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
𝑉) → (𝐵 ∈ (ℝ
↑m 𝑋)
↔ 𝐵:𝑋⟶ℝ)) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 26 | 19, 25 | mpbird 257 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
| 27 | | mptexg 7242 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) ∈ V) |
| 28 | 22, 27 | syl 17 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴))) ∈ V) |
| 29 | 12, 18, 26, 28 | fvmptd 7022 |
. 2
⊢ (𝜑 → ((𝐻‘𝐴)‘𝐵) = (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)))) |
| 30 | | eleq1 2828 |
. . . 4
⊢ (𝑗 = 𝐾 → (𝑗 ∈ 𝑌 ↔ 𝐾 ∈ 𝑌)) |
| 31 | | fveq2 6905 |
. . . 4
⊢ (𝑗 = 𝐾 → (𝐵‘𝑗) = (𝐵‘𝐾)) |
| 32 | 31 | breq1d 5152 |
. . . . 5
⊢ (𝑗 = 𝐾 → ((𝐵‘𝑗) ≤ 𝐴 ↔ (𝐵‘𝐾) ≤ 𝐴)) |
| 33 | 32, 31 | ifbieq1d 4549 |
. . . 4
⊢ (𝑗 = 𝐾 → if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴) = if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴)) |
| 34 | 30, 31, 33 | ifbieq12d 4553 |
. . 3
⊢ (𝑗 = 𝐾 → if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |
| 35 | 34 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑗 = 𝐾) → if(𝑗 ∈ 𝑌, (𝐵‘𝑗), if((𝐵‘𝑗) ≤ 𝐴, (𝐵‘𝑗), 𝐴)) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |
| 36 | | hsphoival.k |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| 37 | 19, 36 | ffvelcdmd 7104 |
. . 3
⊢ (𝜑 → (𝐵‘𝐾) ∈ ℝ) |
| 38 | 37, 8 | ifcld 4571 |
. . 3
⊢ (𝜑 → if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴) ∈ ℝ) |
| 39 | 37, 38 | ifexd 4573 |
. 2
⊢ (𝜑 → if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴)) ∈ V) |
| 40 | 29, 35, 36, 39 | fvmptd 7022 |
1
⊢ (𝜑 → (((𝐻‘𝐴)‘𝐵)‘𝐾) = if(𝐾 ∈ 𝑌, (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝐴, (𝐵‘𝐾), 𝐴))) |