![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffv | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
iffv | ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6890 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | fveq1 6890 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ifsb 4541 | 1 ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ifcif 4528 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-if 4529 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: decpmatid 22493 pmatcollpwscmatlem1 22512 selvvvval 41460 prjspnfv01 41669 |
Copyright terms: Public domain | W3C validator |