![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffv | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
iffv | ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6919 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | fveq1 6919 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ifsb 4561 | 1 ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-if 4549 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: decpmatid 22797 pmatcollpwscmatlem1 22816 selvvvval 42540 prjspnfv01 42579 |
Copyright terms: Public domain | W3C validator |