Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iffv | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
iffv | ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6738 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | fveq1 6738 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ifsb 4469 | 1 ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ifcif 4456 ‘cfv 6401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-in 3890 df-ss 3900 df-if 4457 df-uni 4837 df-br 5071 df-iota 6359 df-fv 6409 |
This theorem is referenced by: decpmatid 21699 pmatcollpwscmatlem1 21718 prjspnfv01 40217 |
Copyright terms: Public domain | W3C validator |