| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffv | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| Ref | Expression |
|---|---|
| iffv | ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6880 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
| 2 | fveq1 6880 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ifsb 4519 | 1 ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4505 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-if 4506 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: decpmatid 22713 pmatcollpwscmatlem1 22732 selvvvval 42575 prjspnfv01 42614 |
| Copyright terms: Public domain | W3C validator |