MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iffv Structured version   Visualization version   GIF version

Theorem iffv 6923
Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
iffv (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹𝐴), (𝐺𝐴))

Proof of Theorem iffv
StepHypRef Expression
1 fveq1 6905 . 2 (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹𝐴))
2 fveq1 6905 . 2 (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺𝐴))
31, 2ifsb 4539 1 (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹𝐴), (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4525  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-ss 3968  df-if 4526  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569
This theorem is referenced by:  decpmatid  22776  pmatcollpwscmatlem1  22795  selvvvval  42595  prjspnfv01  42634
  Copyright terms: Public domain W3C validator