Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iffv | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
iffv | ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6767 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐹 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | fveq1 6767 | . 2 ⊢ (if(𝜑, 𝐹, 𝐺) = 𝐺 → (if(𝜑, 𝐹, 𝐺)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ifsb 4477 | 1 ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ifcif 4464 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-if 4465 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: decpmatid 21900 pmatcollpwscmatlem1 21919 prjspnfv01 40441 |
Copyright terms: Public domain | W3C validator |