HomeHome Metamath Proof Explorer
Theorem List (p. 70 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29266)
  Hilbert Space Explorer  Hilbert Space Explorer
(29267-30789)
  Users' Mathboxes  Users' Mathboxes
(30790-46477)
 

Theorem List for Metamath Proof Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvopab6 6901* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
 
Theoremeqfnfv 6902* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfnfv2 6903* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
 
Theoremeqfnfv3 6904* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
 
Theoremeqfnfvd 6905* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑𝐹 = 𝐺)
 
Theoremeqfnfv2f 6906* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 6902 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
𝑥𝐹    &   𝑥𝐺       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfunfv 6907* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
 
Theoremfvreseq0 6908* Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfvreseq1 6909* Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfvreseq 6910* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfnmptfvd 6911* A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
(𝜑𝑀 Fn 𝐴)    &   (𝑖 = 𝑎𝐷 = 𝐶)    &   ((𝜑𝑖𝐴) → 𝐷𝑈)    &   ((𝜑𝑎𝐴) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
 
Theoremfndmdif 6912* Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
 
Theoremfndmdifcom 6913 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))
 
Theoremfndmdifeq0 6914 The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))
 
Theoremfndmin 6915* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
 
Theoremfneqeql 6916 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
 
Theoremfneqeql2 6917 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
 
Theoremfnreseql 6918 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
 
Theoremchfnrn 6919* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
 
Theoremfunfvop 6920 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
 
Theoremfunfvbrb 6921 Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
(Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
 
Theoremfvimacnvi 6922 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
 
Theoremfvimacnv 6923 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6510 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
 
Theoremfunimass3 6924 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6923 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 
Theoremfunimass5 6925* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfunconstss 6926* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
 
TheoremfvimacnvALT 6927 Alternate proof of fvimacnv 6923, based on funimass3 6924. If funimass3 6924 is ever proved directly, as opposed to using funimacnv 6508 pointwise, then the proof of funimacnv 6508 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
 
Theoremelpreima 6928 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
 
Theoremelpreimad 6929 Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ 𝐶)       (𝜑𝐵 ∈ (𝐹𝐶))
 
Theoremfniniseg 6930 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.)
(𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))
 
Theoremfncnvima2 6931* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
 
Theoremfniniseg2 6932* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
 
Theoremunpreima 6933 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
 
Theoreminpreima 6934 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremdifpreima 6935 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremrespreima 6936 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
 
Theoremcnvimainrn 6937 The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.)
(Fun 𝐹 → (𝐹 “ (ran 𝐹𝐴)) = (𝐹𝐴))
 
Theoremsspreima 6938 The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.)
((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
 
Theoremiinpreima 6939* Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
 
Theoremintpreima 6940* Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
 
TheoremfimacnvOLD 6941 Obsolete version of fimacnv 6615 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
 
Theoremfimacnvinrn 6942 Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
(Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
 
Theoremfimacnvinrn2 6943 Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.)
((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴𝐵)))
 
Theoremrescnvimafod 6944 The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐸 = (ran 𝐹𝐵))    &   (𝜑𝐷 = (𝐹𝐵))       (𝜑 → (𝐹𝐷):𝐷onto𝐸)
 
Theoremfvn0ssdmfun 6945* If a class' function values for certain arguments is not the empty set, the arguments are contained in the domain of the class, and the class restricted to the arguments is a function, analogous to fvfundmfvn0 6805. (Contributed by AV, 27-Jan-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(∀𝑎𝐷 (𝐹𝑎) ≠ ∅ → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹𝐷)))
 
Theoremfnopfv 6946 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
 
Theoremfvelrn 6947 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 
Theoremnelrnfvne 6948 A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.)
((Fun 𝐹𝑋 ∈ dom 𝐹𝑌 ∉ ran 𝐹) → (𝐹𝑋) ≠ 𝑌)
 
Theoremfveqdmss 6949* If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.)
𝐷 = dom 𝐵       ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
 
Theoremfveqressseq 6950* If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
𝐷 = dom 𝐵       ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
 
Theoremfnfvelrn 6951 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
 
Theoremffvelrn 6952 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrni 6953 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
𝐹:𝐴𝐵       (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnda 6954 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)       ((𝜑𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremffvelrnd 6955 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) ∈ 𝐵)
 
Theoremrexrn 6956* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
 
Theoremralrn 6957* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦𝐴 𝜓))
 
Theoremelrnrexdm 6958* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremelrnrexdmb 6959* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
 
Theoremeldmrexrn 6960* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
(Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
 
Theoremeldmrexrnb 6961* For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6435 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6435 of the value of a function, (𝐹𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
 
Theoremfvcofneq 6962* The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.)
((𝐺 Fn 𝐴𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
 
Theoremralrnmptw 6963* A restricted quantifier over an image set. Version of ralrnmpt 6965 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremrexrnmptw 6964* A restricted quantifier over an image set. Version of rexrnmpt 6966 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
 
Theoremralrnmpt 6965* A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker ralrnmptw 6963 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremrexrnmpt 6966* A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker rexrnmptw 6964 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
 
Theoremf0cli 6967 Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
𝐹:𝐴𝐵    &   ∅ ∈ 𝐵       (𝐹𝐶) ∈ 𝐵
 
Theoremdff2 6968 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴𝐹 ⊆ (𝐴 × 𝐵)))
 
Theoremdff3 6969* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
 
Theoremdff4 6970* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
 
Theoremdffo3 6971* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
 
Theoremdffo4 6972* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
 
Theoremdffo5 6973* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
 
Theoremexfo 6974* A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
(∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
 
Theoremfoelrn 6975* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
 
Theoremfoco2 6976 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
 
Theoremfmpt 6977* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐶)       (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
 
Theoremf1ompt 6978* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
𝐹 = (𝑥𝐴𝐶)       (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
 
Theoremfmpti 6979* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴𝐶)    &   (𝑥𝐴𝐶𝐵)       𝐹:𝐴𝐵
 
Theoremfvmptelrn 6980* The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑 → (𝑥𝐴𝐵):𝐴𝐶)       ((𝜑𝑥𝐴) → 𝐵𝐶)
 
Theoremfmptd 6981* Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremfmpttd 6982* Version of fmptd 6981 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.)
((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
 
Theoremfmpt3d 6983* Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
(𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremfmptdf 6984* A version of fmptd 6981 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremffnfv 6985* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremffnfvf 6986 A function maps to a class to which all values belong. This version of ffnfv 6985 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfnfvrnss 6987* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
 
Theoremfrnssb 6988* A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
 
Theoremrnmptss 6989* The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
 
Theoremfmpt2d 6990* Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremffvresb 6991* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
(Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
 
Theoremf1oresrab 6992* Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
𝐹 = (𝑥𝐴𝐶)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))       (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
 
Theoremf1ossf1o 6993* Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022.)
𝑋 = {𝑤𝐴 ∣ (𝜓𝜒)}    &   𝑌 = {𝑤𝐴𝜓}    &   𝐹 = (𝑥𝑋𝐵)    &   𝐺 = (𝑥𝑌𝐵)    &   (𝜑𝐺:𝑌1-1-onto𝐶)    &   ((𝜑𝑥𝑌𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒))       (𝜑𝐹:𝑋1-1-onto→{𝑦𝐶𝜏})
 
Theoremfmptco 6994* Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
((𝜑𝑥𝐴) → 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcof 6995* Version of fmptco 6994 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfmptcos 6996* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
 
Theoremcofmpt 6997* Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
(𝜑𝐹:𝐶𝐷)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
 
Theoremfcompt 6998* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
 
Theoremfcoconst 6999 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
 
Theoremfsn 7000 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46477
  Copyright terms: Public domain < Previous  Next >