HomeHome Metamath Proof Explorer
Theorem List (p. 70 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvressn 6901 The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
(𝑋𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))
 
Theoremfvn0fvelrn 6902 If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)
 
Theoremfvconst 6903 The value of a constant function. (Contributed by NM, 30-May-1999.)
((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)
 
Theoremfnsnr 6904 If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.)
(𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))
 
Theoremfnsnb 6905 A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.)
𝐴 ∈ V       (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
 
Theoremfmptsn 6906* Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
 
Theoremfmptsng 6907* Express a singleton function in maps-to notation. Version of fmptsn 6906 allowing the value 𝐵 to depend on the variable 𝑥. (Contributed by AV, 27-Feb-2019.)
(𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝑉𝐶𝑊) → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
 
Theoremfmptsnd 6908* Express a singleton function in maps-to notation. Deduction form of fmptsng 6907. (Contributed by AV, 4-Aug-2019.)
((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝐶𝑊)       (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
 
Theoremfmptap 6909* Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑅 ∪ {𝐴}) = 𝑆    &   (𝑥 = 𝐴𝐶 = 𝐵)       ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
 
Theoremfmptapd 6910* Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)       (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
 
Theoremfmptpr 6911* Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   ((𝜑𝑥 = 𝐴) → 𝐸 = 𝐶)    &   ((𝜑𝑥 = 𝐵) → 𝐸 = 𝐷)       (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸))
 
Theoremfvresi 6912 The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
(𝐵𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵)
 
Theoremfninfp 6913* Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
 
Theoremfnelfp 6914 Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑋) = 𝑋))
 
Theoremfndifnfp 6915* Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
 
Theoremfnelnfp 6916 Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
 
Theoremfnnfpeq0 6917 A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
(𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))
 
Theoremfvunsn 6918 Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.)
(𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
 
Theoremfvsng 6919 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.)
((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
 
Theoremfvsn 6920 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.)
𝐴 ∈ V    &   𝐵 ∈ V       ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
 
Theoremfvsnun1 6921 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 6922. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))       (𝜑 → (𝐺𝐴) = 𝐵)
 
Theoremfvsnun2 6922 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 6921. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))    &   (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))       (𝜑 → (𝐺𝐷) = (𝐹𝐷))
 
Theoremfnsnsplit 6923 Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.)
((𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
 
Theoremfsnunf 6924 Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)
 
Theoremfsnunf2 6925 Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)
 
Theoremfsnunfv 6926 Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
 
Theoremfsnunres 6927 Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
 
Theoremfunresdfunsn 6928 Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.)
((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
 
Theoremfvpr1 6929 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐴 ∈ V    &   𝐶 ∈ V       (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
 
Theoremfvpr2 6930 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐵 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
 
Theoremfvpr1g 6931 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
 
Theoremfvpr2g 6932 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
 
Theoremfprb 6933* A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
 
Theoremfvtp1 6934 The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐴 ∈ V    &   𝐷 ∈ V       ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
 
Theoremfvtp2 6935 The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐵 ∈ V    &   𝐸 ∈ V       ((𝐴𝐵𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
 
Theoremfvtp3 6936 The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐶 ∈ V    &   𝐹 ∈ V       ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
 
Theoremfvtp1g 6937 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
 
Theoremfvtp2g 6938 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
 
Theoremfvtp3g 6939 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝐶𝑉𝐹𝑊) ∧ (𝐴𝐶𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
 
Theoremtpres 6940 An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020.)
(𝜑𝑇 = {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐸𝑉)    &   (𝜑𝐹𝑉)    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)       (𝜑 → (𝑇 ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
 
Theoremfvconst2g 6941 The value of a constant function. (Contributed by NM, 20-Aug-2005.)
((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
 
Theoremfconst2g 6942 A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.)
(𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
 
Theoremfvconst2 6943 The value of a constant function. (Contributed by NM, 16-Apr-2005.)
𝐵 ∈ V       (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
 
Theoremfconst2 6944 A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.)
𝐵 ∈ V       (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
 
Theoremfconst5 6945 Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
 
Theoremrnmptc 6946* Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ran 𝐹 = {𝐵})
 
TheoremrnmptcOLD 6947* Obsolete version of rnmptc 6946 as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ran 𝐹 = {𝐵})
 
Theoremfnprb 6948 A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) Eliminate unnecessary antecedent 𝐴𝐵. (Revised by NM, 29-Dec-2018.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
 
Theoremfntpb 6949 A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (𝐹 Fn {𝐴, 𝐵, 𝐶} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩, ⟨𝐶, (𝐹𝐶)⟩})
 
Theoremfnpr2g 6950 A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
 
Theoremfpr2g 6951 A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
 
Theoremfconstfv 6952* A constant function expressed in terms of its functionality, domain, and value. See also fconst2 6944. (Contributed by NM, 27-Aug-2004.) (Proof shortened by OpenAI, 25-Mar-2020.)
(𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremfconst3 6953 Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.)
(𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
 
Theoremfconst4 6954 Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
(𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
 
Theoremresfunexg 6955 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremresiexd 6956 The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.)
(𝜑𝐵𝑉)       (𝜑 → ( I ↾ 𝐵) ∈ V)
 
Theoremfnex 6957 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 6955. See fnexALT 7634 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
 
Theoremfnexd 6958 If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐴𝑉)       (𝜑𝐹 ∈ V)
 
Theoremfunex 6959 If the domain of a function exists, so does the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 6957. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
((Fun 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)
 
Theoremopabex 6960* Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
𝐴 ∈ V    &   (𝑥𝐴 → ∃*𝑦𝜑)       {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
 
Theoremmptexg 6961* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
 
Theoremmptexgf 6962 If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.)
𝑥𝐴       (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
 
Theoremmptex 6963* If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 6961. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
𝐴 ∈ V       (𝑥𝐴𝐵) ∈ V
 
Theoremmptexd 6964* If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg 6961. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴𝑉)       (𝜑 → (𝑥𝐴𝐵) ∈ V)
 
Theoremmptrabex 6965* If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
𝐴 ∈ V       (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
 
Theoremfex 6966 If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.)
((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)
 
Theoremfexd 6967 If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐹 ∈ V)
 
Theoremmptfvmpt 6968* A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.)
(𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))    &   𝐺 = (𝑦𝑊𝑀)    &   𝑉 = (𝐹𝑋)       (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
 
Theoremeufnfv 6969* A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) = 𝐵)
 
Theoremfunfvima 6970 A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
 
Theoremfunfvima2 6971 A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
 
Theoremfunfvima2d 6972 A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.)
(𝜑𝐹:𝐴𝐵)       ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))
 
Theoremfnfvima 6973 The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.)
((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → (𝐹𝑋) ∈ (𝐹𝑆))
 
Theoremfnfvimad 6974 A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
 
Theoremresfvresima 6975 The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.)
(𝜑 → Fun 𝐹)    &   (𝜑𝑆 ⊆ dom 𝐹)    &   (𝜑𝑋𝑆)       (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))
 
Theoremfunfvima3 6976 A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
 
Theoremrexima 6977* Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
 
Theoremralima 6978* Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
(𝑥 = (𝐹𝑦) → (𝜑𝜓))       ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
 
Theoremfvclss 6979* Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
{𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
 
Theoremelabrex 6980* Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
𝐵 ∈ V       (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremabrexco 6981* Composition of two image maps 𝐶(𝑦) and 𝐵(𝑤). (Contributed by NM, 27-May-2013.)
𝐵 ∈ V    &   (𝑦 = 𝐵𝐶 = 𝐷)       {𝑥 ∣ ∃𝑦 ∈ {𝑧 ∣ ∃𝑤𝐴 𝑧 = 𝐵}𝑥 = 𝐶} = {𝑥 ∣ ∃𝑤𝐴 𝑥 = 𝐷}
 
Theoremimaiun 6982* The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
(𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
 
Theoremimauni 6983* The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
(𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
 
Theoremfniunfv 6984* The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
 
Theoremfuniunfv 6985* The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to 𝐹 Fn 𝐴, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

(Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
 
Theoremfuniunfvf 6986* The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 6985 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
𝑥𝐹       (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
 
Theoremeluniima 6987* Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
(Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
 
Theoremelunirn 6988* Membership in the union of the range of a function. See elunirnALT 6989 for a shorter proof which uses ax-pow 5231. (Contributed by NM, 24-Sep-2006.)
(Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
 
TheoremelunirnALT 6989* Alternate proof of elunirn 6988. It is shorter but requires ax-pow 5231 (through eluniima 6987, funiunfv 6985, ndmfv 6675). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
(Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
 
Theoremfnunirn 6990* Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
 
Theoremdff13 6991* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
 
Theoremdff13f 6992* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
𝑥𝐹    &   𝑦𝐹       (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
 
Theoremf1veqaeq 6993 If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
 
Theoremf1cofveqaeq 6994 If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
(((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
 
Theoremf1cofveqaeqALT 6995 Alternate proof of f1cofveqaeq 6994, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
 
Theorem2f1fvneq 6996 If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
(((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
 
Theoremf1mpt 6997* Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐹 = (𝑥𝐴𝐶)    &   (𝑥 = 𝑦𝐶 = 𝐷)       (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
 
Theoremf1fveq 6998 Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
 
Theoremf1elima 6999 Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))
 
Theoremf1imass 7000 Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >