Home | Metamath
Proof Explorer Theorem List (p. 70 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29266) |
Hilbert Space Explorer
(29267-30789) |
Users' Mathboxes
(30790-46477) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fvopab6 6901* | Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) | ||
Theorem | eqfnfv 6902* | Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | ||
Theorem | eqfnfv2 6903* | Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | ||
Theorem | eqfnfv3 6904* | Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) | ||
Theorem | eqfnfvd 6905* | Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | eqfnfv2f 6906* | Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 6902 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | ||
Theorem | eqfunfv 6907* | Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) = (𝐺‘𝑥)))) | ||
Theorem | fvreseq0 6908* | Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | ||
Theorem | fvreseq1 6909* | Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | ||
Theorem | fvreseq 6910* | Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | ||
Theorem | fnmptfvd 6911* | A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
⊢ (𝜑 → 𝑀 Fn 𝐴) & ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) | ||
Theorem | fndmdif 6912* | Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | ||
Theorem | fndmdifcom 6913 | The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = dom (𝐺 ∖ 𝐹)) | ||
Theorem | fndmdifeq0 6914 | The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ 𝐹 = 𝐺)) | ||
Theorem | fndmin 6915* | Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) | ||
Theorem | fneqeql 6916 | Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | ||
Theorem | fneqeql2 6917 | Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | ||
Theorem | fnreseql 6918 | Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) | ||
Theorem | chfnrn 6919* | The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.) |
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) | ||
Theorem | funfvop 6920 | Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | ||
Theorem | funfvbrb 6921 | Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) | ||
Theorem | fvimacnvi 6922 | A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | ||
Theorem | fvimacnv 6923 | The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6510 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | ||
Theorem | funimass3 6924 | A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6923 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | ||
Theorem | funimass5 6925* | A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐴 ⊆ (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | funconstss 6926* | Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | ||
Theorem | fvimacnvALT 6927 | Alternate proof of fvimacnv 6923, based on funimass3 6924. If funimass3 6924 is ever proved directly, as opposed to using funimacnv 6508 pointwise, then the proof of funimacnv 6508 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | ||
Theorem | elpreima 6928 | Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) | ||
Theorem | elpreimad 6929 | Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ (◡𝐹 “ 𝐶)) | ||
Theorem | fniniseg 6930 | Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) | ||
Theorem | fncnvima2 6931* | Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) | ||
Theorem | fniniseg2 6932* | Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) | ||
Theorem | unpreima 6933 | Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) | ||
Theorem | inpreima 6934 | Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.) |
⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | ||
Theorem | difpreima 6935 | Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.) |
⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) | ||
Theorem | respreima 6936 | The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (Fun 𝐹 → (◡(𝐹 ↾ 𝐵) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ 𝐵)) | ||
Theorem | cnvimainrn 6937 | The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.) |
⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) | ||
Theorem | sspreima 6938 | The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) | ||
Theorem | iinpreima 6939* | Preimage of an intersection. (Contributed by FL, 16-Apr-2012.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | intpreima 6940* | Preimage of an intersection. (Contributed by FL, 28-Apr-2012.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) | ||
Theorem | fimacnvOLD 6941 | Obsolete version of fimacnv 6615 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | ||
Theorem | fimacnvinrn 6942 | Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | ||
Theorem | fimacnvinrn2 6943 | Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) | ||
Theorem | rescnvimafod 6944 | The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) & ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) | ||
Theorem | fvn0ssdmfun 6945* | If a class' function values for certain arguments is not the empty set, the arguments are contained in the domain of the class, and the class restricted to the arguments is a function, analogous to fvfundmfvn0 6805. (Contributed by AV, 27-Jan-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (∀𝑎 ∈ 𝐷 (𝐹‘𝑎) ≠ ∅ → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ 𝐷))) | ||
Theorem | fnopfv 6946 | Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 〈𝐵, (𝐹‘𝐵)〉 ∈ 𝐹) | ||
Theorem | fvelrn 6947 | A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | ||
Theorem | nelrnfvne 6948 | A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) | ||
Theorem | fveqdmss 6949* | If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐷 = dom 𝐵 ⇒ ⊢ ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → 𝐷 ⊆ dom 𝐴) | ||
Theorem | fveqressseq 6950* | If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐷 = dom 𝐵 ⇒ ⊢ ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝐴 ↾ 𝐷) = 𝐵) | ||
Theorem | fnfvelrn 6951 | A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹‘𝐵) ∈ ran 𝐹) | ||
Theorem | ffvelrn 6952 | A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | ffvelrni 6953 | A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐹:𝐴⟶𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | ffvelrnda 6954 | A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | ffvelrnd 6955 | A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | rexrn 6956* | Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | ralrn 6957* | Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | elrnrexdm 6958* | For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | ||
Theorem | elrnrexdmb 6959* | For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | ||
Theorem | eldmrexrn 6960* | For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | ||
Theorem | eldmrexrnb 6961* | For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6435 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6435 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | ||
Theorem | fvcofneq 6962* | The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | ||
Theorem | ralrnmptw 6963* | A restricted quantifier over an image set. Version of ralrnmpt 6965 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexrnmptw 6964* | A restricted quantifier over an image set. Version of rexrnmpt 6966 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrnmpt 6965* | A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker ralrnmptw 6963 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexrnmpt 6966* | A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker rexrnmptw 6964 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | f0cli 6967 | Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
⊢ 𝐹:𝐴⟶𝐵 & ⊢ ∅ ∈ 𝐵 ⇒ ⊢ (𝐹‘𝐶) ∈ 𝐵 | ||
Theorem | dff2 6968 | Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) | ||
Theorem | dff3 6969* | Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | ||
Theorem | dff4 6970* | Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) | ||
Theorem | dffo3 6971* | An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | ||
Theorem | dffo4 6972* | Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | ||
Theorem | dffo5 6973* | Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) | ||
Theorem | exfo 6974* | A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.) |
⊢ (∃𝑓 𝑓:𝐴–onto→𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑦𝑓𝑥)) | ||
Theorem | foelrn 6975* | Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) | ||
Theorem | foco2 6976 | If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) | ||
Theorem | fmpt 6977* | Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | f1ompt 6978* | Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐶)) | ||
Theorem | fmpti 6979* | Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) ⇒ ⊢ 𝐹:𝐴⟶𝐵 | ||
Theorem | fvmptelrn 6980* | The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | ||
Theorem | fmptd 6981* | Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fmpttd 6982* | Version of fmptd 6981 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | ||
Theorem | fmpt3d 6983* | Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fmptdf 6984* | A version of fmptd 6981 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | ffnfv 6985* | A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | ffnfvf 6986 | A function maps to a class to which all values belong. This version of ffnfv 6985 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | fnfvrnss 6987* | An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | ||
Theorem | frnssb 6988* | A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) | ||
Theorem | rnmptss 6989* | The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | fmpt2d 6990* | Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | ffvresb 6991* | A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | ||
Theorem | f1oresrab 6992* | Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | f1ossf1o 6993* | Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022.) |
⊢ 𝑋 = {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} & ⊢ 𝑌 = {𝑤 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵) & ⊢ (𝜑 → 𝐺:𝑌–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒)) ⇒ ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) | ||
Theorem | fmptco 6994* | Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺 ∘ 𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
Theorem | fmptcof 6995* | Version of fmptco 6994 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
Theorem | fmptcos 6996* | Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | ||
Theorem | cofmpt 6997* | Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
⊢ (𝜑 → 𝐹:𝐶⟶𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) | ||
Theorem | fcompt 6998* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) | ||
Theorem | fcoconst 6999 | Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) | ||
Theorem | fsn 7000 | A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |