MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22716
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1𝑅)
decpmatid.c 𝐶 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1r𝐶)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0g𝐴)
decpmatid.1 1 = (1r𝐴)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 decpmatid.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22638 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
433adant3 1129 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐶 ∈ Ring)
5 eqid 2725 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 decpmatid.i . . . . 5 𝐼 = (1r𝐶)
75, 6ringidcl 20214 . . . 4 (𝐶 ∈ Ring → 𝐼 ∈ (Base‘𝐶))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐼 ∈ (Base‘𝐶))
9 simp3 1135 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
102, 5decpmatval 22711 . . 3 ((𝐼 ∈ (Base‘𝐶) ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
118, 9, 10syl2anc 582 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
12 eqid 2725 . . . . . . 7 (0g𝑃) = (0g𝑃)
13 eqid 2725 . . . . . . 7 (1r𝑃) = (1r𝑃)
14 simp11 1200 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
15 simp12 1201 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
16 simp2 1134 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
17 simp3 1135 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22643 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
1918fveq2d 6900 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝐼𝑗)) = (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
2019fveq1d 6898 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾))
21 fvif 6912 . . . . . . 7 (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))
2221fveq1i 6897 . . . . . 6 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾)
23 iffv 6913 . . . . . 6 (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
2422, 23eqtri 2753 . . . . 5 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
25 eqid 2725 . . . . . . . . . . . . 13 (var1𝑅) = (var1𝑅)
26 eqid 2725 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
27 eqid 2725 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
281, 25, 26, 27ply1idvr1 22239 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
29283ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
3029eqcomd 2731 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
3130fveq2d 6900 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(1r𝑃)) = (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
3231fveq1d 6898 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾))
331ply1lmod 22194 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
34333ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑃 ∈ LMod)
35 0nn0 12520 . . . . . . . . . . . . . 14 0 ∈ ℕ0
36 eqid 2725 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
371, 25, 26, 27, 36ply1moncl 22215 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
3835, 37mpan2 689 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
39383ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
40 eqid 2725 . . . . . . . . . . . . 13 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2725 . . . . . . . . . . . . 13 ( ·𝑠𝑃) = ( ·𝑠𝑃)
42 eqid 2725 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
4336, 40, 41, 42lmodvs1 20785 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4434, 39, 43syl2anc 582 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4544eqcomd 2731 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
4645fveq2d 6900 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4746fveq1d 6898 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾) = ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾))
48 simp2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
491ply1sca 22195 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
50493ad2ant2 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5150eqcomd 2731 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
5251fveq2d 6900 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
53 eqid 2725 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2725 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
5553, 54ringidcl 20214 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
56553ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
5752, 56eqeltrd 2825 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
59 eqid 2725 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6059, 53, 1, 25, 41, 26, 27coe1tm 22217 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 0 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
6148, 57, 58, 60syl3anc 1368 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
62 eqeq1 2729 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 = 0 ↔ 𝐾 = 0))
6362ifbid 4553 . . . . . . . . . 10 (𝑘 = 𝐾 → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
6463adantl 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 = 𝐾) → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
65 fvex 6909 . . . . . . . . . . 11 (1r‘(Scalar‘𝑃)) ∈ V
66 fvex 6909 . . . . . . . . . . 11 (0g𝑅) ∈ V
6765, 66ifex 4580 . . . . . . . . . 10 if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V)
6961, 64, 9, 68fvmptd 7011 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
7032, 47, 693eqtrd 2769 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
711, 12, 59coe1z 22207 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
72713ad2ant2 1131 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
7372fveq1d 6898 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0g𝑅) ∈ V)
75 fvconst2g 7214 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7674, 9, 75syl2anc 582 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7773, 76eqtrd 2765 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = (0g𝑅))
7870, 77ifeq12d 4551 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
79783ad2ant1 1130 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8024, 79eqtrid 2777 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8120, 80eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8281mpoeq3dva 7497 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))))
8350adantl 480 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 𝑅 = (Scalar‘𝑃))
8483eqcomd 2731 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (Scalar‘𝑃) = 𝑅)
8584fveq2d 6900 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
8685ifeq1d 4549 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
8786mpoeq3dv 7499 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
88 iftrue 4536 . . . . . . . 8 (𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (1r‘(Scalar‘𝑃)))
8988ifeq1d 4549 . . . . . . 7 (𝐾 = 0 → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9089adantr 479 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9190mpoeq3dv 7499 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))))
92 decpmatid.1 . . . . . . . 8 1 = (1r𝐴)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22393 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9592, 94eqtrid 2777 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
96953adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9796adantl 480 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9887, 91, 973eqtr4d 2775 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 1 )
99 iftrue 4536 . . . . . 6 (𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2731 . . . . 5 (𝐾 = 0 → 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 479 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2765 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4570 . . . . . . 7 if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅)
104103a1i 11 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅))
105104mpoeq3dv 7499 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
106 iffalse 4539 . . . . . . . 8 𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
107106adantr 479 . . . . . . 7 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
108107ifeq1d 4549 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)))
109108mpoeq3dv 7499 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))))
110 3simpa 1145 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 480 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0g𝐴)
11393, 59mat0op 22365 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
114112, 113eqtrid 2777 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
115111, 114syl 17 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
116105, 109, 1153eqtr4d 2775 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 0 )
117 iffalse 4539 . . . . . 6 𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2731 . . . . 5 𝐾 = 0 → 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 479 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2765 . . 3 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 810 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2769 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  ifcif 4530  {csn 4630  cmpt 5232   × cxp 5676  cfv 6549  (class class class)co 7419  cmpo 7421  Fincfn 8964  0cc0 11140  0cn0 12505  Basecbs 17183  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  .gcmg 19031  mulGrpcmgp 20086  1rcur 20133  Ringcrg 20185  LModclmod 20755  var1cv1 22118  Poly1cpl1 22119  coe1cco1 22120   Mat cmat 22351   decompPMat cdecpmat 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mamu 22335  df-mat 22352  df-decpmat 22709
This theorem is referenced by:  idpm2idmp  22747
  Copyright terms: Public domain W3C validator