MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22263
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1β€˜π‘…)
decpmatid.c 𝐢 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1rβ€˜πΆ)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0gβ€˜π΄)
decpmatid.1 1 = (1rβ€˜π΄)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1β€˜π‘…)
2 decpmatid.c . . . . . 6 𝐢 = (𝑁 Mat 𝑃)
31, 2pmatring 22185 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐢 ∈ Ring)
433adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐢 ∈ Ring)
5 eqid 2732 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
6 decpmatid.i . . . . 5 𝐼 = (1rβ€˜πΆ)
75, 6ringidcl 20076 . . . 4 (𝐢 ∈ Ring β†’ 𝐼 ∈ (Baseβ€˜πΆ))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐼 ∈ (Baseβ€˜πΆ))
9 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐾 ∈ β„•0)
102, 5decpmatval 22258 . . 3 ((𝐼 ∈ (Baseβ€˜πΆ) ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)))
118, 9, 10syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)))
12 eqid 2732 . . . . . . 7 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
13 eqid 2732 . . . . . . 7 (1rβ€˜π‘ƒ) = (1rβ€˜π‘ƒ)
14 simp11 1203 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑁 ∈ Fin)
15 simp12 1204 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑖 ∈ 𝑁)
17 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑗 ∈ 𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22190 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))
1918fveq2d 6892 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (coe1β€˜(𝑖𝐼𝑗)) = (coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ))))
2019fveq1d 6890 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ) = ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ))
21 fvif 6904 . . . . . . 7 (coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ))) = if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))
2221fveq1i 6889 . . . . . 6 ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = (if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΎ)
23 iffv 6905 . . . . . 6 (if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ))
2422, 23eqtri 2760 . . . . 5 ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ))
25 eqid 2732 . . . . . . . . . . . . 13 (var1β€˜π‘…) = (var1β€˜π‘…)
26 eqid 2732 . . . . . . . . . . . . 13 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
27 eqid 2732 . . . . . . . . . . . . 13 (.gβ€˜(mulGrpβ€˜π‘ƒ)) = (.gβ€˜(mulGrpβ€˜π‘ƒ))
281, 25, 26, 27ply1idvr1 21808 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = (1rβ€˜π‘ƒ))
29283ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = (1rβ€˜π‘ƒ))
3029eqcomd 2738 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜π‘ƒ) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
3130fveq2d 6892 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(1rβ€˜π‘ƒ)) = (coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
3231fveq1d 6890 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ) = ((coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))β€˜πΎ))
331ply1lmod 21765 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ 𝑃 ∈ LMod)
34333ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑃 ∈ LMod)
35 0nn0 12483 . . . . . . . . . . . . . 14 0 ∈ β„•0
36 eqid 2732 . . . . . . . . . . . . . . 15 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
371, 25, 26, 27, 36ply1moncl 21784 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
3835, 37mpan2 689 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
39383ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
40 eqid 2732 . . . . . . . . . . . . 13 (Scalarβ€˜π‘ƒ) = (Scalarβ€˜π‘ƒ)
41 eqid 2732 . . . . . . . . . . . . 13 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
42 eqid 2732 . . . . . . . . . . . . 13 (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜(Scalarβ€˜π‘ƒ))
4336, 40, 41, 42lmodvs1 20492 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ)) β†’ ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
4434, 39, 43syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
4544eqcomd 2738 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
4645fveq2d 6892 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))))
4746fveq1d 6890 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))β€˜πΎ) = ((coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))β€˜πΎ))
48 simp2 1137 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑅 ∈ Ring)
491ply1sca 21766 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
50493ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
5150eqcomd 2738 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
5251fveq2d 6892 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜π‘…))
53 eqid 2732 . . . . . . . . . . . . 13 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
54 eqid 2732 . . . . . . . . . . . . 13 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5553, 54ringidcl 20076 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘…))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘…))
5752, 56eqeltrd 2833 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ (Baseβ€˜π‘…))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 0 ∈ β„•0)
59 eqid 2732 . . . . . . . . . . 11 (0gβ€˜π‘…) = (0gβ€˜π‘…)
6059, 53, 1, 25, 41, 26, 27coe1tm 21786 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ (Baseβ€˜π‘…) ∧ 0 ∈ β„•0) β†’ (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = (π‘˜ ∈ β„•0 ↦ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
6148, 57, 58, 60syl3anc 1371 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = (π‘˜ ∈ β„•0 ↦ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
62 eqeq1 2736 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (π‘˜ = 0 ↔ 𝐾 = 0))
6362ifbid 4550 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
6463adantl 482 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ π‘˜ = 𝐾) β†’ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
65 fvex 6901 . . . . . . . . . . 11 (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ V
66 fvex 6901 . . . . . . . . . . 11 (0gβ€˜π‘…) ∈ V
6765, 66ifex 4577 . . . . . . . . . 10 if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) ∈ V)
6961, 64, 9, 68fvmptd 7002 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))β€˜πΎ) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
7032, 47, 693eqtrd 2776 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
711, 12, 59coe1z 21776 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
72713ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
7372fveq1d 6890 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ) = ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0gβ€˜π‘…) ∈ V)
75 fvconst2g 7199 . . . . . . . . 9 (((0gβ€˜π‘…) ∈ V ∧ 𝐾 ∈ β„•0) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ) = (0gβ€˜π‘…))
7674, 9, 75syl2anc 584 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ) = (0gβ€˜π‘…))
7773, 76eqtrd 2772 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ) = (0gβ€˜π‘…))
7870, 77ifeq12d 4548 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
79783ad2ant1 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8024, 79eqtrid 2784 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8120, 80eqtrd 2772 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8281mpoeq3dva 7482 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))))
8350adantl 482 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
8483eqcomd 2738 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
8584fveq2d 6892 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜π‘…))
8685ifeq1d 4546 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…)))
8786mpoeq3dv 7484 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
88 iftrue 4533 . . . . . . . 8 (𝐾 = 0 β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (1rβ€˜(Scalarβ€˜π‘ƒ)))
8988ifeq1d 4546 . . . . . . 7 (𝐾 = 0 β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
9089adantr 481 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
9190mpoeq3dv 7484 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
92 decpmatid.1 . . . . . . . 8 1 = (1rβ€˜π΄)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 21940 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (1rβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9592, 94eqtrid 2784 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
96953adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9796adantl 482 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9887, 91, 973eqtr4d 2782 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = 1 )
99 iftrue 4533 . . . . . 6 (𝐾 = 0 β†’ if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2738 . . . . 5 (𝐾 = 0 β†’ 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 481 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2772 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4567 . . . . . . 7 if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)) = (0gβ€˜π‘…)
104103a1i 11 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
105104mpoeq3dv 7484 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
106 iffalse 4536 . . . . . . . 8 (Β¬ 𝐾 = 0 β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
107106adantr 481 . . . . . . 7 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
108107ifeq1d 4546 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)))
109108mpoeq3dv 7484 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…))))
110 3simpa 1148 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 482 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0gβ€˜π΄)
11393, 59mat0op 21912 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
114112, 113eqtrid 2784 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
115111, 114syl 17 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
116105, 109, 1153eqtr4d 2782 . . . 4 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = 0 )
117 iffalse 4536 . . . . . 6 (Β¬ 𝐾 = 0 β†’ if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2738 . . . . 5 (Β¬ 𝐾 = 0 β†’ 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 481 . . . 4 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2772 . . 3 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 810 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2776 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  ifcif 4527  {csn 4627   ↦ cmpt 5230   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  0cc0 11106  β„•0cn0 12468  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  .gcmg 18944  mulGrpcmgp 19981  1rcur 19998  Ringcrg 20049  LModclmod 20463  var1cv1 21691  Poly1cpl1 21692  coe1cco1 21693   Mat cmat 21898   decompPMat cdecpmat 22255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-mamu 21877  df-mat 21899  df-decpmat 22256
This theorem is referenced by:  idpm2idmp  22294
  Copyright terms: Public domain W3C validator