Step | Hyp | Ref
| Expression |
1 | | decpmatid.p |
. . . . . 6
β’ π = (Poly1βπ
) |
2 | | decpmatid.c |
. . . . . 6
β’ πΆ = (π Mat π) |
3 | 1, 2 | pmatring 22185 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β πΆ β Ring) |
4 | 3 | 3adant3 1132 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β πΆ β
Ring) |
5 | | eqid 2732 |
. . . . 5
β’
(BaseβπΆ) =
(BaseβπΆ) |
6 | | decpmatid.i |
. . . . 5
β’ πΌ = (1rβπΆ) |
7 | 5, 6 | ringidcl 20076 |
. . . 4
β’ (πΆ β Ring β πΌ β (BaseβπΆ)) |
8 | 4, 7 | syl 17 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β πΌ β
(BaseβπΆ)) |
9 | | simp3 1138 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β πΎ β
β0) |
10 | 2, 5 | decpmatval 22258 |
. . 3
β’ ((πΌ β (BaseβπΆ) β§ πΎ β β0) β (πΌ decompPMat πΎ) = (π β π, π β π β¦ ((coe1β(ππΌπ))βπΎ))) |
11 | 8, 9, 10 | syl2anc 584 |
. 2
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (πΌ decompPMat πΎ) = (π β π, π β π β¦ ((coe1β(ππΌπ))βπΎ))) |
12 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
13 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
14 | | simp11 1203 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β π β Fin) |
15 | | simp12 1204 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β π
β Ring) |
16 | | simp2 1137 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β π β π) |
17 | | simp3 1138 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β π β π) |
18 | 1, 2, 12, 13, 14, 15, 16, 17, 6 | pmat1ovd 22190 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β (ππΌπ) = if(π = π, (1rβπ), (0gβπ))) |
19 | 18 | fveq2d 6892 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β (coe1β(ππΌπ)) = (coe1βif(π = π, (1rβπ), (0gβπ)))) |
20 | 19 | fveq1d 6890 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β ((coe1β(ππΌπ))βπΎ) = ((coe1βif(π = π, (1rβπ), (0gβπ)))βπΎ)) |
21 | | fvif 6904 |
. . . . . . 7
β’
(coe1βif(π = π, (1rβπ), (0gβπ))) = if(π = π,
(coe1β(1rβπ)),
(coe1β(0gβπ))) |
22 | 21 | fveq1i 6889 |
. . . . . 6
β’
((coe1βif(π = π, (1rβπ), (0gβπ)))βπΎ) = (if(π = π,
(coe1β(1rβπ)),
(coe1β(0gβπ)))βπΎ) |
23 | | iffv 6905 |
. . . . . 6
β’ (if(π = π,
(coe1β(1rβπ)),
(coe1β(0gβπ)))βπΎ) = if(π = π,
((coe1β(1rβπ))βπΎ),
((coe1β(0gβπ))βπΎ)) |
24 | 22, 23 | eqtri 2760 |
. . . . 5
β’
((coe1βif(π = π, (1rβπ), (0gβπ)))βπΎ) = if(π = π,
((coe1β(1rβπ))βπΎ),
((coe1β(0gβπ))βπΎ)) |
25 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(var1βπ
) = (var1βπ
) |
26 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(mulGrpβπ) =
(mulGrpβπ) |
27 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(.gβ(mulGrpβπ)) =
(.gβ(mulGrpβπ)) |
28 | 1, 25, 26, 27 | ply1idvr1 21808 |
. . . . . . . . . . . 12
β’ (π
β Ring β
(0(.gβ(mulGrpβπ))(var1βπ
)) = (1rβπ)) |
29 | 28 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (0(.gβ(mulGrpβπ))(var1βπ
)) = (1rβπ)) |
30 | 29 | eqcomd 2738 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (1rβπ) =
(0(.gβ(mulGrpβπ))(var1βπ
))) |
31 | 30 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (coe1β(1rβπ)) =
(coe1β(0(.gβ(mulGrpβπ))(var1βπ
)))) |
32 | 31 | fveq1d 6890 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β(1rβπ))βπΎ) =
((coe1β(0(.gβ(mulGrpβπ))(var1βπ
)))βπΎ)) |
33 | 1 | ply1lmod 21765 |
. . . . . . . . . . . . 13
β’ (π
β Ring β π β LMod) |
34 | 33 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β π β
LMod) |
35 | | 0nn0 12483 |
. . . . . . . . . . . . . 14
β’ 0 β
β0 |
36 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(Baseβπ) =
(Baseβπ) |
37 | 1, 25, 26, 27, 36 | ply1moncl 21784 |
. . . . . . . . . . . . . 14
β’ ((π
β Ring β§ 0 β
β0) β (0(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ)) |
38 | 35, 37 | mpan2 689 |
. . . . . . . . . . . . 13
β’ (π
β Ring β
(0(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ)) |
39 | 38 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (0(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ)) |
40 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(Scalarβπ) =
(Scalarβπ) |
41 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (
Β·π βπ) = ( Β·π
βπ) |
42 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
43 | 36, 40, 41, 42 | lmodvs1 20492 |
. . . . . . . . . . . 12
β’ ((π β LMod β§
(0(.gβ(mulGrpβπ))(var1βπ
)) β (Baseβπ)) β
((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) =
(0(.gβ(mulGrpβπ))(var1βπ
))) |
44 | 34, 39, 43 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))) =
(0(.gβ(mulGrpβπ))(var1βπ
))) |
45 | 44 | eqcomd 2738 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (0(.gβ(mulGrpβπ))(var1βπ
)) =
((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) |
46 | 45 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (coe1β(0(.gβ(mulGrpβπ))(var1βπ
))) =
(coe1β((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))) |
47 | 46 | fveq1d 6890 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β(0(.gβ(mulGrpβπ))(var1βπ
)))βπΎ) =
((coe1β((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))βπΎ)) |
48 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β π
β
Ring) |
49 | 1 | ply1sca 21766 |
. . . . . . . . . . . . . 14
β’ (π
β Ring β π
= (Scalarβπ)) |
50 | 49 | 3ad2ant2 1134 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β π
=
(Scalarβπ)) |
51 | 50 | eqcomd 2738 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (Scalarβπ) =
π
) |
52 | 51 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (1rβ(Scalarβπ)) = (1rβπ
)) |
53 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(Baseβπ
) =
(Baseβπ
) |
54 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1rβπ
) = (1rβπ
) |
55 | 53, 54 | ringidcl 20076 |
. . . . . . . . . . . 12
β’ (π
β Ring β
(1rβπ
)
β (Baseβπ
)) |
56 | 55 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (1rβπ
) β (Baseβπ
)) |
57 | 52, 56 | eqeltrd 2833 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (1rβ(Scalarβπ)) β (Baseβπ
)) |
58 | 35 | a1i 11 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β 0 β β0) |
59 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0gβπ
) = (0gβπ
) |
60 | 59, 53, 1, 25, 41, 26, 27 | coe1tm 21786 |
. . . . . . . . . 10
β’ ((π
β Ring β§
(1rβ(Scalarβπ)) β (Baseβπ
) β§ 0 β β0) β
(coe1β((1rβ(Scalarβπ))( Β·π
βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = (π β β0 β¦ if(π = 0,
(1rβ(Scalarβπ)), (0gβπ
)))) |
61 | 48, 57, 58, 60 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (coe1β((1rβ(Scalarβπ))(
Β·π βπ)(0(.gβ(mulGrpβπ))(var1βπ
)))) = (π β β0 β¦ if(π = 0,
(1rβ(Scalarβπ)), (0gβπ
)))) |
62 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π = πΎ β (π = 0 β πΎ = 0)) |
63 | 62 | ifbid 4550 |
. . . . . . . . . 10
β’ (π = πΎ β if(π = 0,
(1rβ(Scalarβπ)), (0gβπ
)) = if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
))) |
64 | 63 | adantl 482 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π = πΎ) β if(π = 0,
(1rβ(Scalarβπ)), (0gβπ
)) = if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
))) |
65 | | fvex 6901 |
. . . . . . . . . . 11
β’
(1rβ(Scalarβπ)) β V |
66 | | fvex 6901 |
. . . . . . . . . . 11
β’
(0gβπ
) β V |
67 | 65, 66 | ifex 4577 |
. . . . . . . . . 10
β’ if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)) β V |
68 | 67 | a1i 11 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)) β V) |
69 | 61, 64, 9, 68 | fvmptd 7002 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β((1rβ(Scalarβπ))(
Β·π βπ)(0(.gβ(mulGrpβπ))(var1βπ
))))βπΎ) = if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
))) |
70 | 32, 47, 69 | 3eqtrd 2776 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β(1rβπ))βπΎ) = if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
))) |
71 | 1, 12, 59 | coe1z 21776 |
. . . . . . . . . 10
β’ (π
β Ring β
(coe1β(0gβπ)) = (β0 Γ
{(0gβπ
)})) |
72 | 71 | 3ad2ant2 1134 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (coe1β(0gβπ)) = (β0 Γ
{(0gβπ
)})) |
73 | 72 | fveq1d 6890 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β(0gβπ))βπΎ) = ((β0 Γ
{(0gβπ
)})βπΎ)) |
74 | 66 | a1i 11 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (0gβπ
) β V) |
75 | | fvconst2g 7199 |
. . . . . . . . 9
β’
(((0gβπ
) β V β§ πΎ β β0) β
((β0 Γ {(0gβπ
)})βπΎ) = (0gβπ
)) |
76 | 74, 9, 75 | syl2anc 584 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((β0 Γ {(0gβπ
)})βπΎ) = (0gβπ
)) |
77 | 73, 76 | eqtrd 2772 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β ((coe1β(0gβπ))βπΎ) = (0gβπ
)) |
78 | 70, 77 | ifeq12d 4548 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β if(π = π,
((coe1β(1rβπ))βπΎ),
((coe1β(0gβπ))βπΎ)) = if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) |
79 | 78 | 3ad2ant1 1133 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β if(π = π,
((coe1β(1rβπ))βπΎ),
((coe1β(0gβπ))βπΎ)) = if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) |
80 | 24, 79 | eqtrid 2784 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β ((coe1βif(π = π, (1rβπ), (0gβπ)))βπΎ) = if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) |
81 | 20, 80 | eqtrd 2772 |
. . 3
β’ (((π β Fin β§ π
β Ring β§ πΎ β β0)
β§ π β π β§ π β π) β ((coe1β(ππΌπ))βπΎ) = if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) |
82 | 81 | mpoeq3dva 7482 |
. 2
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (π β π, π β π β¦ ((coe1β(ππΌπ))βπΎ)) = (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
)))) |
83 | 50 | adantl 482 |
. . . . . . . . 9
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β π
= (Scalarβπ)) |
84 | 83 | eqcomd 2738 |
. . . . . . . 8
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β
(Scalarβπ) = π
) |
85 | 84 | fveq2d 6892 |
. . . . . . 7
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β
(1rβ(Scalarβπ)) = (1rβπ
)) |
86 | 85 | ifeq1d 4546 |
. . . . . 6
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β
if(π = π, (1rβ(Scalarβπ)), (0gβπ
)) = if(π = π, (1rβπ
), (0gβπ
))) |
87 | 86 | mpoeq3dv 7484 |
. . . . 5
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β (π β π, π β π β¦ if(π = π, (1rβ(Scalarβπ)), (0gβπ
))) = (π β π, π β π β¦ if(π = π, (1rβπ
), (0gβπ
)))) |
88 | | iftrue 4533 |
. . . . . . . 8
β’ (πΎ = 0 β if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)) =
(1rβ(Scalarβπ))) |
89 | 88 | ifeq1d 4546 |
. . . . . . 7
β’ (πΎ = 0 β if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
)) = if(π = π, (1rβ(Scalarβπ)), (0gβπ
))) |
90 | 89 | adantr 481 |
. . . . . 6
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β
if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
)) = if(π = π, (1rβ(Scalarβπ)), (0gβπ
))) |
91 | 90 | mpoeq3dv 7484 |
. . . . 5
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = (π β π, π β π β¦ if(π = π, (1rβ(Scalarβπ)), (0gβπ
)))) |
92 | | decpmatid.1 |
. . . . . . . 8
β’ 1 =
(1rβπ΄) |
93 | | decpmatid.a |
. . . . . . . . 9
β’ π΄ = (π Mat π
) |
94 | 93, 54, 59 | mat1 21940 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring) β
(1rβπ΄) =
(π β π, π β π β¦ if(π = π, (1rβπ
), (0gβπ
)))) |
95 | 92, 94 | eqtrid 2784 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring) β 1 = (π β π, π β π β¦ if(π = π, (1rβπ
), (0gβπ
)))) |
96 | 95 | 3adant3 1132 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β 1
= (π β π, π β π β¦ if(π = π, (1rβπ
), (0gβπ
)))) |
97 | 96 | adantl 482 |
. . . . 5
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β 1 = (π β π, π β π β¦ if(π = π, (1rβπ
), (0gβπ
)))) |
98 | 87, 91, 97 | 3eqtr4d 2782 |
. . . 4
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = 1 ) |
99 | | iftrue 4533 |
. . . . . 6
β’ (πΎ = 0 β if(πΎ = 0, 1 , 0 ) = 1 ) |
100 | 99 | eqcomd 2738 |
. . . . 5
β’ (πΎ = 0 β 1 = if(πΎ = 0, 1 , 0 )) |
101 | 100 | adantr 481 |
. . . 4
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β 1 = if(πΎ = 0, 1 , 0 )) |
102 | 98, 101 | eqtrd 2772 |
. . 3
β’ ((πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0)) β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = if(πΎ = 0, 1 , 0 )) |
103 | | ifid 4567 |
. . . . . . 7
β’ if(π = π, (0gβπ
), (0gβπ
)) = (0gβπ
) |
104 | 103 | a1i 11 |
. . . . . 6
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β if(π = π, (0gβπ
), (0gβπ
)) = (0gβπ
)) |
105 | 104 | mpoeq3dv 7484 |
. . . . 5
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β (π β π, π β π β¦ if(π = π, (0gβπ
), (0gβπ
))) = (π β π, π β π β¦ (0gβπ
))) |
106 | | iffalse 4536 |
. . . . . . . 8
β’ (Β¬
πΎ = 0 β if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)) = (0gβπ
)) |
107 | 106 | adantr 481 |
. . . . . . 7
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)) = (0gβπ
)) |
108 | 107 | ifeq1d 4546 |
. . . . . 6
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
)) = if(π = π, (0gβπ
), (0gβπ
))) |
109 | 108 | mpoeq3dv 7484 |
. . . . 5
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = (π β π, π β π β¦ if(π = π, (0gβπ
), (0gβπ
)))) |
110 | | 3simpa 1148 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (π β Fin β§
π
β
Ring)) |
111 | 110 | adantl 482 |
. . . . . 6
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β (π β Fin β§
π
β
Ring)) |
112 | | decpmatid.0 |
. . . . . . 7
β’ 0 =
(0gβπ΄) |
113 | 93, 59 | mat0op 21912 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring) β
(0gβπ΄) =
(π β π, π β π β¦ (0gβπ
))) |
114 | 112, 113 | eqtrid 2784 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring) β 0 = (π β π, π β π β¦ (0gβπ
))) |
115 | 111, 114 | syl 17 |
. . . . 5
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β 0
= (π β π, π β π β¦ (0gβπ
))) |
116 | 105, 109,
115 | 3eqtr4d 2782 |
. . . 4
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = 0 ) |
117 | | iffalse 4536 |
. . . . . 6
β’ (Β¬
πΎ = 0 β if(πΎ = 0, 1 , 0 ) = 0 ) |
118 | 117 | eqcomd 2738 |
. . . . 5
β’ (Β¬
πΎ = 0 β 0 = if(πΎ = 0, 1 , 0 )) |
119 | 118 | adantr 481 |
. . . 4
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β 0
= if(πΎ = 0, 1 , 0
)) |
120 | 116, 119 | eqtrd 2772 |
. . 3
β’ ((Β¬
πΎ = 0 β§ (π β Fin β§ π
β Ring β§ πΎ β β0))
β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = if(πΎ = 0, 1 , 0 )) |
121 | 102, 120 | pm2.61ian 810 |
. 2
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (π β π, π β π β¦ if(π = π, if(πΎ = 0,
(1rβ(Scalarβπ)), (0gβπ
)), (0gβπ
))) = if(πΎ = 0, 1 , 0 )) |
122 | 11, 82, 121 | 3eqtrd 2776 |
1
β’ ((π β Fin β§ π
β Ring β§ πΎ β β0)
β (πΌ decompPMat πΎ) = if(πΎ = 0, 1 , 0 )) |