MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22708
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1𝑅)
decpmatid.c 𝐶 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1r𝐶)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0g𝐴)
decpmatid.1 1 = (1r𝐴)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 decpmatid.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22630 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
433adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐶 ∈ Ring)
5 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 decpmatid.i . . . . 5 𝐼 = (1r𝐶)
75, 6ringidcl 20225 . . . 4 (𝐶 ∈ Ring → 𝐼 ∈ (Base‘𝐶))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐼 ∈ (Base‘𝐶))
9 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
102, 5decpmatval 22703 . . 3 ((𝐼 ∈ (Base‘𝐶) ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
118, 9, 10syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
12 eqid 2735 . . . . . . 7 (0g𝑃) = (0g𝑃)
13 eqid 2735 . . . . . . 7 (1r𝑃) = (1r𝑃)
14 simp11 1204 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
15 simp12 1205 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
17 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22635 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
1918fveq2d 6880 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝐼𝑗)) = (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
2019fveq1d 6878 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾))
21 fvif 6892 . . . . . . 7 (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))
2221fveq1i 6877 . . . . . 6 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾)
23 iffv 6893 . . . . . 6 (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
2422, 23eqtri 2758 . . . . 5 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
25 eqid 2735 . . . . . . . . . . . . 13 (var1𝑅) = (var1𝑅)
26 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
27 eqid 2735 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
281, 25, 26, 27ply1idvr1 22232 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
29283ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
3029eqcomd 2741 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
3130fveq2d 6880 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(1r𝑃)) = (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
3231fveq1d 6878 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾))
331ply1lmod 22187 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
34333ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑃 ∈ LMod)
35 0nn0 12516 . . . . . . . . . . . . . 14 0 ∈ ℕ0
36 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
371, 25, 26, 27, 36ply1moncl 22208 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
3835, 37mpan2 691 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
39383ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
40 eqid 2735 . . . . . . . . . . . . 13 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2735 . . . . . . . . . . . . 13 ( ·𝑠𝑃) = ( ·𝑠𝑃)
42 eqid 2735 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
4336, 40, 41, 42lmodvs1 20847 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4434, 39, 43syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4544eqcomd 2741 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
4645fveq2d 6880 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4746fveq1d 6878 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾) = ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾))
48 simp2 1137 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
491ply1sca 22188 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
50493ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5150eqcomd 2741 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
5251fveq2d 6880 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
53 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2735 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
5553, 54ringidcl 20225 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
5752, 56eqeltrd 2834 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
59 eqid 2735 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6059, 53, 1, 25, 41, 26, 27coe1tm 22210 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 0 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
6148, 57, 58, 60syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
62 eqeq1 2739 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 = 0 ↔ 𝐾 = 0))
6362ifbid 4524 . . . . . . . . . 10 (𝑘 = 𝐾 → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
6463adantl 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 = 𝐾) → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
65 fvex 6889 . . . . . . . . . . 11 (1r‘(Scalar‘𝑃)) ∈ V
66 fvex 6889 . . . . . . . . . . 11 (0g𝑅) ∈ V
6765, 66ifex 4551 . . . . . . . . . 10 if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V)
6961, 64, 9, 68fvmptd 6993 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
7032, 47, 693eqtrd 2774 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
711, 12, 59coe1z 22200 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
72713ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
7372fveq1d 6878 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0g𝑅) ∈ V)
75 fvconst2g 7194 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7674, 9, 75syl2anc 584 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7773, 76eqtrd 2770 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = (0g𝑅))
7870, 77ifeq12d 4522 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
79783ad2ant1 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8024, 79eqtrid 2782 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8120, 80eqtrd 2770 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8281mpoeq3dva 7484 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))))
8350adantl 481 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 𝑅 = (Scalar‘𝑃))
8483eqcomd 2741 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (Scalar‘𝑃) = 𝑅)
8584fveq2d 6880 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
8685ifeq1d 4520 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
8786mpoeq3dv 7486 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
88 iftrue 4506 . . . . . . . 8 (𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (1r‘(Scalar‘𝑃)))
8988ifeq1d 4520 . . . . . . 7 (𝐾 = 0 → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9089adantr 480 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9190mpoeq3dv 7486 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))))
92 decpmatid.1 . . . . . . . 8 1 = (1r𝐴)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22385 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9592, 94eqtrid 2782 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
96953adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9796adantl 481 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9887, 91, 973eqtr4d 2780 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 1 )
99 iftrue 4506 . . . . . 6 (𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2741 . . . . 5 (𝐾 = 0 → 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 480 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2770 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4541 . . . . . . 7 if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅)
104103a1i 11 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅))
105104mpoeq3dv 7486 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
106 iffalse 4509 . . . . . . . 8 𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
107106adantr 480 . . . . . . 7 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
108107ifeq1d 4520 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)))
109108mpoeq3dv 7486 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))))
110 3simpa 1148 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 481 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0g𝐴)
11393, 59mat0op 22357 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
114112, 113eqtrid 2782 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
115111, 114syl 17 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
116105, 109, 1153eqtr4d 2780 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 0 )
117 iffalse 4509 . . . . . 6 𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2741 . . . . 5 𝐾 = 0 → 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 480 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2770 . . 3 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 811 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2774 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  ifcif 4500  {csn 4601  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  0cc0 11129  0cn0 12501  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  .gcmg 19050  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  LModclmod 20817  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113   Mat cmat 22345   decompPMat cdecpmat 22700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mamu 22329  df-mat 22346  df-decpmat 22701
This theorem is referenced by:  idpm2idmp  22739
  Copyright terms: Public domain W3C validator