MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22627
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1β€˜π‘…)
decpmatid.c 𝐢 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1rβ€˜πΆ)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0gβ€˜π΄)
decpmatid.1 1 = (1rβ€˜π΄)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1β€˜π‘…)
2 decpmatid.c . . . . . 6 𝐢 = (𝑁 Mat 𝑃)
31, 2pmatring 22549 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐢 ∈ Ring)
433adant3 1129 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐢 ∈ Ring)
5 eqid 2726 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
6 decpmatid.i . . . . 5 𝐼 = (1rβ€˜πΆ)
75, 6ringidcl 20165 . . . 4 (𝐢 ∈ Ring β†’ 𝐼 ∈ (Baseβ€˜πΆ))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐼 ∈ (Baseβ€˜πΆ))
9 simp3 1135 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝐾 ∈ β„•0)
102, 5decpmatval 22622 . . 3 ((𝐼 ∈ (Baseβ€˜πΆ) ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)))
118, 9, 10syl2anc 583 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)))
12 eqid 2726 . . . . . . 7 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
13 eqid 2726 . . . . . . 7 (1rβ€˜π‘ƒ) = (1rβ€˜π‘ƒ)
14 simp11 1200 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑁 ∈ Fin)
15 simp12 1201 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑅 ∈ Ring)
16 simp2 1134 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑖 ∈ 𝑁)
17 simp3 1135 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ 𝑗 ∈ 𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22554 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))
1918fveq2d 6889 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (coe1β€˜(𝑖𝐼𝑗)) = (coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ))))
2019fveq1d 6887 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ) = ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ))
21 fvif 6901 . . . . . . 7 (coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ))) = if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))
2221fveq1i 6886 . . . . . 6 ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = (if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΎ)
23 iffv 6902 . . . . . 6 (if(𝑖 = 𝑗, (coe1β€˜(1rβ€˜π‘ƒ)), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ))
2422, 23eqtri 2754 . . . . 5 ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ))
25 eqid 2726 . . . . . . . . . . . . 13 (var1β€˜π‘…) = (var1β€˜π‘…)
26 eqid 2726 . . . . . . . . . . . . 13 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
27 eqid 2726 . . . . . . . . . . . . 13 (.gβ€˜(mulGrpβ€˜π‘ƒ)) = (.gβ€˜(mulGrpβ€˜π‘ƒ))
281, 25, 26, 27ply1idvr1 22169 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = (1rβ€˜π‘ƒ))
29283ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = (1rβ€˜π‘ƒ))
3029eqcomd 2732 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜π‘ƒ) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
3130fveq2d 6889 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(1rβ€˜π‘ƒ)) = (coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
3231fveq1d 6887 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ) = ((coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))β€˜πΎ))
331ply1lmod 22125 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ 𝑃 ∈ LMod)
34333ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑃 ∈ LMod)
35 0nn0 12491 . . . . . . . . . . . . . 14 0 ∈ β„•0
36 eqid 2726 . . . . . . . . . . . . . . 15 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
371, 25, 26, 27, 36ply1moncl 22145 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
3835, 37mpan2 688 . . . . . . . . . . . . 13 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
39383ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ))
40 eqid 2726 . . . . . . . . . . . . 13 (Scalarβ€˜π‘ƒ) = (Scalarβ€˜π‘ƒ)
41 eqid 2726 . . . . . . . . . . . . 13 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
42 eqid 2726 . . . . . . . . . . . . 13 (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜(Scalarβ€˜π‘ƒ))
4336, 40, 41, 42lmodvs1 20736 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ (Baseβ€˜π‘ƒ)) β†’ ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
4434, 39, 43syl2anc 583 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
4544eqcomd 2732 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = ((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
4645fveq2d 6889 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))))
4746fveq1d 6887 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))β€˜πΎ) = ((coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))β€˜πΎ))
48 simp2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑅 ∈ Ring)
491ply1sca 22126 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
50493ad2ant2 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
5150eqcomd 2732 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
5251fveq2d 6889 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜π‘…))
53 eqid 2726 . . . . . . . . . . . . 13 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
54 eqid 2726 . . . . . . . . . . . . 13 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5553, 54ringidcl 20165 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘…))
56553ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘…))
5752, 56eqeltrd 2827 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ (Baseβ€˜π‘…))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 0 ∈ β„•0)
59 eqid 2726 . . . . . . . . . . 11 (0gβ€˜π‘…) = (0gβ€˜π‘…)
6059, 53, 1, 25, 41, 26, 27coe1tm 22147 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ (Baseβ€˜π‘…) ∧ 0 ∈ β„•0) β†’ (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = (π‘˜ ∈ β„•0 ↦ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
6148, 57, 58, 60syl3anc 1368 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = (π‘˜ ∈ β„•0 ↦ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
62 eqeq1 2730 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (π‘˜ = 0 ↔ 𝐾 = 0))
6362ifbid 4546 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
6463adantl 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ π‘˜ = 𝐾) β†’ if(π‘˜ = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
65 fvex 6898 . . . . . . . . . . 11 (1rβ€˜(Scalarβ€˜π‘ƒ)) ∈ V
66 fvex 6898 . . . . . . . . . . 11 (0gβ€˜π‘…) ∈ V
6765, 66ifex 4573 . . . . . . . . . 10 if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) ∈ V)
6961, 64, 9, 68fvmptd 6999 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜((1rβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))β€˜πΎ) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
7032, 47, 693eqtrd 2770 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ) = if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
711, 12, 59coe1z 22137 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
72713ad2ant2 1131 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
7372fveq1d 6887 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ) = ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (0gβ€˜π‘…) ∈ V)
75 fvconst2g 7199 . . . . . . . . 9 (((0gβ€˜π‘…) ∈ V ∧ 𝐾 ∈ β„•0) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ) = (0gβ€˜π‘…))
7674, 9, 75syl2anc 583 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΎ) = (0gβ€˜π‘…))
7773, 76eqtrd 2766 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ) = (0gβ€˜π‘…))
7870, 77ifeq12d 4544 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
79783ad2ant1 1130 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ if(𝑖 = 𝑗, ((coe1β€˜(1rβ€˜π‘ƒ))β€˜πΎ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΎ)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8024, 79eqtrid 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜if(𝑖 = 𝑗, (1rβ€˜π‘ƒ), (0gβ€˜π‘ƒ)))β€˜πΎ) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8120, 80eqtrd 2766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ) = if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)))
8281mpoeq3dva 7482 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖𝐼𝑗))β€˜πΎ)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))))
8350adantl 481 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
8483eqcomd 2732 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
8584fveq2d 6889 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (1rβ€˜(Scalarβ€˜π‘ƒ)) = (1rβ€˜π‘…))
8685ifeq1d 4542 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…)))
8786mpoeq3dv 7484 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
88 iftrue 4529 . . . . . . . 8 (𝐾 = 0 β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (1rβ€˜(Scalarβ€˜π‘ƒ)))
8988ifeq1d 4542 . . . . . . 7 (𝐾 = 0 β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
9089adantr 480 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)))
9190mpoeq3dv 7484 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…))))
92 decpmatid.1 . . . . . . . 8 1 = (1rβ€˜π΄)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22304 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (1rβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9592, 94eqtrid 2778 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
96953adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9796adantl 481 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 1 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1rβ€˜π‘…), (0gβ€˜π‘…))))
9887, 91, 973eqtr4d 2776 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = 1 )
99 iftrue 4529 . . . . . 6 (𝐾 = 0 β†’ if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2732 . . . . 5 (𝐾 = 0 β†’ 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 480 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2766 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4563 . . . . . . 7 if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)) = (0gβ€˜π‘…)
104103a1i 11 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
105104mpoeq3dv 7484 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
106 iffalse 4532 . . . . . . . 8 (Β¬ 𝐾 = 0 β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
107106adantr 480 . . . . . . 7 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
108107ifeq1d 4542 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…)) = if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…)))
109108mpoeq3dv 7484 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (0gβ€˜π‘…), (0gβ€˜π‘…))))
110 3simpa 1145 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 481 . . . . . 6 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0gβ€˜π΄)
11393, 59mat0op 22276 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
114112, 113eqtrid 2778 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
115111, 114syl 17 . . . . 5 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
116105, 109, 1153eqtr4d 2776 . . . 4 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = 0 )
117 iffalse 4532 . . . . . 6 (Β¬ 𝐾 = 0 β†’ if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2732 . . . . 5 (Β¬ 𝐾 = 0 β†’ 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 480 . . . 4 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2766 . . 3 ((Β¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 809 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1rβ€˜(Scalarβ€˜π‘ƒ)), (0gβ€˜π‘…)), (0gβ€˜π‘…))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2770 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ β„•0) β†’ (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3468  ifcif 4523  {csn 4623   ↦ cmpt 5224   Γ— cxp 5667  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8941  0cc0 11112  β„•0cn0 12476  Basecbs 17153  Scalarcsca 17209   ·𝑠 cvsca 17210  0gc0g 17394  .gcmg 18995  mulGrpcmgp 20039  1rcur 20086  Ringcrg 20138  LModclmod 20706  var1cv1 22050  Poly1cpl1 22051  coe1cco1 22052   Mat cmat 22262   decompPMat cdecpmat 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-ofr 7668  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-fzo 13634  df-seq 13973  df-hash 14296  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-gsum 17397  df-prds 17402  df-pws 17404  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-submnd 18714  df-grp 18866  df-minusg 18867  df-sbg 18868  df-mulg 18996  df-subg 19050  df-ghm 19139  df-cntz 19233  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-subrng 20446  df-subrg 20471  df-lmod 20708  df-lss 20779  df-sra 21021  df-rgmod 21022  df-dsmm 21627  df-frlm 21642  df-ascl 21750  df-psr 21803  df-mvr 21804  df-mpl 21805  df-opsr 21807  df-psr1 22054  df-vr1 22055  df-ply1 22056  df-coe1 22057  df-mamu 22241  df-mat 22263  df-decpmat 22620
This theorem is referenced by:  idpm2idmp  22658
  Copyright terms: Public domain W3C validator