MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22686
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1𝑅)
decpmatid.c 𝐶 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1r𝐶)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0g𝐴)
decpmatid.1 1 = (1r𝐴)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 decpmatid.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22608 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
433adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐶 ∈ Ring)
5 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 decpmatid.i . . . . 5 𝐼 = (1r𝐶)
75, 6ringidcl 20185 . . . 4 (𝐶 ∈ Ring → 𝐼 ∈ (Base‘𝐶))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐼 ∈ (Base‘𝐶))
9 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
102, 5decpmatval 22681 . . 3 ((𝐼 ∈ (Base‘𝐶) ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
118, 9, 10syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
12 eqid 2733 . . . . . . 7 (0g𝑃) = (0g𝑃)
13 eqid 2733 . . . . . . 7 (1r𝑃) = (1r𝑃)
14 simp11 1204 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
15 simp12 1205 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
17 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22613 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
1918fveq2d 6832 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝐼𝑗)) = (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
2019fveq1d 6830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾))
21 fvif 6844 . . . . . . 7 (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))
2221fveq1i 6829 . . . . . 6 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾)
23 iffv 6845 . . . . . 6 (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
2422, 23eqtri 2756 . . . . 5 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
25 eqid 2733 . . . . . . . . . . . . 13 (var1𝑅) = (var1𝑅)
26 eqid 2733 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
27 eqid 2733 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
281, 25, 26, 27ply1idvr1 22210 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
29283ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
3029eqcomd 2739 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
3130fveq2d 6832 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(1r𝑃)) = (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
3231fveq1d 6830 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾))
331ply1lmod 22165 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
34333ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑃 ∈ LMod)
35 0nn0 12403 . . . . . . . . . . . . . 14 0 ∈ ℕ0
36 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
371, 25, 26, 27, 36ply1moncl 22186 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
3835, 37mpan2 691 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
39383ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
40 eqid 2733 . . . . . . . . . . . . 13 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2733 . . . . . . . . . . . . 13 ( ·𝑠𝑃) = ( ·𝑠𝑃)
42 eqid 2733 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
4336, 40, 41, 42lmodvs1 20825 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4434, 39, 43syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4544eqcomd 2739 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
4645fveq2d 6832 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4746fveq1d 6830 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾) = ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾))
48 simp2 1137 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
491ply1sca 22166 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
50493ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5150eqcomd 2739 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
5251fveq2d 6832 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
53 eqid 2733 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2733 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
5553, 54ringidcl 20185 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
5752, 56eqeltrd 2833 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
59 eqid 2733 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6059, 53, 1, 25, 41, 26, 27coe1tm 22188 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 0 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
6148, 57, 58, 60syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
62 eqeq1 2737 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 = 0 ↔ 𝐾 = 0))
6362ifbid 4498 . . . . . . . . . 10 (𝑘 = 𝐾 → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
6463adantl 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 = 𝐾) → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
65 fvex 6841 . . . . . . . . . . 11 (1r‘(Scalar‘𝑃)) ∈ V
66 fvex 6841 . . . . . . . . . . 11 (0g𝑅) ∈ V
6765, 66ifex 4525 . . . . . . . . . 10 if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V)
6961, 64, 9, 68fvmptd 6942 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
7032, 47, 693eqtrd 2772 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
711, 12, 59coe1z 22178 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
72713ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
7372fveq1d 6830 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0g𝑅) ∈ V)
75 fvconst2g 7142 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7674, 9, 75syl2anc 584 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7773, 76eqtrd 2768 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = (0g𝑅))
7870, 77ifeq12d 4496 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
79783ad2ant1 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8024, 79eqtrid 2780 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8120, 80eqtrd 2768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8281mpoeq3dva 7429 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))))
8350adantl 481 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 𝑅 = (Scalar‘𝑃))
8483eqcomd 2739 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (Scalar‘𝑃) = 𝑅)
8584fveq2d 6832 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
8685ifeq1d 4494 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
8786mpoeq3dv 7431 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
88 iftrue 4480 . . . . . . . 8 (𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (1r‘(Scalar‘𝑃)))
8988ifeq1d 4494 . . . . . . 7 (𝐾 = 0 → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9089adantr 480 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9190mpoeq3dv 7431 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))))
92 decpmatid.1 . . . . . . . 8 1 = (1r𝐴)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22363 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9592, 94eqtrid 2780 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
96953adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9796adantl 481 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9887, 91, 973eqtr4d 2778 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 1 )
99 iftrue 4480 . . . . . 6 (𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2739 . . . . 5 (𝐾 = 0 → 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 480 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2768 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4515 . . . . . . 7 if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅)
104103a1i 11 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅))
105104mpoeq3dv 7431 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
106 iffalse 4483 . . . . . . . 8 𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
107106adantr 480 . . . . . . 7 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
108107ifeq1d 4494 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)))
109108mpoeq3dv 7431 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))))
110 3simpa 1148 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 481 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0g𝐴)
11393, 59mat0op 22335 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
114112, 113eqtrid 2780 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
115111, 114syl 17 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
116105, 109, 1153eqtr4d 2778 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 0 )
117 iffalse 4483 . . . . . 6 𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2739 . . . . 5 𝐾 = 0 → 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 480 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2768 . . 3 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 811 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2772 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4474  {csn 4575  cmpt 5174   × cxp 5617  cfv 6486  (class class class)co 7352  cmpo 7354  Fincfn 8875  0cc0 11013  0cn0 12388  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  .gcmg 18982  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  LModclmod 20795  var1cv1 22089  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323   decompPMat cdecpmat 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-psr 21848  df-mvr 21849  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mamu 22307  df-mat 22324  df-decpmat 22679
This theorem is referenced by:  idpm2idmp  22717
  Copyright terms: Public domain W3C validator