MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22664
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1𝑅)
decpmatid.c 𝐶 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1r𝐶)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0g𝐴)
decpmatid.1 1 = (1r𝐴)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 decpmatid.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22586 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
433adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐶 ∈ Ring)
5 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 decpmatid.i . . . . 5 𝐼 = (1r𝐶)
75, 6ringidcl 20181 . . . 4 (𝐶 ∈ Ring → 𝐼 ∈ (Base‘𝐶))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐼 ∈ (Base‘𝐶))
9 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
102, 5decpmatval 22659 . . 3 ((𝐼 ∈ (Base‘𝐶) ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
118, 9, 10syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
12 eqid 2730 . . . . . . 7 (0g𝑃) = (0g𝑃)
13 eqid 2730 . . . . . . 7 (1r𝑃) = (1r𝑃)
14 simp11 1204 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
15 simp12 1205 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
17 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
1918fveq2d 6865 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝐼𝑗)) = (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
2019fveq1d 6863 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾))
21 fvif 6877 . . . . . . 7 (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))
2221fveq1i 6862 . . . . . 6 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾)
23 iffv 6878 . . . . . 6 (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
2422, 23eqtri 2753 . . . . 5 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
25 eqid 2730 . . . . . . . . . . . . 13 (var1𝑅) = (var1𝑅)
26 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
27 eqid 2730 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
281, 25, 26, 27ply1idvr1 22188 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
29283ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
3029eqcomd 2736 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
3130fveq2d 6865 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(1r𝑃)) = (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
3231fveq1d 6863 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾))
331ply1lmod 22143 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
34333ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑃 ∈ LMod)
35 0nn0 12464 . . . . . . . . . . . . . 14 0 ∈ ℕ0
36 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
371, 25, 26, 27, 36ply1moncl 22164 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
3835, 37mpan2 691 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
39383ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
40 eqid 2730 . . . . . . . . . . . . 13 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2730 . . . . . . . . . . . . 13 ( ·𝑠𝑃) = ( ·𝑠𝑃)
42 eqid 2730 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
4336, 40, 41, 42lmodvs1 20803 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4434, 39, 43syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4544eqcomd 2736 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
4645fveq2d 6865 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4746fveq1d 6863 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾) = ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾))
48 simp2 1137 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
491ply1sca 22144 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
50493ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5150eqcomd 2736 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
5251fveq2d 6865 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
53 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2730 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
5553, 54ringidcl 20181 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
5752, 56eqeltrd 2829 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
59 eqid 2730 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6059, 53, 1, 25, 41, 26, 27coe1tm 22166 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 0 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
6148, 57, 58, 60syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
62 eqeq1 2734 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 = 0 ↔ 𝐾 = 0))
6362ifbid 4515 . . . . . . . . . 10 (𝑘 = 𝐾 → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
6463adantl 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 = 𝐾) → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
65 fvex 6874 . . . . . . . . . . 11 (1r‘(Scalar‘𝑃)) ∈ V
66 fvex 6874 . . . . . . . . . . 11 (0g𝑅) ∈ V
6765, 66ifex 4542 . . . . . . . . . 10 if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V)
6961, 64, 9, 68fvmptd 6978 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
7032, 47, 693eqtrd 2769 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
711, 12, 59coe1z 22156 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
72713ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
7372fveq1d 6863 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0g𝑅) ∈ V)
75 fvconst2g 7179 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7674, 9, 75syl2anc 584 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7773, 76eqtrd 2765 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = (0g𝑅))
7870, 77ifeq12d 4513 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
79783ad2ant1 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8024, 79eqtrid 2777 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8120, 80eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8281mpoeq3dva 7469 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))))
8350adantl 481 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 𝑅 = (Scalar‘𝑃))
8483eqcomd 2736 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (Scalar‘𝑃) = 𝑅)
8584fveq2d 6865 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
8685ifeq1d 4511 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
8786mpoeq3dv 7471 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
88 iftrue 4497 . . . . . . . 8 (𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (1r‘(Scalar‘𝑃)))
8988ifeq1d 4511 . . . . . . 7 (𝐾 = 0 → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9089adantr 480 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9190mpoeq3dv 7471 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))))
92 decpmatid.1 . . . . . . . 8 1 = (1r𝐴)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22341 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9592, 94eqtrid 2777 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
96953adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9796adantl 481 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9887, 91, 973eqtr4d 2775 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 1 )
99 iftrue 4497 . . . . . 6 (𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2736 . . . . 5 (𝐾 = 0 → 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 480 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2765 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4532 . . . . . . 7 if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅)
104103a1i 11 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅))
105104mpoeq3dv 7471 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
106 iffalse 4500 . . . . . . . 8 𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
107106adantr 480 . . . . . . 7 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
108107ifeq1d 4511 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)))
109108mpoeq3dv 7471 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))))
110 3simpa 1148 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 481 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0g𝐴)
11393, 59mat0op 22313 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
114112, 113eqtrid 2777 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
115111, 114syl 17 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
116105, 109, 1153eqtr4d 2775 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 0 )
117 iffalse 4500 . . . . . 6 𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2736 . . . . 5 𝐾 = 0 → 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 480 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2765 . . 3 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 811 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2769 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4491  {csn 4592  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  0cc0 11075  0cn0 12449  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  .gcmg 19006  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  LModclmod 20773  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   Mat cmat 22301   decompPMat cdecpmat 22656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mamu 22285  df-mat 22302  df-decpmat 22657
This theorem is referenced by:  idpm2idmp  22695
  Copyright terms: Public domain W3C validator