MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatid Structured version   Visualization version   GIF version

Theorem decpmatid 22683
Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatid.p 𝑃 = (Poly1𝑅)
decpmatid.c 𝐶 = (𝑁 Mat 𝑃)
decpmatid.i 𝐼 = (1r𝐶)
decpmatid.a 𝐴 = (𝑁 Mat 𝑅)
decpmatid.0 0 = (0g𝐴)
decpmatid.1 1 = (1r𝐴)
Assertion
Ref Expression
decpmatid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Proof of Theorem decpmatid
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 decpmatid.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22605 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
433adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐶 ∈ Ring)
5 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
6 decpmatid.i . . . . 5 𝐼 = (1r𝐶)
75, 6ringidcl 20181 . . . 4 (𝐶 ∈ Ring → 𝐼 ∈ (Base‘𝐶))
84, 7syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐼 ∈ (Base‘𝐶))
9 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
102, 5decpmatval 22678 . . 3 ((𝐼 ∈ (Base‘𝐶) ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
118, 9, 10syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)))
12 eqid 2731 . . . . . . 7 (0g𝑃) = (0g𝑃)
13 eqid 2731 . . . . . . 7 (1r𝑃) = (1r𝑃)
14 simp11 1204 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
15 simp12 1205 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
17 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
181, 2, 12, 13, 14, 15, 16, 17, 6pmat1ovd 22610 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
1918fveq2d 6826 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝐼𝑗)) = (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
2019fveq1d 6824 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾))
21 fvif 6838 . . . . . . 7 (coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))
2221fveq1i 6823 . . . . . 6 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾)
23 iffv 6839 . . . . . 6 (if(𝑖 = 𝑗, (coe1‘(1r𝑃)), (coe1‘(0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
2422, 23eqtri 2754 . . . . 5 ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾))
25 eqid 2731 . . . . . . . . . . . . 13 (var1𝑅) = (var1𝑅)
26 eqid 2731 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
27 eqid 2731 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
281, 25, 26, 27ply1idvr1 22207 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
29283ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
3029eqcomd 2737 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
3130fveq2d 6826 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(1r𝑃)) = (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
3231fveq1d 6824 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾))
331ply1lmod 22162 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
34333ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑃 ∈ LMod)
35 0nn0 12393 . . . . . . . . . . . . . 14 0 ∈ ℕ0
36 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
371, 25, 26, 27, 36ply1moncl 22183 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 0 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
3835, 37mpan2 691 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
39383ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
40 eqid 2731 . . . . . . . . . . . . 13 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2731 . . . . . . . . . . . . 13 ( ·𝑠𝑃) = ( ·𝑠𝑃)
42 eqid 2731 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
4336, 40, 41, 42lmodvs1 20821 . . . . . . . . . . . 12 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4434, 39, 43syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
4544eqcomd 2737 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
4645fveq2d 6826 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4746fveq1d 6824 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0(.g‘(mulGrp‘𝑃))(var1𝑅)))‘𝐾) = ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾))
48 simp2 1137 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
491ply1sca 22163 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
50493ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5150eqcomd 2737 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
5251fveq2d 6826 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
53 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2731 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
5553, 54ringidcl 20181 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r𝑅) ∈ (Base‘𝑅))
5752, 56eqeltrd 2831 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅))
5835a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
59 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6059, 53, 1, 25, 41, 26, 27coe1tm 22185 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 0 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
6148, 57, 58, 60syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅))))
62 eqeq1 2735 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 = 0 ↔ 𝐾 = 0))
6362ifbid 4499 . . . . . . . . . 10 (𝑘 = 𝐾 → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
6463adantl 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 = 𝐾) → if(𝑘 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
65 fvex 6835 . . . . . . . . . . 11 (1r‘(Scalar‘𝑃)) ∈ V
66 fvex 6835 . . . . . . . . . . 11 (0g𝑅) ∈ V
6765, 66ifex 4526 . . . . . . . . . 10 if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V
6867a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) ∈ V)
6961, 64, 9, 68fvmptd 6936 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘((1r‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
7032, 47, 693eqtrd 2770 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(1r𝑃))‘𝐾) = if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)))
711, 12, 59coe1z 22175 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
72713ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
7372fveq1d 6824 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
7466a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (0g𝑅) ∈ V)
75 fvconst2g 7136 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7674, 9, 75syl2anc 584 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
7773, 76eqtrd 2766 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝐾) = (0g𝑅))
7870, 77ifeq12d 4497 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
79783ad2ant1 1133 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((coe1‘(1r𝑃))‘𝐾), ((coe1‘(0g𝑃))‘𝐾)) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8024, 79eqtrid 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8120, 80eqtrd 2766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝐼𝑗))‘𝐾) = if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)))
8281mpoeq3dva 7423 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝐼𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))))
8350adantl 481 . . . . . . . . 9 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 𝑅 = (Scalar‘𝑃))
8483eqcomd 2737 . . . . . . . 8 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (Scalar‘𝑃) = 𝑅)
8584fveq2d 6826 . . . . . . 7 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (1r‘(Scalar‘𝑃)) = (1r𝑅))
8685ifeq1d 4495 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
8786mpoeq3dv 7425 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
88 iftrue 4481 . . . . . . . 8 (𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (1r‘(Scalar‘𝑃)))
8988ifeq1d 4495 . . . . . . 7 (𝐾 = 0 → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9089adantr 480 . . . . . 6 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅)))
9190mpoeq3dv 7425 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r‘(Scalar‘𝑃)), (0g𝑅))))
92 decpmatid.1 . . . . . . . 8 1 = (1r𝐴)
93 decpmatid.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
9493, 54, 59mat1 22360 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9592, 94eqtrid 2778 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
96953adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9796adantl 481 . . . . 5 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))))
9887, 91, 973eqtr4d 2776 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 1 )
99 iftrue 4481 . . . . . 6 (𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 1 )
10099eqcomd 2737 . . . . 5 (𝐾 = 0 → 1 = if(𝐾 = 0, 1 , 0 ))
101100adantr 480 . . . 4 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 1 = if(𝐾 = 0, 1 , 0 ))
10298, 101eqtrd 2766 . . 3 ((𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
103 ifid 4516 . . . . . . 7 if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅)
104103a1i 11 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)) = (0g𝑅))
105104mpoeq3dv 7425 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
106 iffalse 4484 . . . . . . . 8 𝐾 = 0 → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
107106adantr 480 . . . . . . 7 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)) = (0g𝑅))
108107ifeq1d 4495 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅)) = if(𝑖 = 𝑗, (0g𝑅), (0g𝑅)))
109108mpoeq3dv 7425 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (0g𝑅), (0g𝑅))))
110 3simpa 1148 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
111110adantl 481 . . . . . 6 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
112 decpmatid.0 . . . . . . 7 0 = (0g𝐴)
11393, 59mat0op 22332 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
114112, 113eqtrid 2778 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
115111, 114syl 17 . . . . 5 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
116105, 109, 1153eqtr4d 2776 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = 0 )
117 iffalse 4484 . . . . . 6 𝐾 = 0 → if(𝐾 = 0, 1 , 0 ) = 0 )
118117eqcomd 2737 . . . . 5 𝐾 = 0 → 0 = if(𝐾 = 0, 1 , 0 ))
119118adantr 480 . . . 4 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → 0 = if(𝐾 = 0, 1 , 0 ))
120116, 119eqtrd 2766 . . 3 ((¬ 𝐾 = 0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
121102, 120pm2.61ian 811 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, if(𝐾 = 0, (1r‘(Scalar‘𝑃)), (0g𝑅)), (0g𝑅))) = if(𝐾 = 0, 1 , 0 ))
12211, 82, 1213eqtrd 2770 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4475  {csn 4576  cmpt 5172   × cxp 5614  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  0cc0 11003  0cn0 12378  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  .gcmg 18977  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  LModclmod 20791  var1cv1 22086  Poly1cpl1 22087  coe1cco1 22088   Mat cmat 22320   decompPMat cdecpmat 22675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-psr1 22090  df-vr1 22091  df-ply1 22092  df-coe1 22093  df-mamu 22304  df-mat 22321  df-decpmat 22676
This theorem is referenced by:  idpm2idmp  22714
  Copyright terms: Public domain W3C validator