Proof of Theorem pmatcollpwscmatlem1
Step | Hyp | Ref
| Expression |
1 | | pmatcollpwscmat.m2 |
. . . . . . . 8
⊢ 𝑀 = (𝑄 ∗ 1 ) |
2 | 1 | oveqi 7288 |
. . . . . . 7
⊢ (𝑎𝑀𝑏) = (𝑎(𝑄 ∗ 1 )𝑏) |
3 | | pmatcollpwscmat.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
4 | 3 | ply1ring 21419 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
5 | 4 | anim2i 617 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
6 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸) → 𝑄 ∈ 𝐸) |
7 | 5, 6 | anim12i 613 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄 ∈ 𝐸)) |
8 | | df-3an 1088 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄 ∈ 𝐸)) |
9 | 7, 8 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸)) |
10 | | pmatcollpwscmat.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
11 | | pmatcollpwscmat.e2 |
. . . . . . . . 9
⊢ 𝐸 = (Base‘𝑃) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
13 | | pmatcollpwscmat.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝐶) |
14 | | pmatcollpwscmat.m1 |
. . . . . . . . 9
⊢ ∗ = (
·𝑠 ‘𝐶) |
15 | 10, 11, 12, 13, 14 | scmatscmide 21656 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑄 ∗ 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g‘𝑃))) |
16 | 9, 15 | sylan 580 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑄 ∗ 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g‘𝑃))) |
17 | 2, 16 | eqtrid 2790 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑀𝑏) = if(𝑎 = 𝑏, 𝑄, (0g‘𝑃))) |
18 | 17 | fveq2d 6778 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (coe1‘(𝑎𝑀𝑏)) = (coe1‘if(𝑎 = 𝑏, 𝑄, (0g‘𝑃)))) |
19 | 18 | fveq1d 6776 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g‘𝑃)))‘𝐿)) |
20 | | fvif 6790 |
. . . . . 6
⊢
(coe1‘if(𝑎 = 𝑏, 𝑄, (0g‘𝑃))) = if(𝑎 = 𝑏, (coe1‘𝑄),
(coe1‘(0g‘𝑃))) |
21 | 20 | fveq1i 6775 |
. . . . 5
⊢
((coe1‘if(𝑎 = 𝑏, 𝑄, (0g‘𝑃)))‘𝐿) = (if(𝑎 = 𝑏, (coe1‘𝑄),
(coe1‘(0g‘𝑃)))‘𝐿) |
22 | | iffv 6791 |
. . . . 5
⊢ (if(𝑎 = 𝑏, (coe1‘𝑄),
(coe1‘(0g‘𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿)) |
23 | 21, 22 | eqtri 2766 |
. . . 4
⊢
((coe1‘if(𝑎 = 𝑏, 𝑄, (0g‘𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿)) |
24 | 19, 23 | eqtrdi 2794 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿))) |
25 | 24 | oveq1d 7290 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
26 | | ovif 7372 |
. . 3
⊢ (if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))),
(((coe1‘(0g‘𝑃))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
27 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
28 | 3, 12, 27 | coe1z 21434 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
29 | 28 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
30 | 29 | fveq1d 6776 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((coe1‘(0g‘𝑃))‘𝐿) = ((ℕ0 ×
{(0g‘𝑅)})‘𝐿)) |
31 | | fvexd 6789 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝑅)
∈ V) |
32 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸) → 𝐿 ∈
ℕ0) |
33 | 31, 32 | anim12i 613 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((0g‘𝑅)
∈ V ∧ 𝐿 ∈
ℕ0)) |
34 | | fvconst2g 7077 |
. . . . . . . . 9
⊢
(((0g‘𝑅) ∈ V ∧ 𝐿 ∈ ℕ0) →
((ℕ0 × {(0g‘𝑅)})‘𝐿) = (0g‘𝑅)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → ((ℕ0
× {(0g‘𝑅)})‘𝐿) = (0g‘𝑅)) |
36 | 30, 35 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((coe1‘(0g‘𝑃))‘𝐿) = (0g‘𝑅)) |
37 | 36 | oveq1d 7290 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((coe1‘(0g‘𝑃))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
((0g‘𝑅)(
·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
38 | 3 | ply1lmod 21423 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
39 | 38 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → 𝑃 ∈ LMod) |
40 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
41 | 40 | ringmgp 19789 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
42 | 4, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
43 | | 0nn0 12248 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 0 ∈
ℕ0) |
45 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(var1‘𝑅) = (var1‘𝑅) |
46 | 45, 3, 11 | vr1cl 21388 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(var1‘𝑅)
∈ 𝐸) |
47 | 40, 11 | mgpbas 19726 |
. . . . . . . . . . 11
⊢ 𝐸 =
(Base‘(mulGrp‘𝑃)) |
48 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
49 | 47, 48 | mulgnn0cl 18720 |
. . . . . . . . . 10
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 0 ∈ ℕ0 ∧
(var1‘𝑅)
∈ 𝐸) →
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ 𝐸) |
50 | 42, 44, 46, 49 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ 𝐸) |
51 | 50 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ 𝐸) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
53 | | eqid 2738 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
54 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝑃)) |
55 | 11, 52, 53, 54, 12 | lmod0vs 20156 |
. . . . . . . 8
⊢ ((𝑃 ∈ LMod ∧
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ 𝐸) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
56 | 39, 51, 55 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
57 | 3 | ply1sca 21424 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
58 | 57 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃)) |
59 | 58 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
60 | 59 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((0g‘𝑅)(
·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
61 | 60 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(((0g‘𝑅)(
·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃) ↔
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃))) |
62 | 61 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((0g‘𝑅)(
·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃) ↔
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃))) |
63 | 56, 62 | mpbird 256 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((0g‘𝑅)(
·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
64 | 37, 63 | eqtrd 2778 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((coe1‘(0g‘𝑃))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
65 | 64 | ifeq2d 4479 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))),
(((coe1‘(0g‘𝑃))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))), (0g‘𝑃))) |
66 | 65 | adantr 481 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))),
(((coe1‘(0g‘𝑃))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))), (0g‘𝑃))) |
67 | 26, 66 | eqtrid 2790 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (if(𝑎 = 𝑏, ((coe1‘𝑄)‘𝐿),
((coe1‘(0g‘𝑃))‘𝐿))( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))), (0g‘𝑃))) |
68 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸)) |
69 | 68 | ancomd 462 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑄 ∈ 𝐸 ∧ 𝐿 ∈
ℕ0)) |
70 | | eqid 2738 |
. . . . . . . . 9
⊢
(coe1‘𝑄) = (coe1‘𝑄) |
71 | | pmatcollpwscmat.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑅) |
72 | 70, 11, 3, 71 | coe1fvalcl 21383 |
. . . . . . . 8
⊢ ((𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0) →
((coe1‘𝑄)‘𝐿) ∈ 𝐾) |
73 | 69, 72 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((coe1‘𝑄)‘𝐿) ∈ 𝐾) |
74 | 57 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
75 | 74 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝑃) = 𝑅) |
76 | 75 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
77 | 76, 71 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘(Scalar‘𝑃)) = 𝐾) |
78 | 77 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(((coe1‘𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔
((coe1‘𝑄)‘𝐿) ∈ 𝐾)) |
79 | 78 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((coe1‘𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔
((coe1‘𝑄)‘𝐿) ∈ 𝐾)) |
80 | 73, 79 | mpbird 256 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
((coe1‘𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃))) |
81 | | pmatcollpwscmat.u |
. . . . . . 7
⊢ 𝑈 = (algSc‘𝑃) |
82 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
83 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
84 | 81, 52, 82, 53, 83 | asclval 21084 |
. . . . . 6
⊢
(((coe1‘𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) → (𝑈‘((coe1‘𝑄)‘𝐿)) = (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(1r‘𝑃))) |
85 | 80, 84 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → (𝑈‘((coe1‘𝑄)‘𝐿)) = (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(1r‘𝑃))) |
86 | 3, 45, 40, 48 | ply1idvr1 21464 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (1r‘𝑃)) |
87 | 86 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑃) =
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
88 | 87 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(1r‘𝑃) =
(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
89 | 88 | oveq2d 7291 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(1r‘𝑃)) = (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
90 | 85, 89 | eqtr2d 2779 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) →
(((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (𝑈‘((coe1‘𝑄)‘𝐿))) |
91 | 90 | ifeq1d 4478 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) → if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))), (0g‘𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) |
92 | 91 | adantr 481 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → if(𝑎 = 𝑏, (((coe1‘𝑄)‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))), (0g‘𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) |
93 | 25, 67, 92 | 3eqtrd 2782 |
1
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0
∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠
‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) |