MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem1 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem1 22652
Description: Lemma 1 for pmatcollpwscmat 22654. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))

Proof of Theorem pmatcollpwscmatlem1
StepHypRef Expression
1 pmatcollpwscmat.m2 . . . . . . . 8 𝑀 = (𝑄 1 )
21oveqi 7382 . . . . . . 7 (𝑎𝑀𝑏) = (𝑎(𝑄 1 )𝑏)
3 pmatcollpwscmat.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
43ply1ring 22108 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
54anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
6 simpr 484 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
75, 6anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
8 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
97, 8sylibr 234 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸))
10 pmatcollpwscmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.e2 . . . . . . . . 9 𝐸 = (Base‘𝑃)
12 eqid 2729 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
13 pmatcollpwscmat.1 . . . . . . . . 9 1 = (1r𝐶)
14 pmatcollpwscmat.m1 . . . . . . . . 9 = ( ·𝑠𝐶)
1510, 11, 12, 13, 14scmatscmide 22370 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
169, 15sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
172, 16eqtrid 2776 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
1817fveq2d 6844 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (coe1‘(𝑎𝑀𝑏)) = (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))))
1918fveq1d 6842 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿))
20 fvif 6856 . . . . . 6 (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))) = if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))
2120fveq1i 6841 . . . . 5 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿)
22 iffv 6857 . . . . 5 (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2321, 22eqtri 2752 . . . 4 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2419, 23eqtrdi 2780 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿)))
2524oveq1d 7384 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
26 ovif 7467 . . 3 (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
27 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
283, 12, 27coe1z 22125 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
2928ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
3029fveq1d 6842 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = ((ℕ0 × {(0g𝑅)})‘𝐿))
31 fvexd 6855 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) ∈ V)
32 simpl 482 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝐿 ∈ ℕ0)
3331, 32anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0))
34 fvconst2g 7158 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3533, 34syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3630, 35eqtrd 2764 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = (0g𝑅))
3736oveq1d 7384 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
383ply1lmod 22112 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ LMod)
40 eqid 2729 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4140, 11mgpbas 20030 . . . . . . . . . 10 𝐸 = (Base‘(mulGrp‘𝑃))
42 eqid 2729 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4340ringmgp 20124 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
444, 43syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
45 0nn0 12433 . . . . . . . . . . 11 0 ∈ ℕ0
4645a1i 11 . . . . . . . . . 10 (𝑅 ∈ Ring → 0 ∈ ℕ0)
47 eqid 2729 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
4847, 3, 11vr1cl 22078 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ 𝐸)
4941, 42, 44, 46, 48mulgnn0cld 19003 . . . . . . . . 9 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
5049ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
51 eqid 2729 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2729 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2729 . . . . . . . . 9 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
5411, 51, 52, 53, 12lmod0vs 20777 . . . . . . . 8 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
5539, 50, 54syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
563ply1sca 22113 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5756adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5857fveq2d 6844 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5958oveq1d 7384 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6059eqeq1d 2731 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6160adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6255, 61mpbird 257 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6337, 62eqtrd 2764 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6463ifeq2d 4505 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6564adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6626, 65eqtrid 2776 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
67 simpr 484 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝐿 ∈ ℕ0𝑄𝐸))
6867ancomd 461 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
69 eqid 2729 . . . . . . . . 9 (coe1𝑄) = (coe1𝑄)
70 pmatcollpwscmat.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
7169, 11, 3, 70coe1fvalcl 22073 . . . . . . . 8 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7268, 71syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7356eqcomd 2735 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
7473adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
7574fveq2d 6844 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
7675, 70eqtr4di 2782 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = 𝐾)
7776eleq2d 2814 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7877adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7972, 78mpbird 257 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)))
80 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
81 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
82 eqid 2729 . . . . . . 7 (1r𝑃) = (1r𝑃)
8380, 51, 81, 52, 82asclval 21765 . . . . . 6 (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
8479, 83syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
853, 47, 40, 42ply1idvr1 22157 . . . . . . . 8 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
8685eqcomd 2735 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8786ad2antlr 727 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8887oveq2d 7385 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
8984, 88eqtr2d 2765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑈‘((coe1𝑄)‘𝐿)))
9089ifeq1d 4504 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9190adantr 480 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9225, 66, 913eqtrd 2768 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  {csn 4585   × cxp 5629  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  0cn0 12418  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  Mndcmnd 18637  .gcmg 18975  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  LModclmod 20742  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  coe1cco1 22038   Mat cmat 22270   matToPolyMat cmat2pmat 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-dsmm 21617  df-frlm 21632  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mamu 22254  df-mat 22271
This theorem is referenced by:  pmatcollpwscmatlem2  22653
  Copyright terms: Public domain W3C validator