MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem1 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem1 22699
Description: Lemma 1 for pmatcollpwscmat 22701. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))

Proof of Theorem pmatcollpwscmatlem1
StepHypRef Expression
1 pmatcollpwscmat.m2 . . . . . . . 8 𝑀 = (𝑄 1 )
21oveqi 7354 . . . . . . 7 (𝑎𝑀𝑏) = (𝑎(𝑄 1 )𝑏)
3 pmatcollpwscmat.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
43ply1ring 22155 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
54anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
6 simpr 484 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
75, 6anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
8 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
97, 8sylibr 234 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸))
10 pmatcollpwscmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.e2 . . . . . . . . 9 𝐸 = (Base‘𝑃)
12 eqid 2731 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
13 pmatcollpwscmat.1 . . . . . . . . 9 1 = (1r𝐶)
14 pmatcollpwscmat.m1 . . . . . . . . 9 = ( ·𝑠𝐶)
1510, 11, 12, 13, 14scmatscmide 22417 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
169, 15sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
172, 16eqtrid 2778 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
1817fveq2d 6821 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (coe1‘(𝑎𝑀𝑏)) = (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))))
1918fveq1d 6819 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿))
20 fvif 6833 . . . . . 6 (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))) = if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))
2120fveq1i 6818 . . . . 5 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿)
22 iffv 6834 . . . . 5 (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2321, 22eqtri 2754 . . . 4 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2419, 23eqtrdi 2782 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿)))
2524oveq1d 7356 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
26 ovif 7439 . . 3 (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
27 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
283, 12, 27coe1z 22172 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
2928ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
3029fveq1d 6819 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = ((ℕ0 × {(0g𝑅)})‘𝐿))
31 fvexd 6832 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) ∈ V)
32 simpl 482 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝐿 ∈ ℕ0)
3331, 32anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0))
34 fvconst2g 7131 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3533, 34syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3630, 35eqtrd 2766 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = (0g𝑅))
3736oveq1d 7356 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
383ply1lmod 22159 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ LMod)
40 eqid 2731 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4140, 11mgpbas 20058 . . . . . . . . . 10 𝐸 = (Base‘(mulGrp‘𝑃))
42 eqid 2731 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4340ringmgp 20152 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
444, 43syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
45 0nn0 12391 . . . . . . . . . . 11 0 ∈ ℕ0
4645a1i 11 . . . . . . . . . 10 (𝑅 ∈ Ring → 0 ∈ ℕ0)
47 eqid 2731 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
4847, 3, 11vr1cl 22125 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ 𝐸)
4941, 42, 44, 46, 48mulgnn0cld 19003 . . . . . . . . 9 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
5049ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
51 eqid 2731 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2731 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2731 . . . . . . . . 9 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
5411, 51, 52, 53, 12lmod0vs 20823 . . . . . . . 8 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
5539, 50, 54syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
563ply1sca 22160 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5756adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5857fveq2d 6821 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5958oveq1d 7356 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6059eqeq1d 2733 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6160adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6255, 61mpbird 257 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6337, 62eqtrd 2766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6463ifeq2d 4491 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6564adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6626, 65eqtrid 2778 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
67 simpr 484 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝐿 ∈ ℕ0𝑄𝐸))
6867ancomd 461 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
69 eqid 2731 . . . . . . . . 9 (coe1𝑄) = (coe1𝑄)
70 pmatcollpwscmat.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
7169, 11, 3, 70coe1fvalcl 22120 . . . . . . . 8 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7268, 71syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7356eqcomd 2737 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
7473adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
7574fveq2d 6821 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
7675, 70eqtr4di 2784 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = 𝐾)
7776eleq2d 2817 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7877adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7972, 78mpbird 257 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)))
80 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
81 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
82 eqid 2731 . . . . . . 7 (1r𝑃) = (1r𝑃)
8380, 51, 81, 52, 82asclval 21812 . . . . . 6 (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
8479, 83syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
853, 47, 40, 42ply1idvr1 22204 . . . . . . . 8 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
8685eqcomd 2737 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8786ad2antlr 727 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8887oveq2d 7357 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
8984, 88eqtr2d 2767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑈‘((coe1𝑄)‘𝐿)))
9089ifeq1d 4490 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9190adantr 480 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9225, 66, 913eqtrd 2770 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4470  {csn 4571   × cxp 5609  cfv 6476  (class class class)co 7341  Fincfn 8864  0cc0 11001  0cn0 12376  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  Mndcmnd 18637  .gcmg 18975  mulGrpcmgp 20053  1rcur 20094  Ringcrg 20146  LModclmod 20788  algSccascl 21784  var1cv1 22083  Poly1cpl1 22084  coe1cco1 22085   Mat cmat 22317   matToPolyMat cmat2pmat 22614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-subrng 20456  df-subrg 20480  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-dsmm 21664  df-frlm 21679  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-mamu 22301  df-mat 22318
This theorem is referenced by:  pmatcollpwscmatlem2  22700
  Copyright terms: Public domain W3C validator