MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem1 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem1 22175
Description: Lemma 1 for pmatcollpwscmat 22177. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))

Proof of Theorem pmatcollpwscmatlem1
StepHypRef Expression
1 pmatcollpwscmat.m2 . . . . . . . 8 𝑀 = (𝑄 1 )
21oveqi 7375 . . . . . . 7 (𝑎𝑀𝑏) = (𝑎(𝑄 1 )𝑏)
3 pmatcollpwscmat.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
43ply1ring 21656 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
54anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
6 simpr 485 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
75, 6anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
8 df-3an 1089 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
97, 8sylibr 233 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸))
10 pmatcollpwscmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.e2 . . . . . . . . 9 𝐸 = (Base‘𝑃)
12 eqid 2731 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
13 pmatcollpwscmat.1 . . . . . . . . 9 1 = (1r𝐶)
14 pmatcollpwscmat.m1 . . . . . . . . 9 = ( ·𝑠𝐶)
1510, 11, 12, 13, 14scmatscmide 21893 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
169, 15sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
172, 16eqtrid 2783 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
1817fveq2d 6851 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (coe1‘(𝑎𝑀𝑏)) = (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))))
1918fveq1d 6849 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿))
20 fvif 6863 . . . . . 6 (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))) = if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))
2120fveq1i 6848 . . . . 5 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿)
22 iffv 6864 . . . . 5 (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2321, 22eqtri 2759 . . . 4 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2419, 23eqtrdi 2787 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿)))
2524oveq1d 7377 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
26 ovif 7459 . . 3 (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
27 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
283, 12, 27coe1z 21671 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
2928ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
3029fveq1d 6849 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = ((ℕ0 × {(0g𝑅)})‘𝐿))
31 fvexd 6862 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) ∈ V)
32 simpl 483 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝐿 ∈ ℕ0)
3331, 32anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0))
34 fvconst2g 7156 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3533, 34syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3630, 35eqtrd 2771 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = (0g𝑅))
3736oveq1d 7377 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
383ply1lmod 21660 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad2antlr 725 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ LMod)
40 eqid 2731 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4140, 11mgpbas 19916 . . . . . . . . . 10 𝐸 = (Base‘(mulGrp‘𝑃))
42 eqid 2731 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4340ringmgp 19984 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
444, 43syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
45 0nn0 12437 . . . . . . . . . . 11 0 ∈ ℕ0
4645a1i 11 . . . . . . . . . 10 (𝑅 ∈ Ring → 0 ∈ ℕ0)
47 eqid 2731 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
4847, 3, 11vr1cl 21625 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ 𝐸)
4941, 42, 44, 46, 48mulgnn0cld 18911 . . . . . . . . 9 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
5049ad2antlr 725 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
51 eqid 2731 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
52 eqid 2731 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
53 eqid 2731 . . . . . . . . 9 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
5411, 51, 52, 53, 12lmod0vs 20412 . . . . . . . 8 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
5539, 50, 54syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
563ply1sca 21661 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5756adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5857fveq2d 6851 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5958oveq1d 7377 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6059eqeq1d 2733 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6160adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6255, 61mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6337, 62eqtrd 2771 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6463ifeq2d 4511 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6564adantr 481 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6626, 65eqtrid 2783 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
67 simpr 485 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝐿 ∈ ℕ0𝑄𝐸))
6867ancomd 462 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
69 eqid 2731 . . . . . . . . 9 (coe1𝑄) = (coe1𝑄)
70 pmatcollpwscmat.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
7169, 11, 3, 70coe1fvalcl 21620 . . . . . . . 8 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7268, 71syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7356eqcomd 2737 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
7473adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
7574fveq2d 6851 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
7675, 70eqtr4di 2789 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = 𝐾)
7776eleq2d 2818 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7877adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7972, 78mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)))
80 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
81 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
82 eqid 2731 . . . . . . 7 (1r𝑃) = (1r𝑃)
8380, 51, 81, 52, 82asclval 21320 . . . . . 6 (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
8479, 83syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
853, 47, 40, 42ply1idvr1 21701 . . . . . . . 8 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
8685eqcomd 2737 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8786ad2antlr 725 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8887oveq2d 7378 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
8984, 88eqtr2d 2772 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑈‘((coe1𝑄)‘𝐿)))
9089ifeq1d 4510 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9190adantr 481 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9225, 66, 913eqtrd 2775 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3446  ifcif 4491  {csn 4591   × cxp 5636  cfv 6501  (class class class)co 7362  Fincfn 8890  0cc0 11060  0cn0 12422  Basecbs 17094  Scalarcsca 17150   ·𝑠 cvsca 17151  0gc0g 17335  Mndcmnd 18570  .gcmg 18886  mulGrpcmgp 19910  1rcur 19927  Ringcrg 19978  LModclmod 20378  algSccascl 21295  var1cv1 21584  Poly1cpl1 21585  coe1cco1 21586   Mat cmat 21791   matToPolyMat cmat2pmat 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9387  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-hom 17171  df-cco 17172  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-submnd 18616  df-grp 18765  df-minusg 18766  df-sbg 18767  df-mulg 18887  df-subg 18939  df-ghm 19020  df-cntz 19111  df-cmn 19578  df-abl 19579  df-mgp 19911  df-ur 19928  df-ring 19980  df-subrg 20268  df-lmod 20380  df-lss 20450  df-sra 20692  df-rgmod 20693  df-dsmm 21175  df-frlm 21190  df-ascl 21298  df-psr 21348  df-mvr 21349  df-mpl 21350  df-opsr 21352  df-psr1 21588  df-vr1 21589  df-ply1 21590  df-coe1 21591  df-mamu 21770  df-mat 21792
This theorem is referenced by:  pmatcollpwscmatlem2  22176
  Copyright terms: Public domain W3C validator