MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem1 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem1 22513
Description: Lemma 1 for pmatcollpwscmat 22515. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1β€˜π‘…)
pmatcollpwscmat.c 𝐢 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐡 = (Baseβ€˜πΆ)
pmatcollpwscmat.m1 βˆ— = ( ·𝑠 β€˜πΆ)
pmatcollpwscmat.e1 ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
pmatcollpwscmat.x 𝑋 = (var1β€˜π‘…)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Baseβ€˜π΄)
pmatcollpwscmat.u π‘ˆ = (algScβ€˜π‘ƒ)
pmatcollpwscmat.k 𝐾 = (Baseβ€˜π‘…)
pmatcollpwscmat.e2 𝐸 = (Baseβ€˜π‘ƒ)
pmatcollpwscmat.s 𝑆 = (algScβ€˜π‘ƒ)
pmatcollpwscmat.1 1 = (1rβ€˜πΆ)
pmatcollpwscmat.m2 𝑀 = (𝑄 βˆ— 1 )
Assertion
Ref Expression
pmatcollpwscmatlem1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (((coe1β€˜(π‘Žπ‘€π‘))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = if(π‘Ž = 𝑏, (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)), (0gβ€˜π‘ƒ)))

Proof of Theorem pmatcollpwscmatlem1
StepHypRef Expression
1 pmatcollpwscmat.m2 . . . . . . . 8 𝑀 = (𝑄 βˆ— 1 )
21oveqi 7426 . . . . . . 7 (π‘Žπ‘€π‘) = (π‘Ž(𝑄 βˆ— 1 )𝑏)
3 pmatcollpwscmat.p . . . . . . . . . . . 12 𝑃 = (Poly1β€˜π‘…)
43ply1ring 21992 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
54anim2i 615 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
6 simpr 483 . . . . . . . . . 10 ((𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸) β†’ 𝑄 ∈ 𝐸)
75, 6anim12i 611 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄 ∈ 𝐸))
8 df-3an 1087 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄 ∈ 𝐸))
97, 8sylibr 233 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸))
10 pmatcollpwscmat.c . . . . . . . . 9 𝐢 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.e2 . . . . . . . . 9 𝐸 = (Baseβ€˜π‘ƒ)
12 eqid 2730 . . . . . . . . 9 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
13 pmatcollpwscmat.1 . . . . . . . . 9 1 = (1rβ€˜πΆ)
14 pmatcollpwscmat.m1 . . . . . . . . 9 βˆ— = ( ·𝑠 β€˜πΆ)
1510, 11, 12, 13, 14scmatscmide 22231 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (π‘Ž(𝑄 βˆ— 1 )𝑏) = if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))
169, 15sylan 578 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (π‘Ž(𝑄 βˆ— 1 )𝑏) = if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))
172, 16eqtrid 2782 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (π‘Žπ‘€π‘) = if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))
1817fveq2d 6896 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (coe1β€˜(π‘Žπ‘€π‘)) = (coe1β€˜if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ))))
1918fveq1d 6894 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ ((coe1β€˜(π‘Žπ‘€π‘))β€˜πΏ) = ((coe1β€˜if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))β€˜πΏ))
20 fvif 6908 . . . . . 6 (coe1β€˜if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ))) = if(π‘Ž = 𝑏, (coe1β€˜π‘„), (coe1β€˜(0gβ€˜π‘ƒ)))
2120fveq1i 6893 . . . . 5 ((coe1β€˜if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))β€˜πΏ) = (if(π‘Ž = 𝑏, (coe1β€˜π‘„), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΏ)
22 iffv 6909 . . . . 5 (if(π‘Ž = 𝑏, (coe1β€˜π‘„), (coe1β€˜(0gβ€˜π‘ƒ)))β€˜πΏ) = if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ))
2321, 22eqtri 2758 . . . 4 ((coe1β€˜if(π‘Ž = 𝑏, 𝑄, (0gβ€˜π‘ƒ)))β€˜πΏ) = if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ))
2419, 23eqtrdi 2786 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ ((coe1β€˜(π‘Žπ‘€π‘))β€˜πΏ) = if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)))
2524oveq1d 7428 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (((coe1β€˜(π‘Žπ‘€π‘))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
26 ovif 7510 . . 3 (if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
27 eqid 2730 . . . . . . . . . . 11 (0gβ€˜π‘…) = (0gβ€˜π‘…)
283, 12, 27coe1z 22007 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
2928ad2antlr 723 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (coe1β€˜(0gβ€˜π‘ƒ)) = (β„•0 Γ— {(0gβ€˜π‘…)}))
3029fveq1d 6894 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ) = ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΏ))
31 fvexd 6907 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π‘…) ∈ V)
32 simpl 481 . . . . . . . . . 10 ((𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸) β†’ 𝐿 ∈ β„•0)
3331, 32anim12i 611 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((0gβ€˜π‘…) ∈ V ∧ 𝐿 ∈ β„•0))
34 fvconst2g 7206 . . . . . . . . 9 (((0gβ€˜π‘…) ∈ V ∧ 𝐿 ∈ β„•0) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΏ) = (0gβ€˜π‘…))
3533, 34syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((β„•0 Γ— {(0gβ€˜π‘…)})β€˜πΏ) = (0gβ€˜π‘…))
3630, 35eqtrd 2770 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ) = (0gβ€˜π‘…))
3736oveq1d 7428 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = ((0gβ€˜π‘…)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
383ply1lmod 21996 . . . . . . . . 9 (𝑅 ∈ Ring β†’ 𝑃 ∈ LMod)
3938ad2antlr 723 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ 𝑃 ∈ LMod)
40 eqid 2730 . . . . . . . . . . 11 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
4140, 11mgpbas 20036 . . . . . . . . . 10 𝐸 = (Baseβ€˜(mulGrpβ€˜π‘ƒ))
42 eqid 2730 . . . . . . . . . 10 (.gβ€˜(mulGrpβ€˜π‘ƒ)) = (.gβ€˜(mulGrpβ€˜π‘ƒ))
4340ringmgp 20135 . . . . . . . . . . 11 (𝑃 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
444, 43syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
45 0nn0 12493 . . . . . . . . . . 11 0 ∈ β„•0
4645a1i 11 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ 0 ∈ β„•0)
47 eqid 2730 . . . . . . . . . . 11 (var1β€˜π‘…) = (var1β€˜π‘…)
4847, 3, 11vr1cl 21962 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (var1β€˜π‘…) ∈ 𝐸)
4941, 42, 44, 46, 48mulgnn0cld 19013 . . . . . . . . 9 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ 𝐸)
5049ad2antlr 723 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ 𝐸)
51 eqid 2730 . . . . . . . . 9 (Scalarβ€˜π‘ƒ) = (Scalarβ€˜π‘ƒ)
52 eqid 2730 . . . . . . . . 9 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
53 eqid 2730 . . . . . . . . 9 (0gβ€˜(Scalarβ€˜π‘ƒ)) = (0gβ€˜(Scalarβ€˜π‘ƒ))
5411, 51, 52, 53, 12lmod0vs 20651 . . . . . . . 8 ((𝑃 ∈ LMod ∧ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) ∈ 𝐸) β†’ ((0gβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ))
5539, 50, 54syl2anc 582 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((0gβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ))
563ply1sca 21997 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
5756adantl 480 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
5857fveq2d 6896 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π‘…) = (0gβ€˜(Scalarβ€˜π‘ƒ)))
5958oveq1d 7428 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ ((0gβ€˜π‘…)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = ((0gβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
6059eqeq1d 2732 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (((0gβ€˜π‘…)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ) ↔ ((0gβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ)))
6160adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((0gβ€˜π‘…)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ) ↔ ((0gβ€˜(Scalarβ€˜π‘ƒ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ)))
6255, 61mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((0gβ€˜π‘…)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ))
6337, 62eqtrd 2770 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (0gβ€˜π‘ƒ))
6463ifeq2d 4549 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (0gβ€˜π‘ƒ)))
6564adantr 479 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))) = if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (0gβ€˜π‘ƒ)))
6626, 65eqtrid 2782 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (if(π‘Ž = 𝑏, ((coe1β€˜π‘„)β€˜πΏ), ((coe1β€˜(0gβ€˜π‘ƒ))β€˜πΏ))( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (0gβ€˜π‘ƒ)))
67 simpr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸))
6867ancomd 460 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (𝑄 ∈ 𝐸 ∧ 𝐿 ∈ β„•0))
69 eqid 2730 . . . . . . . . 9 (coe1β€˜π‘„) = (coe1β€˜π‘„)
70 pmatcollpwscmat.k . . . . . . . . 9 𝐾 = (Baseβ€˜π‘…)
7169, 11, 3, 70coe1fvalcl 21957 . . . . . . . 8 ((𝑄 ∈ 𝐸 ∧ 𝐿 ∈ β„•0) β†’ ((coe1β€˜π‘„)β€˜πΏ) ∈ 𝐾)
7268, 71syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((coe1β€˜π‘„)β€˜πΏ) ∈ 𝐾)
7356eqcomd 2736 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
7473adantl 480 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
7574fveq2d 6896 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜π‘…))
7675, 70eqtr4di 2788 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = 𝐾)
7776eleq2d 2817 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (((coe1β€˜π‘„)β€˜πΏ) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)) ↔ ((coe1β€˜π‘„)β€˜πΏ) ∈ 𝐾))
7877adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((coe1β€˜π‘„)β€˜πΏ) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)) ↔ ((coe1β€˜π‘„)β€˜πΏ) ∈ 𝐾))
7972, 78mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ ((coe1β€˜π‘„)β€˜πΏ) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)))
80 pmatcollpwscmat.u . . . . . . 7 π‘ˆ = (algScβ€˜π‘ƒ)
81 eqid 2730 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜(Scalarβ€˜π‘ƒ))
82 eqid 2730 . . . . . . 7 (1rβ€˜π‘ƒ) = (1rβ€˜π‘ƒ)
8380, 51, 81, 52, 82asclval 21655 . . . . . 6 (((coe1β€˜π‘„)β€˜πΏ) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)) β†’ (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)) = (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(1rβ€˜π‘ƒ)))
8479, 83syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)) = (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(1rβ€˜π‘ƒ)))
853, 47, 40, 42ply1idvr1 22039 . . . . . . . 8 (𝑅 ∈ Ring β†’ (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)) = (1rβ€˜π‘ƒ))
8685eqcomd 2736 . . . . . . 7 (𝑅 ∈ Ring β†’ (1rβ€˜π‘ƒ) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
8786ad2antlr 723 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (1rβ€˜π‘ƒ) = (0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…)))
8887oveq2d 7429 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(1rβ€˜π‘ƒ)) = (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))))
8984, 88eqtr2d 2771 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)))
9089ifeq1d 4548 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) β†’ if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (0gβ€˜π‘ƒ)) = if(π‘Ž = 𝑏, (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)), (0gβ€˜π‘ƒ)))
9190adantr 479 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ if(π‘Ž = 𝑏, (((coe1β€˜π‘„)β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))), (0gβ€˜π‘ƒ)) = if(π‘Ž = 𝑏, (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)), (0gβ€˜π‘ƒ)))
9225, 66, 913eqtrd 2774 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ β„•0 ∧ 𝑄 ∈ 𝐸)) ∧ (π‘Ž ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) β†’ (((coe1β€˜(π‘Žπ‘€π‘))β€˜πΏ)( ·𝑠 β€˜π‘ƒ)(0(.gβ€˜(mulGrpβ€˜π‘ƒ))(var1β€˜π‘…))) = if(π‘Ž = 𝑏, (π‘ˆβ€˜((coe1β€˜π‘„)β€˜πΏ)), (0gβ€˜π‘ƒ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  Vcvv 3472  ifcif 4529  {csn 4629   Γ— cxp 5675  β€˜cfv 6544  (class class class)co 7413  Fincfn 8943  0cc0 11114  β„•0cn0 12478  Basecbs 17150  Scalarcsca 17206   ·𝑠 cvsca 17207  0gc0g 17391  Mndcmnd 18661  .gcmg 18988  mulGrpcmgp 20030  1rcur 20077  Ringcrg 20129  LModclmod 20616  algSccascl 21628  var1cv1 21921  Poly1cpl1 21922  coe1cco1 21923   Mat cmat 22129   matToPolyMat cmat2pmat 22428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-oi 9509  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-3 12282  df-4 12283  df-5 12284  df-6 12285  df-7 12286  df-8 12287  df-9 12288  df-n0 12479  df-z 12565  df-dec 12684  df-uz 12829  df-fz 13491  df-fzo 13634  df-seq 13973  df-hash 14297  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-hom 17227  df-cco 17228  df-0g 17393  df-gsum 17394  df-prds 17399  df-pws 17401  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18707  df-submnd 18708  df-grp 18860  df-minusg 18861  df-sbg 18862  df-mulg 18989  df-subg 19041  df-ghm 19130  df-cntz 19224  df-cmn 19693  df-abl 19694  df-mgp 20031  df-rng 20049  df-ur 20078  df-ring 20131  df-subrng 20436  df-subrg 20461  df-lmod 20618  df-lss 20689  df-sra 20932  df-rgmod 20933  df-dsmm 21508  df-frlm 21523  df-ascl 21631  df-psr 21683  df-mvr 21684  df-mpl 21685  df-opsr 21687  df-psr1 21925  df-vr1 21926  df-ply1 21927  df-coe1 21928  df-mamu 22108  df-mat 22130
This theorem is referenced by:  pmatcollpwscmatlem2  22514
  Copyright terms: Public domain W3C validator