MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwscmatlem1 Structured version   Visualization version   GIF version

Theorem pmatcollpwscmatlem1 21938
Description: Lemma 1 for pmatcollpwscmat 21940. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpwscmat.p 𝑃 = (Poly1𝑅)
pmatcollpwscmat.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpwscmat.b 𝐵 = (Base‘𝐶)
pmatcollpwscmat.m1 = ( ·𝑠𝐶)
pmatcollpwscmat.e1 = (.g‘(mulGrp‘𝑃))
pmatcollpwscmat.x 𝑋 = (var1𝑅)
pmatcollpwscmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpwscmat.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpwscmat.d 𝐷 = (Base‘𝐴)
pmatcollpwscmat.u 𝑈 = (algSc‘𝑃)
pmatcollpwscmat.k 𝐾 = (Base‘𝑅)
pmatcollpwscmat.e2 𝐸 = (Base‘𝑃)
pmatcollpwscmat.s 𝑆 = (algSc‘𝑃)
pmatcollpwscmat.1 1 = (1r𝐶)
pmatcollpwscmat.m2 𝑀 = (𝑄 1 )
Assertion
Ref Expression
pmatcollpwscmatlem1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))

Proof of Theorem pmatcollpwscmatlem1
StepHypRef Expression
1 pmatcollpwscmat.m2 . . . . . . . 8 𝑀 = (𝑄 1 )
21oveqi 7288 . . . . . . 7 (𝑎𝑀𝑏) = (𝑎(𝑄 1 )𝑏)
3 pmatcollpwscmat.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
43ply1ring 21419 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
54anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
6 simpr 485 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝑄𝐸)
75, 6anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
8 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ↔ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ 𝑄𝐸))
97, 8sylibr 233 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸))
10 pmatcollpwscmat.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pmatcollpwscmat.e2 . . . . . . . . 9 𝐸 = (Base‘𝑃)
12 eqid 2738 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
13 pmatcollpwscmat.1 . . . . . . . . 9 1 = (1r𝐶)
14 pmatcollpwscmat.m1 . . . . . . . . 9 = ( ·𝑠𝐶)
1510, 11, 12, 13, 14scmatscmide 21656 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄𝐸) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
169, 15sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑄 1 )𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
172, 16eqtrid 2790 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) = if(𝑎 = 𝑏, 𝑄, (0g𝑃)))
1817fveq2d 6778 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (coe1‘(𝑎𝑀𝑏)) = (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))))
1918fveq1d 6776 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿))
20 fvif 6790 . . . . . 6 (coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃))) = if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))
2120fveq1i 6775 . . . . 5 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿)
22 iffv 6791 . . . . 5 (if(𝑎 = 𝑏, (coe1𝑄), (coe1‘(0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2321, 22eqtri 2766 . . . 4 ((coe1‘if(𝑎 = 𝑏, 𝑄, (0g𝑃)))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))
2419, 23eqtrdi 2794 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → ((coe1‘(𝑎𝑀𝑏))‘𝐿) = if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿)))
2524oveq1d 7290 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
26 ovif 7372 . . 3 (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
27 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
283, 12, 27coe1z 21434 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
2928ad2antlr 724 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
3029fveq1d 6776 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = ((ℕ0 × {(0g𝑅)})‘𝐿))
31 fvexd 6789 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) ∈ V)
32 simpl 483 . . . . . . . . . 10 ((𝐿 ∈ ℕ0𝑄𝐸) → 𝐿 ∈ ℕ0)
3331, 32anim12i 613 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0))
34 fvconst2g 7077 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐿 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3533, 34syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((ℕ0 × {(0g𝑅)})‘𝐿) = (0g𝑅))
3630, 35eqtrd 2778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1‘(0g𝑃))‘𝐿) = (0g𝑅))
3736oveq1d 7290 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
383ply1lmod 21423 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad2antlr 724 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → 𝑃 ∈ LMod)
40 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4140ringmgp 19789 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
424, 41syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
43 0nn0 12248 . . . . . . . . . . 11 0 ∈ ℕ0
4443a1i 11 . . . . . . . . . 10 (𝑅 ∈ Ring → 0 ∈ ℕ0)
45 eqid 2738 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
4645, 3, 11vr1cl 21388 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ 𝐸)
4740, 11mgpbas 19726 . . . . . . . . . . 11 𝐸 = (Base‘(mulGrp‘𝑃))
48 eqid 2738 . . . . . . . . . . 11 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4947, 48mulgnn0cl 18720 . . . . . . . . . 10 (((mulGrp‘𝑃) ∈ Mnd ∧ 0 ∈ ℕ0 ∧ (var1𝑅) ∈ 𝐸) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
5042, 44, 46, 49syl3anc 1370 . . . . . . . . 9 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
5150ad2antlr 724 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸)
52 eqid 2738 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
53 eqid 2738 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
54 eqid 2738 . . . . . . . . 9 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
5511, 52, 53, 54, 12lmod0vs 20156 . . . . . . . 8 ((𝑃 ∈ LMod ∧ (0(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝐸) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
5639, 51, 55syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
573ply1sca 21424 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5857adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5958fveq2d 6778 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
6059oveq1d 7290 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
6160eqeq1d 2740 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6261adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃) ↔ ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃)))
6356, 62mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((0g𝑅)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6437, 63eqtrd 2778 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
6564ifeq2d 4479 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6665adantr 481 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (((coe1‘(0g𝑃))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅)))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
6726, 66eqtrid 2790 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (if(𝑎 = 𝑏, ((coe1𝑄)‘𝐿), ((coe1‘(0g𝑃))‘𝐿))( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)))
68 simpr 485 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝐿 ∈ ℕ0𝑄𝐸))
6968ancomd 462 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑄𝐸𝐿 ∈ ℕ0))
70 eqid 2738 . . . . . . . . 9 (coe1𝑄) = (coe1𝑄)
71 pmatcollpwscmat.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
7270, 11, 3, 71coe1fvalcl 21383 . . . . . . . 8 ((𝑄𝐸𝐿 ∈ ℕ0) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7369, 72syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ 𝐾)
7457eqcomd 2744 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
7574adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
7675fveq2d 6778 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
7776, 71eqtr4di 2796 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = 𝐾)
7877eleq2d 2824 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
7978adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) ↔ ((coe1𝑄)‘𝐿) ∈ 𝐾))
8073, 79mpbird 256 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → ((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)))
81 pmatcollpwscmat.u . . . . . . 7 𝑈 = (algSc‘𝑃)
82 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
83 eqid 2738 . . . . . . 7 (1r𝑃) = (1r𝑃)
8481, 52, 82, 53, 83asclval 21084 . . . . . 6 (((coe1𝑄)‘𝐿) ∈ (Base‘(Scalar‘𝑃)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
8580, 84syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑈‘((coe1𝑄)‘𝐿)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)))
863, 45, 40, 48ply1idvr1 21464 . . . . . . . 8 (𝑅 ∈ Ring → (0(.g‘(mulGrp‘𝑃))(var1𝑅)) = (1r𝑃))
8786eqcomd 2744 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8887ad2antlr 724 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (1r𝑃) = (0(.g‘(mulGrp‘𝑃))(var1𝑅)))
8988oveq2d 7291 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(1r𝑃)) = (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))))
9085, 89eqtr2d 2779 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = (𝑈‘((coe1𝑄)‘𝐿)))
9190ifeq1d 4478 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9291adantr 481 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → if(𝑎 = 𝑏, (((coe1𝑄)‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))), (0g𝑃)) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
9325, 67, 923eqtrd 2782 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  {csn 4561   × cxp 5587  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  0cn0 12233  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Mndcmnd 18385  .gcmg 18700  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  LModclmod 20123  algSccascl 21059  var1cv1 21347  Poly1cpl1 21348  coe1cco1 21349   Mat cmat 21554   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mamu 21533  df-mat 21555
This theorem is referenced by:  pmatcollpwscmatlem2  21939
  Copyright terms: Public domain W3C validator