MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem Structured version   Visualization version   GIF version

Theorem lgsdilem 27307
Description: Lemma for lgsdi 27317 and lgsdir 27315: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 776 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ≠ 0)
21biantrud 530 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
3 0re 11253 . . . . . . . . . . 11 0 ∈ ℝ
4 simpl2 1189 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
54zred 12704 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
65adantr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
7 ltlen 11352 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
83, 6, 7sylancr 585 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
9 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
109zred 12704 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
1110adantr 479 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1211renegcld 11678 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
1312recnd 11279 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
1413mul01d 11450 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 0) = 0)
1511recnd 11279 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
166recnd 11279 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
1715, 16mulneg1d 11704 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
1814, 17breq12d 5162 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((-𝐴 · 0) < (-𝐴 · 𝐵) ↔ 0 < -(𝐴 · 𝐵)))
19 0red 11254 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
2010lt0neg1d 11820 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ↔ 0 < -𝐴))
2120biimpa 475 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 < -𝐴)
22 ltmul2 12103 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2319, 6, 12, 21, 22syl112anc 1371 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2410, 5remulcld 11281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
2524adantr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (𝐴 · 𝐵) ∈ ℝ)
2625lt0neg1d 11820 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2718, 23, 263bitr4d 310 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
282, 8, 273bitr2rd 307 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 ≤ 𝐵))
29 lenlt 11329 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
303, 6, 29sylancr 585 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3128, 30bitrd 278 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ ¬ 𝐵 < 0))
3231ifbid 4553 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if(¬ 𝐵 < 0, -1, 1))
33 oveq2 7427 . . . . . . . . . 10 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · -1))
34 neg1mulneg1e1 12463 . . . . . . . . . 10 (-1 · -1) = 1
3533, 34eqtrdi 2781 . . . . . . . . 9 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = 1)
36 oveq2 7427 . . . . . . . . . 10 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · 1))
37 ax-1cn 11203 . . . . . . . . . . 11 1 ∈ ℂ
3837mulm1i 11696 . . . . . . . . . 10 (-1 · 1) = -1
3936, 38eqtrdi 2781 . . . . . . . . 9 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = -1)
4035, 39ifsb 4543 . . . . . . . 8 (-1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, 1, -1)
41 ifnot 4582 . . . . . . . 8 if(¬ 𝐵 < 0, -1, 1) = if(𝐵 < 0, 1, -1)
4240, 41eqtr4i 2756 . . . . . . 7 (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1)
4332, 42eqtr4di 2783 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (-1 · if(𝐵 < 0, -1, 1)))
44 iftrue 4536 . . . . . . . 8 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
4544adantl 480 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
4645oveq1d 7434 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (-1 · if(𝐵 < 0, -1, 1)))
4743, 46eqtr4d 2768 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
48 iffalse 4539 . . . . . . . 8 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
4948adantl 480 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
5049oveq1d 7434 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (1 · if(𝐵 < 0, -1, 1)))
51 neg1cn 12364 . . . . . . . . 9 -1 ∈ ℂ
5251, 37ifcli 4577 . . . . . . . 8 if(𝐵 < 0, -1, 1) ∈ ℂ
5352mullidi 11256 . . . . . . 7 (1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, -1, 1)
545adantr 479 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℝ)
55 0red 11254 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
5610adantr 479 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
57 lenlt 11329 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
583, 10, 57sylancr 585 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
5958biimpar 476 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ≤ 𝐴)
60 simplrl 775 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ≠ 0)
6156, 59, 60ne0gt0d 11388 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
62 ltmul2 12103 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
6354, 55, 56, 61, 62syl112anc 1371 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
6456recnd 11279 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℂ)
6564mul01d 11450 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 · 0) = 0)
6665breq2d 5161 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 · 𝐵) < (𝐴 · 0) ↔ (𝐴 · 𝐵) < 0))
6763, 66bitrd 278 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < 0))
6867ifbid 4553 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) = if((𝐴 · 𝐵) < 0, -1, 1))
6953, 68eqtrid 2777 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (1 · if(𝐵 < 0, -1, 1)) = if((𝐴 · 𝐵) < 0, -1, 1))
7050, 69eqtr2d 2766 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
7147, 70pm2.61dan 811 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
7271adantr 479 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
73 simpr 483 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → 𝑁 < 0)
7473biantrurd 531 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → ((𝐴 · 𝐵) < 0 ↔ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0)))
7574ifbid 4553 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1))
7673biantrurd 531 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐴 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
7776ifbid 4553 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐴 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
7873biantrurd 531 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐵 < 0 ↔ (𝑁 < 0 ∧ 𝐵 < 0)))
7978ifbid 4553 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐵 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))
8077, 79oveq12d 7437 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8172, 75, 803eqtr3d 2773 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
82 simpr 483 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ 𝑁 < 0)
8382intnanrd 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0))
8483iffalsed 4541 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = 1)
85 1t1e1 12412 . . . 4 (1 · 1) = 1
8684, 85eqtr4di 2783 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (1 · 1))
8782intnanrd 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
8887iffalsed 4541 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
8982intnanrd 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐵 < 0))
9089iffalsed 4541 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) = 1)
9188, 90oveq12d 7437 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) = (1 · 1))
9286, 91eqtr4d 2768 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
9381, 92pm2.61dan 811 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  ifcif 4530   class class class wbr 5149  (class class class)co 7419  cc 11143  cr 11144  0cc0 11145  1c1 11146   · cmul 11150   < clt 11285  cle 11286  -cneg 11482  cz 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-z 12597
This theorem is referenced by:  lgsdir  27315  lgsdi  27317
  Copyright terms: Public domain W3C validator