Proof of Theorem lgsdilem
Step | Hyp | Ref
| Expression |
1 | | simplrr 774 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ≠ 0) |
2 | 1 | biantrud 531 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ (0 ≤ 𝐵 ∧ 𝐵 ≠ 0))) |
3 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
4 | | simpl2 1190 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ) |
5 | 4 | zred 12355 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ) |
6 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ) |
7 | | ltlen 11006 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵 ∧ 𝐵 ≠ 0))) |
8 | 3, 6, 7 | sylancr 586 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (0 ≤ 𝐵 ∧ 𝐵 ≠ 0))) |
9 | | simpl1 1189 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ) |
10 | 9 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ) |
11 | 10 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
12 | 11 | renegcld 11332 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
13 | 12 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ) |
14 | 13 | mul01d 11104 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 0) = 0) |
15 | 11 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ) |
16 | 6 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ) |
17 | 15, 16 | mulneg1d 11358 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
18 | 14, 17 | breq12d 5083 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((-𝐴 · 0) < (-𝐴 · 𝐵) ↔ 0 < -(𝐴 · 𝐵))) |
19 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 ∈
ℝ) |
20 | 10 | lt0neg1d 11474 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ↔ 0 < -𝐴)) |
21 | 20 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 < -𝐴) |
22 | | ltmul2 11756 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ ∧ (-𝐴
∈ ℝ ∧ 0 < -𝐴)) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵))) |
23 | 19, 6, 12, 21, 22 | syl112anc 1372 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵))) |
24 | 10, 5 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ) |
25 | 24 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
26 | 25 | lt0neg1d 11474 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
27 | 18, 23, 26 | 3bitr4d 310 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) |
28 | 2, 8, 27 | 3bitr2rd 307 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 ≤ 𝐵)) |
29 | | lenlt 10984 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0)) |
30 | 3, 6, 29 | sylancr 586 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0)) |
31 | 28, 30 | bitrd 278 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ ¬ 𝐵 < 0)) |
32 | 31 | ifbid 4479 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if(¬ 𝐵 < 0, -1,
1)) |
33 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (if(𝐵 < 0, -1, 1) = -1 → (-1
· if(𝐵 < 0, -1,
1)) = (-1 · -1)) |
34 | | neg1mulneg1e1 12116 |
. . . . . . . . . 10
⊢ (-1
· -1) = 1 |
35 | 33, 34 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (if(𝐵 < 0, -1, 1) = -1 → (-1
· if(𝐵 < 0, -1,
1)) = 1) |
36 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (if(𝐵 < 0, -1, 1) = 1 → (-1
· if(𝐵 < 0, -1,
1)) = (-1 · 1)) |
37 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
38 | 37 | mulm1i 11350 |
. . . . . . . . . 10
⊢ (-1
· 1) = -1 |
39 | 36, 38 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (if(𝐵 < 0, -1, 1) = 1 → (-1
· if(𝐵 < 0, -1,
1)) = -1) |
40 | 35, 39 | ifsb 4469 |
. . . . . . . 8
⊢ (-1
· if(𝐵 < 0, -1,
1)) = if(𝐵 < 0, 1,
-1) |
41 | | ifnot 4508 |
. . . . . . . 8
⊢ if(¬
𝐵 < 0, -1, 1) = if(𝐵 < 0, 1, -1) |
42 | 40, 41 | eqtr4i 2769 |
. . . . . . 7
⊢ (-1
· if(𝐵 < 0, -1,
1)) = if(¬ 𝐵 < 0,
-1, 1) |
43 | 32, 42 | eqtr4di 2797 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (-1 · if(𝐵 < 0, -1,
1))) |
44 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝐴 < 0 → if(𝐴 < 0, -1, 1) =
-1) |
45 | 44 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1) |
46 | 45 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (-1 ·
if(𝐵 < 0, -1,
1))) |
47 | 43, 46 | eqtr4d 2781 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1,
1))) |
48 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝐴 < 0 → if(𝐴 < 0, -1, 1) =
1) |
49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1) |
50 | 49 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (1 ·
if(𝐵 < 0, -1,
1))) |
51 | | neg1cn 12017 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
52 | 51, 37 | ifcli 4503 |
. . . . . . . 8
⊢ if(𝐵 < 0, -1, 1) ∈
ℂ |
53 | 52 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· if(𝐵 < 0, -1,
1)) = if(𝐵 < 0, -1,
1) |
54 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℝ) |
55 | | 0red 10909 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ∈
ℝ) |
56 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ) |
57 | | lenlt 10984 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
58 | 3, 10, 57 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
59 | 58 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ≤ 𝐴) |
60 | | simplrl 773 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ≠ 0) |
61 | 56, 59, 60 | ne0gt0d 11042 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 < 𝐴) |
62 | | ltmul2 11756 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ ∧ (𝐴 ∈
ℝ ∧ 0 < 𝐴))
→ (𝐵 < 0 ↔
(𝐴 · 𝐵) < (𝐴 · 0))) |
63 | 54, 55, 56, 61, 62 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0))) |
64 | 56 | recnd 10934 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℂ) |
65 | 64 | mul01d 11104 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 · 0) = 0) |
66 | 65 | breq2d 5082 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 · 𝐵) < (𝐴 · 0) ↔ (𝐴 · 𝐵) < 0)) |
67 | 63, 66 | bitrd 278 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < 0)) |
68 | 67 | ifbid 4479 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) = if((𝐴 · 𝐵) < 0, -1, 1)) |
69 | 53, 68 | syl5eq 2791 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (1 · if(𝐵 < 0, -1, 1)) = if((𝐴 · 𝐵) < 0, -1, 1)) |
70 | 50, 69 | eqtr2d 2779 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1,
1))) |
71 | 47, 70 | pm2.61dan 809 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1,
1))) |
72 | 71 | adantr 480 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1,
1))) |
73 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → 𝑁 < 0) |
74 | 73 | biantrurd 532 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → ((𝐴 · 𝐵) < 0 ↔ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0))) |
75 | 74 | ifbid 4479 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1)) |
76 | 73 | biantrurd 532 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐴 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0))) |
77 | 76 | ifbid 4479 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐴 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
78 | 73 | biantrurd 532 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐵 < 0 ↔ (𝑁 < 0 ∧ 𝐵 < 0))) |
79 | 78 | ifbid 4479 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐵 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) |
80 | 77, 79 | oveq12d 7273 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |
81 | 72, 75, 80 | 3eqtr3d 2786 |
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |
82 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ 𝑁 < 0) |
83 | 82 | intnanrd 489 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0)) |
84 | 83 | iffalsed 4467 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = 1) |
85 | | 1t1e1 12065 |
. . . 4
⊢ (1
· 1) = 1 |
86 | 84, 85 | eqtr4di 2797 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (1 ·
1)) |
87 | 82 | intnanrd 489 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
88 | 87 | iffalsed 4467 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
89 | 82 | intnanrd 489 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐵 < 0)) |
90 | 89 | iffalsed 4467 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) = 1) |
91 | 88, 90 | oveq12d 7273 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) = (1 ·
1)) |
92 | 86, 91 | eqtr4d 2781 |
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |
93 | 81, 92 | pm2.61dan 809 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |