MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrlim Structured version   Visualization version   GIF version

Theorem efrlim 25233
Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 25234). (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
efrlim.1 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
Assertion
Ref Expression
efrlim (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem efrlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12698 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
2 ax-resscn 10447 . . . . . . . 8 ℝ ⊆ ℂ
31, 2sstri 3904 . . . . . . 7 (0[,)+∞) ⊆ ℂ
43sseli 3891 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝐴 ∈ ℂ)
6 1cnd 10489 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ∈ ℂ)
7 simplr 765 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
8 ax-1ne0 10459 . . . . . . . . . . . 12 1 ≠ 0
98a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ≠ 0)
10 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ¬ 𝑥 = 0)
1110neqned 2993 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ≠ 0)
125, 6, 7, 9, 11divdiv2d 11302 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = ((𝐴 · 𝑥) / 1))
13 mulcl 10474 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
1413adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) ∈ ℂ)
1514div1d 11262 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((𝐴 · 𝑥) / 1) = (𝐴 · 𝑥))
1612, 15eqtrd 2833 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = (𝐴 · 𝑥))
1716oveq2d 7039 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 / (1 / 𝑥))) = (1 + (𝐴 · 𝑥)))
1817oveq1d 7038 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
1918ifeq2da 4418 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
204, 19sylan2 592 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (0[,)+∞)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2120mpteq2dva 5062 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
22 resmpt 5793 . . . . 5 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
233, 22ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2421, 23syl6eqr 2851 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)))
25 0e0icopnf 12700 . . . . 5 0 ∈ (0[,)+∞)
2625a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ (0[,)+∞))
27 eqeq2 2808 . . . . . . . . 9 ((exp‘(𝐴 · 1)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
28 eqeq2 2808 . . . . . . . . 9 ((exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
29 efrlim.1 . . . . . . . . . . . . . 14 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
30 cnxmet 23068 . . . . . . . . . . . . . . 15 (abs ∘ − ) ∈ (∞Met‘ℂ)
31 0cnd 10487 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
32 abscl 14476 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
33 peano2re 10666 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ)
35 0red 10497 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ∈ ℝ)
36 absge0 14485 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
3732ltp1d 11424 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) < ((abs‘𝐴) + 1))
3835, 32, 34, 36, 37lelttrd 10651 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → 0 < ((abs‘𝐴) + 1))
3934, 38elrpd 12282 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ+)
4039rpreccld 12295 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ+)
4140rpxrd 12286 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
42 blssm 22715 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4330, 31, 41, 42mp3an2i 1458 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4429, 43eqsstrid 3942 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → 𝑆 ⊆ ℂ)
4544sselda 3895 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
46 mul0or 11134 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4745, 46syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4847biimpa 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → (𝐴 = 0 ∨ 𝑥 = 0))
497, 11reccld 11263 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5045, 49syldanl 601 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5150adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
52511cxpd 24975 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1↑𝑐(1 / 𝑥)) = 1)
53 simplr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝐴 = 0)
5453oveq1d 7038 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = (0 · 𝑥))
5545ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
5655mul02d 10691 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (0 · 𝑥) = 0)
5754, 56eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = 0)
5857oveq2d 7039 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = (1 + 0))
59 1p0e1 11615 . . . . . . . . . . . . . . . . 17 (1 + 0) = 1
6058, 59syl6eq 2849 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = 1)
6160oveq1d 7038 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (1↑𝑐(1 / 𝑥)))
6253fveq2d 6549 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = (exp‘0))
63 ef0 15281 . . . . . . . . . . . . . . . 16 (exp‘0) = 1
6462, 63syl6eq 2849 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = 1)
6552, 61, 643eqtr4d 2843 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘𝐴))
6665ifeq2da 4418 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)))
67 ifid 4426 . . . . . . . . . . . . 13 if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)) = (exp‘𝐴)
6866, 67syl6eq 2849 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
69 iftrue 4393 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7069adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝑥 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7168, 70jaodan 952 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
72 mulid1 10492 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
7372ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (𝐴 · 1) = 𝐴)
7473fveq2d 6549 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (exp‘(𝐴 · 1)) = (exp‘𝐴))
7571, 74eqtr4d 2836 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
7648, 75syldan 591 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
77 mulne0b 11135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
7845, 77syldan 591 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
79 df-ne 2987 . . . . . . . . . . . 12 ((𝐴 · 𝑥) ≠ 0 ↔ ¬ (𝐴 · 𝑥) = 0)
8078, 79syl6bb 288 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ ¬ (𝐴 · 𝑥) = 0))
81 simprr 769 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ≠ 0)
8281neneqd 2991 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ¬ 𝑥 = 0)
8382iffalsed 4398 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
84 ax-1cn 10448 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
8545, 13syldan 591 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 · 𝑥) ∈ ℂ)
86 addcl 10472 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
8784, 85, 86sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
8887adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
89 eqid 2797 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
9089dvlog2lem 24920 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
91 eqid 2797 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
9291logdmss 24910 . . . . . . . . . . . . . . . . . 18 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
9390, 92sstri 3904 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
94 eqid 2797 . . . . . . . . . . . . . . . . . . . . . 22 (abs ∘ − ) = (abs ∘ − )
9594cnmetdval 23066 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴 · 𝑥)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
9687, 84, 95sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
97 pncan2 10746 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
9884, 85, 97sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
9998fveq2d 6549 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘((1 + (𝐴 · 𝑥)) − 1)) = (abs‘(𝐴 · 𝑥)))
10096, 99eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘(𝐴 · 𝑥)))
10185abscld 14634 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ∈ ℝ)
10234adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
10345abscld 14634 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) ∈ ℝ)
104102, 103remulcld 10524 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) ∈ ℝ)
105 1red 10495 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ)
106 absmul 14492 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
10745, 106syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
10832adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ∈ ℝ)
109108, 33syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
11045absge0d 14642 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ≤ (abs‘𝑥))
111108lep1d 11425 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
112108, 109, 103, 110, 111lemul1ad 11433 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) · (abs‘𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
113107, 112eqbrtrd 4990 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
114 0cn 10486 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
11594cnmetdval 23066 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
11645, 114, 115sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
11745subid1d 10840 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 − 0) = 𝑥)
118117fveq2d 6549 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
119116, 118eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘𝑥))
120 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥𝑆)
121120, 29syl6eleq 2895 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
12230a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
12341adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
124 0cnd 10487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ∈ ℂ)
125 elbl3 22689 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
126122, 123, 124, 45, 125syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
127121, 126mpbid 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1)))
128119, 127eqbrtrrd 4992 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) < (1 / ((abs‘𝐴) + 1)))
12938adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 < ((abs‘𝐴) + 1))
130 ltmuldiv2 11368 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((abs‘𝐴) + 1) ∈ ℝ ∧ 0 < ((abs‘𝐴) + 1))) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
131103, 105, 109, 129, 130syl112anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
132128, 131mpbird 258 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) < 1)
133101, 104, 105, 113, 132lelttrd 10651 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) < 1)
134100, 133eqbrtrd 4990 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1)
135 1rp 12247 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
136 rpxr 12252 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ+ → 1 ∈ ℝ*)
137135, 136mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ*)
138 1cnd 10489 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℂ)
139 elbl3 22689 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + (𝐴 · 𝑥)) ∈ ℂ)) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
140122, 137, 138, 87, 139syl22anc 835 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
141134, 140mpbird 258 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1))
14293, 141sseldi 3893 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}))
143 eldifsni 4635 . . . . . . . . . . . . . . . 16 ((1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}) → (1 + (𝐴 · 𝑥)) ≠ 0)
144142, 143syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ≠ 0)
145144adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ≠ 0)
14645adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ∈ ℂ)
147146, 81reccld 11263 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
14888, 145, 147cxpefd 24980 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))))
14987, 144logcld 24839 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
150149adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
151147, 150mulcomd 10515 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)))
152 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ∈ ℂ)
153 simprl 767 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ≠ 0)
154152, 153dividd 11268 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 / 𝐴) = 1)
155154oveq1d 7038 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (1 / 𝑥))
156152, 152, 146, 153, 81divdiv1d 11301 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
157155, 156eqtr3d 2835 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
158157oveq2d 7039 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)) = ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))))
15985adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ∈ ℂ)
16078biimpa 477 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ≠ 0)
161150, 152, 159, 160div12d 11306 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
162151, 158, 1613eqtrd 2837 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
163162fveq2d 6549 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16483, 148, 1633eqtrd 2837 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
165164ex 413 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
16680, 165sylbird 261 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (¬ (𝐴 · 𝑥) = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
167166imp 407 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16827, 28, 76, 167ifbothda 4424 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
169168mpteq2dva 5062 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
17044resmptd 5796 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
171 1cnd 10489 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → 1 ∈ ℂ)
172149adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
17385adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ∈ ℂ)
174 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ¬ (𝐴 · 𝑥) = 0)
175174neqned 2993 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ≠ 0)
176172, 173, 175divcld 11270 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) ∈ ℂ)
177171, 176ifclda 4421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) ∈ ℂ)
178 eqidd 2798 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
179 eqidd 2798 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))))
180 oveq2 7031 . . . . . . . . . 10 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (𝐴 · 𝑦) = (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
181180fveq2d 6549 . . . . . . . . 9 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
182 oveq2 7031 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · 1))
183182fveq2d 6549 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · 1)))
184 oveq2 7031 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
185184fveq2d 6549 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
186183, 185ifsb 4400 . . . . . . . . 9 (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
187181, 186syl6eq 2849 . . . . . . . 8 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
188177, 178, 179, 187fmptco 6761 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
189169, 170, 1883eqtr4d 2843 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
190 eqidd 2798 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))))
191 eqidd 2798 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))))
192 eqeq1 2801 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 = 1 ↔ (1 + (𝐴 · 𝑥)) = 1))
193 fveq2 6545 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (log‘𝑦) = (log‘(1 + (𝐴 · 𝑥))))
194 oveq1 7030 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 − 1) = ((1 + (𝐴 · 𝑥)) − 1))
195193, 194oveq12d 7041 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → ((log‘𝑦) / (𝑦 − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))
196192, 195ifbieq2d 4412 . . . . . . . . . 10 (𝑦 = (1 + (𝐴 · 𝑥)) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))))
197141, 190, 191, 196fmptco 6761 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))))
19859eqeq2i 2809 . . . . . . . . . . . 12 ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (1 + (𝐴 · 𝑥)) = 1)
199138, 85, 124addcand 10696 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (𝐴 · 𝑥) = 0))
200198, 199syl5bbr 286 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = 1 ↔ (𝐴 · 𝑥) = 0))
20198oveq2d 7039 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))
202200, 201ifbieq2d 4412 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
203202mpteq2dva 5062 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
204197, 203eqtrd 2833 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
205 eqid 2797 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
206 eqid 2797 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
207206cnfldtopon 23078 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
208207a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
209 1cnd 10489 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 1 ∈ ℂ)
210208, 208, 209cnmptc 21958 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
211 id 22 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
212208, 208, 211cnmptc 21958 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
213208cnmptid 21957 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
214206mulcn 23162 . . . . . . . . . . . . . . 15 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
215214a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
216208, 212, 213, 215cnmpt12f 21962 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
217206addcn 23160 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
218217a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
219208, 210, 216, 218cnmpt12f 21962 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (1 + (𝐴 · 𝑥))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
220205, 208, 44, 219cnmpt1res 21972 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
221141fmpttd 6749 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1))
222221frnd 6396 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
223 difss 4035 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) ⊆ ℂ
22493, 223sstri 3904 . . . . . . . . . . . . 13 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
225224a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
226 cnrest2 21582 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1) ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
227207, 222, 225, 226mp3an2i 1458 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
228220, 227mpbid 233 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))))
229 blcntr 22710 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
23030, 31, 40, 229mp3an2i 1458 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
231230, 29syl6eleqr 2896 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ∈ 𝑆)
232 resttopon 21457 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
233207, 44, 232sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
234 toponuni 21210 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
235233, 234syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
236231, 235eleqtrd 2887 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
237 eqid 2797 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
238237cncnpi 21574 . . . . . . . . . 10 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))) ∧ 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
239228, 236, 238syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
240 cnelprrecn 10483 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
241 logf1o 24833 . . . . . . . . . . . . . 14 log:(ℂ ∖ {0})–1-1-onto→ran log
242 f1of 6490 . . . . . . . . . . . . . 14 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
243241, 242ax-mp 5 . . . . . . . . . . . . 13 log:(ℂ ∖ {0})⟶ran log
244 logrncn 24831 . . . . . . . . . . . . . 14 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
245244ssriv 3899 . . . . . . . . . . . . 13 ran log ⊆ ℂ
246 fss 6402 . . . . . . . . . . . . 13 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
247243, 245, 246mp2an 688 . . . . . . . . . . . 12 log:(ℂ ∖ {0})⟶ℂ
248 fssres 6419 . . . . . . . . . . . 12 ((log:(ℂ ∖ {0})⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ)
249247, 93, 248mp2an 688 . . . . . . . . . . 11 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ
250 blcntr 22710 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ+) → 1 ∈ (1(ball‘(abs ∘ − ))1))
25130, 84, 135, 250mp3an 1453 . . . . . . . . . . . . 13 1 ∈ (1(ball‘(abs ∘ − ))1)
252 ovex 7055 . . . . . . . . . . . . . 14 (1 / 𝑦) ∈ V
25389dvlog2 24921 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
254252, 253dmmpti 6367 . . . . . . . . . . . . 13 dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (1(ball‘(abs ∘ − ))1)
255251, 254eleqtrri 2884 . . . . . . . . . . . 12 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))
256 eqid 2797 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) = ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))
257253fveq1i 6546 . . . . . . . . . . . . . . . . 17 ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1) = ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1)
258 oveq2 7031 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (1 / 𝑦) = (1 / 1))
259 1div1e1 11184 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
260258, 259syl6eq 2849 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (1 / 𝑦) = 1)
261 eqid 2797 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
262 1ex 10490 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
263260, 261, 262fvmpt 6642 . . . . . . . . . . . . . . . . . 18 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1)
264251, 263ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1
265257, 264eqtr2i 2822 . . . . . . . . . . . . . . . 16 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1)
266265a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1))
267 fvres 6564 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) = (log‘𝑦))
268 fvres 6564 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
269251, 268mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
270 log1 24854 . . . . . . . . . . . . . . . . . . 19 (log‘1) = 0
271269, 270syl6eq 2849 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = 0)
272267, 271oveq12d 7041 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) = ((log‘𝑦) − 0))
27393sseli 3891 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 𝑦 ∈ (ℂ ∖ {0}))
274 eldifsn 4632 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
275273, 274sylib 219 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
276 logcl 24837 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ)
277275, 276syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) ∈ ℂ)
278277subid1d 10840 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) − 0) = (log‘𝑦))
279272, 278eqtr2d 2834 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) = (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)))
280279oveq1d 7038 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) / (𝑦 − 1)) = ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1)))
281266, 280ifeq12d 4407 . . . . . . . . . . . . . 14 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
282281mpteq2ia 5058 . . . . . . . . . . . . 13 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
283256, 206, 282dvcnp 24203 . . . . . . . . . . . 12 (((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) ∧ 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
284255, 283mpan2 687 . . . . . . . . . . 11 ((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
285240, 249, 224, 284mp3an 1453 . . . . . . . . . 10 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1)
286 oveq2 7031 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
287286oveq2d 7039 . . . . . . . . . . . . . 14 (𝑥 = 0 → (1 + (𝐴 · 𝑥)) = (1 + (𝐴 · 0)))
288 eqid 2797 . . . . . . . . . . . . . 14 (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))
289 ovex 7055 . . . . . . . . . . . . . 14 (1 + (𝐴 · 0)) ∈ V
290287, 288, 289fvmpt 6642 . . . . . . . . . . . . 13 (0 ∈ 𝑆 → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
291231, 290syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
292 mul01 10672 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
293292oveq2d 7039 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
294293, 59syl6eq 2849 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
295291, 294eqtrd 2833 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = 1)
296295fveq2d 6549 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)) = ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
297285, 296syl5eleqr 2892 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)))
298 cnpco 21563 . . . . . . . . 9 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0) ∧ (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
299239, 297, 298syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
300204, 299eqeltrrd 2886 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
301208, 208, 211cnmptc 21958 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
302208cnmptid 21957 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
303208, 301, 302, 215cnmpt12f 21962 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
304 efcn 24718 . . . . . . . . . . 11 exp ∈ (ℂ–cn→ℂ)
305206cncfcn1 23205 . . . . . . . . . . 11 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
306304, 305eleqtri 2883 . . . . . . . . . 10 exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
307306a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
308208, 303, 307cnmpt11f 21960 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
309177fmpttd 6749 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))):𝑆⟶ℂ)
310309, 231ffvelrnd 6724 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ)
311 unicntop 23081 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
312311cncnpi 21574 . . . . . . . 8 (((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ) → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
313308, 310, 312syl2anc 584 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
314 cnpco 21563 . . . . . . 7 (((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0) ∧ (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
315300, 313, 314syl2anc 584 . . . . . 6 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
316189, 315eqeltrd 2885 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
317206cnfldtop 23079 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
318317a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ Top)
319206cnfldtopn 23077 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
320319blopn 22797 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32130, 31, 41, 320mp3an2i 1458 . . . . . . . . 9 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32229, 321syl5eqel 2889 . . . . . . . 8 (𝐴 ∈ ℂ → 𝑆 ∈ (TopOpen‘ℂfld))
323 isopn3i 21378 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
324317, 322, 323sylancr 587 . . . . . . 7 (𝐴 ∈ ℂ → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
325231, 324eleqtrrd 2888 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆))
326 efcl 15273 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
327326ad2antrr 722 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑥 = 0) → (exp‘𝐴) ∈ ℂ)
32884, 14, 86sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
329328, 49cxpcld 24976 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) ∈ ℂ)
330327, 329ifclda 4421 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) ∈ ℂ)
331330fmpttd 6749 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)
332311, 311cnprest 21585 . . . . . 6 ((((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) ∧ (0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
333318, 44, 325, 331, 332syl22anc 835 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
334316, 333mpbird 258 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0))
335311cnpresti 21584 . . . 4 (((0[,)+∞) ⊆ ℂ ∧ 0 ∈ (0[,)+∞) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
3363, 26, 334, 335mp3an2i 1458 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
33724, 336eqeltrd 2885 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
338 simpl 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝐴 ∈ ℂ)
339 rpcn 12253 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ∈ ℂ)
340339adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ∈ ℂ)
341 rpne0 12259 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ≠ 0)
342341adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ≠ 0)
343338, 340, 342divcld 11270 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (𝐴 / 𝑘) ∈ ℂ)
344 addcl 10472 . . . . 5 ((1 ∈ ℂ ∧ (𝐴 / 𝑘) ∈ ℂ) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
34584, 343, 344sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
346345, 340cxpcld 24976 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) ∈ ℂ)
347 oveq2 7031 . . . . 5 (𝑘 = (1 / 𝑥) → (𝐴 / 𝑘) = (𝐴 / (1 / 𝑥)))
348347oveq2d 7039 . . . 4 (𝑘 = (1 / 𝑥) → (1 + (𝐴 / 𝑘)) = (1 + (𝐴 / (1 / 𝑥))))
349 id 22 . . . 4 (𝑘 = (1 / 𝑥) → 𝑘 = (1 / 𝑥))
350348, 349oveq12d 7041 . . 3 (𝑘 = (1 / 𝑥) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) = ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))
351 eqid 2797 . . 3 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
352326, 346, 350, 206, 351rlimcnp3 25231 . 2 (𝐴 ∈ ℂ → ((𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0)))
353337, 352mpbird 258 1 (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1525  wcel 2083  wne 2986  cdif 3862  wss 3865  ifcif 4387  {csn 4478  {cpr 4480   cuni 4751   class class class wbr 4968  cmpt 5047  dom cdm 5450  ran crn 5451  cres 5452  ccom 5454  wf 6228  1-1-ontowf1o 6231  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  +∞cpnf 10525  -∞cmnf 10526  *cxr 10527   < clt 10528  cle 10529  cmin 10723   / cdiv 11151  +crp 12243  (,]cioc 12593  [,)cico 12594  abscabs 14431  𝑟 crli 14680  expce 15252  t crest 16527  TopOpenctopn 16528  ∞Metcxmet 20216  ballcbl 20218  fldccnfld 20231  Topctop 21189  TopOnctopon 21206  intcnt 21313   Cn ccn 21520   CnP ccnp 21521   ×t ctx 21856  cnccncf 23171   D cdv 24148  logclog 24823  𝑐ccxp 24824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-tan 15262  df-pi 15263  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-cmp 21683  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-log 24825  df-cxp 24826
This theorem is referenced by:  dfef2  25234
  Copyright terms: Public domain W3C validator