MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrlim Structured version   Visualization version   GIF version

Theorem efrlim 26815
Description: The limit of the sequence (1 + 𝐴 / π‘˜)β†‘π‘˜ is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 26816). (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
efrlim.1 𝑆 = (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1)))
Assertion
Ref Expression
efrlim (𝐴 ∈ β„‚ β†’ (π‘˜ ∈ ℝ+ ↦ ((1 + (𝐴 / π‘˜))β†‘π‘π‘˜)) β‡π‘Ÿ (expβ€˜π΄))
Distinct variable group:   𝐴,π‘˜
Allowed substitution hint:   𝑆(π‘˜)

Proof of Theorem efrlim
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13440 . . . . . . . 8 (0[,)+∞) βŠ† ℝ
2 ax-resscn 11173 . . . . . . . 8 ℝ βŠ† β„‚
31, 2sstri 3991 . . . . . . 7 (0[,)+∞) βŠ† β„‚
43sseli 3978 . . . . . 6 (π‘₯ ∈ (0[,)+∞) β†’ π‘₯ ∈ β„‚)
5 simpll 764 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ 𝐴 ∈ β„‚)
6 1cnd 11216 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ 1 ∈ β„‚)
7 simplr 766 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ π‘₯ ∈ β„‚)
8 ax-1ne0 11185 . . . . . . . . . . . 12 1 β‰  0
98a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ 1 β‰  0)
10 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ Β¬ π‘₯ = 0)
1110neqned 2946 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ π‘₯ β‰  0)
125, 6, 7, 9, 11divdiv2d 12029 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (𝐴 / (1 / π‘₯)) = ((𝐴 Β· π‘₯) / 1))
13 mulcl 11200 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (𝐴 Β· π‘₯) ∈ β„‚)
1413adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (𝐴 Β· π‘₯) ∈ β„‚)
1514div1d 11989 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ ((𝐴 Β· π‘₯) / 1) = (𝐴 Β· π‘₯))
1612, 15eqtrd 2771 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (𝐴 / (1 / π‘₯)) = (𝐴 Β· π‘₯))
1716oveq2d 7428 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (1 + (𝐴 / (1 / π‘₯))) = (1 + (𝐴 Β· π‘₯)))
1817oveq1d 7427 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)) = ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))
1918ifeq2da 4560 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯))) = if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))))
204, 19sylan2 592 . . . . 5 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ (0[,)+∞)) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯))) = if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))))
2120mpteq2dva 5248 . . . 4 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)))) = (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))))
22 resmpt 6037 . . . . 5 ((0[,)+∞) βŠ† β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ (0[,)+∞)) = (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))))
233, 22ax-mp 5 . . . 4 ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ (0[,)+∞)) = (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))))
2421, 23eqtr4di 2789 . . 3 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)))) = ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ (0[,)+∞)))
25 0e0icopnf 13442 . . . . 5 0 ∈ (0[,)+∞)
2625a1i 11 . . . 4 (𝐴 ∈ β„‚ β†’ 0 ∈ (0[,)+∞))
27 eqeq2 2743 . . . . . . . . 9 ((expβ€˜(𝐴 Β· 1)) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) β†’ (if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· 1)) ↔ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))))
28 eqeq2 2743 . . . . . . . . 9 ((expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) β†’ (if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) ↔ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))))
29 efrlim.1 . . . . . . . . . . . . . 14 𝑆 = (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1)))
30 cnxmet 24609 . . . . . . . . . . . . . . 15 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
31 0cnd 11214 . . . . . . . . . . . . . . 15 (𝐴 ∈ β„‚ β†’ 0 ∈ β„‚)
32 abscl 15232 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ β„‚ β†’ (absβ€˜π΄) ∈ ℝ)
33 peano2re 11394 . . . . . . . . . . . . . . . . . . 19 ((absβ€˜π΄) ∈ ℝ β†’ ((absβ€˜π΄) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ β„‚ β†’ ((absβ€˜π΄) + 1) ∈ ℝ)
35 0red 11224 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ β„‚ β†’ 0 ∈ ℝ)
36 absge0 15241 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ β„‚ β†’ 0 ≀ (absβ€˜π΄))
3732ltp1d 12151 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ β„‚ β†’ (absβ€˜π΄) < ((absβ€˜π΄) + 1))
3835, 32, 34, 36, 37lelttrd 11379 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ β„‚ β†’ 0 < ((absβ€˜π΄) + 1))
3934, 38elrpd 13020 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ β„‚ β†’ ((absβ€˜π΄) + 1) ∈ ℝ+)
4039rpreccld 13033 . . . . . . . . . . . . . . . 16 (𝐴 ∈ β„‚ β†’ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ+)
4140rpxrd 13024 . . . . . . . . . . . . . . 15 (𝐴 ∈ β„‚ β†’ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ*)
42 blssm 24244 . . . . . . . . . . . . . . 15 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) βŠ† β„‚)
4330, 31, 41, 42mp3an2i 1465 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) βŠ† β„‚)
4429, 43eqsstrid 4030 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ 𝑆 βŠ† β„‚)
4544sselda 3982 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ β„‚)
46 mul0or 11861 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ ((𝐴 Β· π‘₯) = 0 ↔ (𝐴 = 0 ∨ π‘₯ = 0)))
4745, 46syldan 590 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((𝐴 Β· π‘₯) = 0 ↔ (𝐴 = 0 ∨ π‘₯ = 0)))
4847biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 Β· π‘₯) = 0) β†’ (𝐴 = 0 ∨ π‘₯ = 0))
497, 11reccld 11990 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (1 / π‘₯) ∈ β„‚)
5045, 49syldanl 601 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ π‘₯ = 0) β†’ (1 / π‘₯) ∈ β„‚)
5150adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (1 / π‘₯) ∈ β„‚)
52511cxpd 26555 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (1↑𝑐(1 / π‘₯)) = 1)
53 simplr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ 𝐴 = 0)
5453oveq1d 7427 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (𝐴 Β· π‘₯) = (0 Β· π‘₯))
5545ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ π‘₯ ∈ β„‚)
5655mul02d 11419 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (0 Β· π‘₯) = 0)
5754, 56eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (𝐴 Β· π‘₯) = 0)
5857oveq2d 7428 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (1 + (𝐴 Β· π‘₯)) = (1 + 0))
59 1p0e1 12343 . . . . . . . . . . . . . . . . 17 (1 + 0) = 1
6058, 59eqtrdi 2787 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (1 + (𝐴 Β· π‘₯)) = 1)
6160oveq1d 7427 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)) = (1↑𝑐(1 / π‘₯)))
6253fveq2d 6895 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (expβ€˜π΄) = (expβ€˜0))
63 ef0 16041 . . . . . . . . . . . . . . . 16 (expβ€˜0) = 1
6462, 63eqtrdi 2787 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ (expβ€˜π΄) = 1)
6552, 61, 643eqtr4d 2781 . . . . . . . . . . . . . 14 ((((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) ∧ Β¬ π‘₯ = 0) β†’ ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)) = (expβ€˜π΄))
6665ifeq2da 4560 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = if(π‘₯ = 0, (expβ€˜π΄), (expβ€˜π΄)))
67 ifid 4568 . . . . . . . . . . . . 13 if(π‘₯ = 0, (expβ€˜π΄), (expβ€˜π΄)) = (expβ€˜π΄)
6866, 67eqtrdi 2787 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ 𝐴 = 0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜π΄))
69 iftrue 4534 . . . . . . . . . . . . 13 (π‘₯ = 0 β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜π΄))
7069adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ π‘₯ = 0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜π΄))
7168, 70jaodan 955 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 = 0 ∨ π‘₯ = 0)) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜π΄))
72 mulrid 11219 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ (𝐴 Β· 1) = 𝐴)
7372ad2antrr 723 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 = 0 ∨ π‘₯ = 0)) β†’ (𝐴 Β· 1) = 𝐴)
7473fveq2d 6895 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 = 0 ∨ π‘₯ = 0)) β†’ (expβ€˜(𝐴 Β· 1)) = (expβ€˜π΄))
7571, 74eqtr4d 2774 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 = 0 ∨ π‘₯ = 0)) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· 1)))
7648, 75syldan 590 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 Β· π‘₯) = 0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· 1)))
77 mulne0b 11862 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ ((𝐴 β‰  0 ∧ π‘₯ β‰  0) ↔ (𝐴 Β· π‘₯) β‰  0))
7845, 77syldan 590 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((𝐴 β‰  0 ∧ π‘₯ β‰  0) ↔ (𝐴 Β· π‘₯) β‰  0))
79 df-ne 2940 . . . . . . . . . . . 12 ((𝐴 Β· π‘₯) β‰  0 ↔ Β¬ (𝐴 Β· π‘₯) = 0)
8078, 79bitrdi 287 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((𝐴 β‰  0 ∧ π‘₯ β‰  0) ↔ Β¬ (𝐴 Β· π‘₯) = 0))
81 simprr 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ π‘₯ β‰  0)
8281neneqd 2944 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ Β¬ π‘₯ = 0)
8382iffalsed 4539 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))
84 ax-1cn 11174 . . . . . . . . . . . . . . . 16 1 ∈ β„‚
8545, 13syldan 590 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (𝐴 Β· π‘₯) ∈ β„‚)
86 addcl 11198 . . . . . . . . . . . . . . . 16 ((1 ∈ β„‚ ∧ (𝐴 Β· π‘₯) ∈ β„‚) β†’ (1 + (𝐴 Β· π‘₯)) ∈ β„‚)
8784, 85, 86sylancr 586 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (1 + (𝐴 Β· π‘₯)) ∈ β„‚)
8887adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (1 + (𝐴 Β· π‘₯)) ∈ β„‚)
89 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (1(ballβ€˜(abs ∘ βˆ’ ))1) = (1(ballβ€˜(abs ∘ βˆ’ ))1)
9089dvlog2lem 26500 . . . . . . . . . . . . . . . . . 18 (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– (-∞(,]0))
91 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (β„‚ βˆ– (-∞(,]0)) = (β„‚ βˆ– (-∞(,]0))
9291logdmss 26490 . . . . . . . . . . . . . . . . . 18 (β„‚ βˆ– (-∞(,]0)) βŠ† (β„‚ βˆ– {0})
9390, 92sstri 3991 . . . . . . . . . . . . . . . . 17 (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– {0})
94 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
9594cnmetdval 24607 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴 Β· π‘₯)) ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) = (absβ€˜((1 + (𝐴 Β· π‘₯)) βˆ’ 1)))
9687, 84, 95sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) = (absβ€˜((1 + (𝐴 Β· π‘₯)) βˆ’ 1)))
97 pncan2 11474 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ β„‚ ∧ (𝐴 Β· π‘₯) ∈ β„‚) β†’ ((1 + (𝐴 Β· π‘₯)) βˆ’ 1) = (𝐴 Β· π‘₯))
9884, 85, 97sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯)) βˆ’ 1) = (𝐴 Β· π‘₯))
9998fveq2d 6895 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜((1 + (𝐴 Β· π‘₯)) βˆ’ 1)) = (absβ€˜(𝐴 Β· π‘₯)))
10096, 99eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) = (absβ€˜(𝐴 Β· π‘₯)))
10185abscld 15390 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜(𝐴 Β· π‘₯)) ∈ ℝ)
10234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((absβ€˜π΄) + 1) ∈ ℝ)
10345abscld 15390 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜π‘₯) ∈ ℝ)
104102, 103remulcld 11251 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)) ∈ ℝ)
105 1red 11222 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 1 ∈ ℝ)
106 absmul 15248 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (absβ€˜(𝐴 Β· π‘₯)) = ((absβ€˜π΄) Β· (absβ€˜π‘₯)))
10745, 106syldan 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜(𝐴 Β· π‘₯)) = ((absβ€˜π΄) Β· (absβ€˜π‘₯)))
10832adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜π΄) ∈ ℝ)
109108, 33syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((absβ€˜π΄) + 1) ∈ ℝ)
11045absge0d 15398 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 0 ≀ (absβ€˜π‘₯))
111108lep1d 12152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜π΄) ≀ ((absβ€˜π΄) + 1))
112108, 109, 103, 110, 111lemul1ad 12160 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((absβ€˜π΄) Β· (absβ€˜π‘₯)) ≀ (((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)))
113107, 112eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜(𝐴 Β· π‘₯)) ≀ (((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)))
114 0cn 11213 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ β„‚
11594cnmetdval 24607 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘₯ ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (π‘₯(abs ∘ βˆ’ )0) = (absβ€˜(π‘₯ βˆ’ 0)))
11645, 114, 115sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯(abs ∘ βˆ’ )0) = (absβ€˜(π‘₯ βˆ’ 0)))
11745subid1d 11567 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ βˆ’ 0) = π‘₯)
118117fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜(π‘₯ βˆ’ 0)) = (absβ€˜π‘₯))
119116, 118eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯(abs ∘ βˆ’ )0) = (absβ€˜π‘₯))
120 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
121120, 29eleqtrdi 2842 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))))
12230a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
12341adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ*)
124 0cnd 11214 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 0 ∈ β„‚)
125 elbl3 24218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ*) ∧ (0 ∈ β„‚ ∧ π‘₯ ∈ β„‚)) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) ↔ (π‘₯(abs ∘ βˆ’ )0) < (1 / ((absβ€˜π΄) + 1))))
126122, 123, 124, 45, 125syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) ↔ (π‘₯(abs ∘ βˆ’ )0) < (1 / ((absβ€˜π΄) + 1))))
127121, 126mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯(abs ∘ βˆ’ )0) < (1 / ((absβ€˜π΄) + 1)))
128119, 127eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜π‘₯) < (1 / ((absβ€˜π΄) + 1)))
12938adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 0 < ((absβ€˜π΄) + 1))
130 ltmuldiv2 12095 . . . . . . . . . . . . . . . . . . . . . 22 (((absβ€˜π‘₯) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((absβ€˜π΄) + 1) ∈ ℝ ∧ 0 < ((absβ€˜π΄) + 1))) β†’ ((((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)) < 1 ↔ (absβ€˜π‘₯) < (1 / ((absβ€˜π΄) + 1))))
131103, 105, 109, 129, 130syl112anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)) < 1 ↔ (absβ€˜π‘₯) < (1 / ((absβ€˜π΄) + 1))))
132128, 131mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (((absβ€˜π΄) + 1) Β· (absβ€˜π‘₯)) < 1)
133101, 104, 105, 113, 132lelttrd 11379 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (absβ€˜(𝐴 Β· π‘₯)) < 1)
134100, 133eqbrtrd 5170 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) < 1)
135 1rp 12985 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
136 rpxr 12990 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ+ β†’ 1 ∈ ℝ*)
137135, 136mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 1 ∈ ℝ*)
138 1cnd 11216 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ 1 ∈ β„‚)
139 elbl3 24218 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ ℝ*) ∧ (1 ∈ β„‚ ∧ (1 + (𝐴 Β· π‘₯)) ∈ β„‚)) β†’ ((1 + (𝐴 Β· π‘₯)) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↔ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) < 1))
140122, 137, 138, 87, 139syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯)) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↔ ((1 + (𝐴 Β· π‘₯))(abs ∘ βˆ’ )1) < 1))
141134, 140mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (1 + (𝐴 Β· π‘₯)) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1))
14293, 141sselid 3980 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (1 + (𝐴 Β· π‘₯)) ∈ (β„‚ βˆ– {0}))
143 eldifsni 4793 . . . . . . . . . . . . . . . 16 ((1 + (𝐴 Β· π‘₯)) ∈ (β„‚ βˆ– {0}) β†’ (1 + (𝐴 Β· π‘₯)) β‰  0)
144142, 143syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (1 + (𝐴 Β· π‘₯)) β‰  0)
145144adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (1 + (𝐴 Β· π‘₯)) β‰  0)
14645adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ π‘₯ ∈ β„‚)
147146, 81reccld 11990 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (1 / π‘₯) ∈ β„‚)
14888, 145, 147cxpefd 26560 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)) = (expβ€˜((1 / π‘₯) Β· (logβ€˜(1 + (𝐴 Β· π‘₯))))))
14987, 144logcld 26419 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (logβ€˜(1 + (𝐴 Β· π‘₯))) ∈ β„‚)
150149adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (logβ€˜(1 + (𝐴 Β· π‘₯))) ∈ β„‚)
151147, 150mulcomd 11242 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((1 / π‘₯) Β· (logβ€˜(1 + (𝐴 Β· π‘₯)))) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) Β· (1 / π‘₯)))
152 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ 𝐴 ∈ β„‚)
153 simprl 768 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ 𝐴 β‰  0)
154152, 153dividd 11995 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (𝐴 / 𝐴) = 1)
155154oveq1d 7427 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((𝐴 / 𝐴) / π‘₯) = (1 / π‘₯))
156152, 152, 146, 153, 81divdiv1d 12028 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((𝐴 / 𝐴) / π‘₯) = (𝐴 / (𝐴 Β· π‘₯)))
157155, 156eqtr3d 2773 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (1 / π‘₯) = (𝐴 / (𝐴 Β· π‘₯)))
158157oveq2d 7428 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((logβ€˜(1 + (𝐴 Β· π‘₯))) Β· (1 / π‘₯)) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) Β· (𝐴 / (𝐴 Β· π‘₯))))
15985adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (𝐴 Β· π‘₯) ∈ β„‚)
16078biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (𝐴 Β· π‘₯) β‰  0)
161150, 152, 159, 160div12d 12033 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((logβ€˜(1 + (𝐴 Β· π‘₯))) Β· (𝐴 / (𝐴 Β· π‘₯))) = (𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))
162151, 158, 1613eqtrd 2775 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ ((1 / π‘₯) Β· (logβ€˜(1 + (𝐴 Β· π‘₯)))) = (𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))
163162fveq2d 6895 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ (expβ€˜((1 / π‘₯) Β· (logβ€˜(1 + (𝐴 Β· π‘₯))))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
16483, 148, 1633eqtrd 2775 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 β‰  0 ∧ π‘₯ β‰  0)) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
165164ex 412 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((𝐴 β‰  0 ∧ π‘₯ β‰  0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
16680, 165sylbird 260 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ (Β¬ (𝐴 Β· π‘₯) = 0 β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
167166imp 406 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
16827, 28, 76, 167ifbothda 4566 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
169168mpteq2dva 5248 . . . . . . 7 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) = (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))))
17044resmptd 6040 . . . . . . 7 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ 𝑆) = (π‘₯ ∈ 𝑆 ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))))
171 1cnd 11216 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ (𝐴 Β· π‘₯) = 0) β†’ 1 ∈ β„‚)
172149adantr 480 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ (logβ€˜(1 + (𝐴 Β· π‘₯))) ∈ β„‚)
17385adantr 480 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ (𝐴 Β· π‘₯) ∈ β„‚)
174 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ Β¬ (𝐴 Β· π‘₯) = 0)
175174neqned 2946 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ (𝐴 Β· π‘₯) β‰  0)
176172, 173, 175divcld 11997 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) ∧ Β¬ (𝐴 Β· π‘₯) = 0) β†’ ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)) ∈ β„‚)
177171, 176ifclda 4563 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) ∈ β„‚)
178 eqidd 2732 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) = (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
179 eqidd 2732 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) = (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))))
180 oveq2 7420 . . . . . . . . . 10 (𝑦 = if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) β†’ (𝐴 Β· 𝑦) = (𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
181180fveq2d 6895 . . . . . . . . 9 (𝑦 = if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) β†’ (expβ€˜(𝐴 Β· 𝑦)) = (expβ€˜(𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
182 oveq2 7420 . . . . . . . . . . 11 (if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) = 1 β†’ (𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) = (𝐴 Β· 1))
183182fveq2d 6895 . . . . . . . . . 10 (if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) = 1 β†’ (expβ€˜(𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) = (expβ€˜(𝐴 Β· 1)))
184 oveq2 7420 . . . . . . . . . . 11 (if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)) β†’ (𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) = (𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))
185184fveq2d 6895 . . . . . . . . . 10 (if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)) β†’ (expβ€˜(𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) = (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
186183, 185ifsb 4541 . . . . . . . . 9 (expβ€˜(𝐴 Β· if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
187181, 186eqtrdi 2787 . . . . . . . 8 (𝑦 = if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))) β†’ (expβ€˜(𝐴 Β· 𝑦)) = if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
188177, 178, 179, 187fmptco 7129 . . . . . . 7 (𝐴 ∈ β„‚ β†’ ((𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∘ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) = (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, (expβ€˜(𝐴 Β· 1)), (expβ€˜(𝐴 Β· ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))))
189169, 170, 1883eqtr4d 2781 . . . . . 6 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ 𝑆) = ((𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∘ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))))
190 eqidd 2732 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) = (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))))
191 eqidd 2732 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) = (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))))
192 eqeq1 2735 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 Β· π‘₯)) β†’ (𝑦 = 1 ↔ (1 + (𝐴 Β· π‘₯)) = 1))
193 fveq2 6891 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 Β· π‘₯)) β†’ (logβ€˜π‘¦) = (logβ€˜(1 + (𝐴 Β· π‘₯))))
194 oveq1 7419 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 Β· π‘₯)) β†’ (𝑦 βˆ’ 1) = ((1 + (𝐴 Β· π‘₯)) βˆ’ 1))
195193, 194oveq12d 7430 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 Β· π‘₯)) β†’ ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1)))
196192, 195ifbieq2d 4554 . . . . . . . . . 10 (𝑦 = (1 + (𝐴 Β· π‘₯)) β†’ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1))) = if((1 + (𝐴 Β· π‘₯)) = 1, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1))))
197141, 190, 191, 196fmptco 7129 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∘ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))) = (π‘₯ ∈ 𝑆 ↦ if((1 + (𝐴 Β· π‘₯)) = 1, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1)))))
19859eqeq2i 2744 . . . . . . . . . . . 12 ((1 + (𝐴 Β· π‘₯)) = (1 + 0) ↔ (1 + (𝐴 Β· π‘₯)) = 1)
199138, 85, 124addcand 11424 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯)) = (1 + 0) ↔ (𝐴 Β· π‘₯) = 0))
200198, 199bitr3id 285 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((1 + (𝐴 Β· π‘₯)) = 1 ↔ (𝐴 Β· π‘₯) = 0))
20198oveq2d 7428 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1)) = ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))
202200, 201ifbieq2d 4554 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ 𝑆) β†’ if((1 + (𝐴 Β· π‘₯)) = 1, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1))) = if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))
203202mpteq2dva 5248 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ if((1 + (𝐴 Β· π‘₯)) = 1, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / ((1 + (𝐴 Β· π‘₯)) βˆ’ 1)))) = (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
204197, 203eqtrd 2771 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∘ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))) = (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))))
205 eqid 2731 . . . . . . . . . . . 12 ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) = ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)
206 eqid 2731 . . . . . . . . . . . . . 14 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
207206cnfldtopon 24619 . . . . . . . . . . . . 13 (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚)
208207a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚))
209 1cnd 11216 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ 1 ∈ β„‚)
210208, 208, 209cnmptc 23486 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ 1) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
211 id 22 . . . . . . . . . . . . . . 15 (𝐴 ∈ β„‚ β†’ 𝐴 ∈ β„‚)
212208, 208, 211cnmptc 23486 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ 𝐴) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
213208cnmptid 23485 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ π‘₯) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
214206mulcn 24703 . . . . . . . . . . . . . . 15 Β· ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld))
215214a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ Β· ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld)))
216208, 212, 213, 215cnmpt12f 23490 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ (𝐴 Β· π‘₯)) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
217206addcn 24701 . . . . . . . . . . . . . 14 + ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld))
218217a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ + ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld)))
219208, 210, 216, 218cnmpt12f 23490 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ (1 + (𝐴 Β· π‘₯))) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
220205, 208, 44, 219cnmpt1res 23500 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)))
221141fmpttd 7116 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))):π‘†βŸΆ(1(ballβ€˜(abs ∘ βˆ’ ))1))
222221frnd 6725 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ ran (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) βŠ† (1(ballβ€˜(abs ∘ βˆ’ ))1))
223 difss 4131 . . . . . . . . . . . . . 14 (β„‚ βˆ– {0}) βŠ† β„‚
22493, 223sstri 3991 . . . . . . . . . . . . 13 (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚
225224a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚)
226 cnrest2 23110 . . . . . . . . . . . 12 (((TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚) ∧ ran (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) βŠ† (1(ballβ€˜(abs ∘ βˆ’ ))1) ∧ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚) β†’ ((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)) ↔ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)))))
227207, 222, 225, 226mp3an2i 1465 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)) ↔ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)))))
228220, 227mpbid 231 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1))))
229 blcntr 24239 . . . . . . . . . . . . 13 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ+) β†’ 0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))))
23030, 31, 40, 229mp3an2i 1465 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ 0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))))
231230, 29eleqtrrdi 2843 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ 0 ∈ 𝑆)
232 resttopon 22985 . . . . . . . . . . . . 13 (((TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚) ∧ 𝑆 βŠ† β„‚) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†))
233207, 44, 232sylancr 586 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†))
234 toponuni 22736 . . . . . . . . . . . 12 (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†) β†’ 𝑆 = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
235233, 234syl 17 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ 𝑆 = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
236231, 235eleqtrd 2834 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ 0 ∈ βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
237 eqid 2731 . . . . . . . . . . 11 βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)
238237cncnpi 23102 . . . . . . . . . 10 (((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1))) ∧ 0 ∈ βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)) β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜0))
239228, 236, 238syl2anc 583 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜0))
240 cnelprrecn 11209 . . . . . . . . . . 11 β„‚ ∈ {ℝ, β„‚}
241 logf1o 26413 . . . . . . . . . . . . . 14 log:(β„‚ βˆ– {0})–1-1-ontoβ†’ran log
242 f1of 6833 . . . . . . . . . . . . . 14 (log:(β„‚ βˆ– {0})–1-1-ontoβ†’ran log β†’ log:(β„‚ βˆ– {0})⟢ran log)
243241, 242ax-mp 5 . . . . . . . . . . . . 13 log:(β„‚ βˆ– {0})⟢ran log
244 logrncn 26411 . . . . . . . . . . . . . 14 (π‘₯ ∈ ran log β†’ π‘₯ ∈ β„‚)
245244ssriv 3986 . . . . . . . . . . . . 13 ran log βŠ† β„‚
246 fss 6734 . . . . . . . . . . . . 13 ((log:(β„‚ βˆ– {0})⟢ran log ∧ ran log βŠ† β„‚) β†’ log:(β„‚ βˆ– {0})βŸΆβ„‚)
247243, 245, 246mp2an 689 . . . . . . . . . . . 12 log:(β„‚ βˆ– {0})βŸΆβ„‚
248 fssres 6757 . . . . . . . . . . . 12 ((log:(β„‚ βˆ– {0})βŸΆβ„‚ ∧ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– {0})) β†’ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚)
249247, 93, 248mp2an 689 . . . . . . . . . . 11 (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚
250 blcntr 24239 . . . . . . . . . . . . . 14 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ β„‚ ∧ 1 ∈ ℝ+) β†’ 1 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1))
25130, 84, 135, 250mp3an 1460 . . . . . . . . . . . . 13 1 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1)
252 ovex 7445 . . . . . . . . . . . . . 14 (1 / 𝑦) ∈ V
25389dvlog2 26501 . . . . . . . . . . . . . 14 (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))) = (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦))
254252, 253dmmpti 6694 . . . . . . . . . . . . 13 dom (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))) = (1(ballβ€˜(abs ∘ βˆ’ ))1)
255251, 254eleqtrri 2831 . . . . . . . . . . . 12 1 ∈ dom (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))
256 eqid 2731 . . . . . . . . . . . . 13 ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) = ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1))
257253fveq1i 6892 . . . . . . . . . . . . . . . . 17 ((β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜1) = ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦))β€˜1)
258 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 β†’ (1 / 𝑦) = (1 / 1))
259 1div1e1 11911 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
260258, 259eqtrdi 2787 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 β†’ (1 / 𝑦) = 1)
261 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦))
262 1ex 11217 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
263260, 261, 262fvmpt 6998 . . . . . . . . . . . . . . . . . 18 (1 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦))β€˜1) = 1)
264251, 263ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / 𝑦))β€˜1) = 1
265257, 264eqtr2i 2760 . . . . . . . . . . . . . . . 16 1 = ((β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜1)
266265a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 1 = ((β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜1))
267 fvres 6910 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) = (logβ€˜π‘¦))
268 fvres 6910 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1) = (logβ€˜1))
269251, 268mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1) = (logβ€˜1))
270 log1 26434 . . . . . . . . . . . . . . . . . . 19 (logβ€˜1) = 0
271269, 270eqtrdi 2787 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1) = 0)
272267, 271oveq12d 7430 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) βˆ’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1)) = ((logβ€˜π‘¦) βˆ’ 0))
27393sseli 3978 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 𝑦 ∈ (β„‚ βˆ– {0}))
274 eldifsn 4790 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (β„‚ βˆ– {0}) ↔ (𝑦 ∈ β„‚ ∧ 𝑦 β‰  0))
275273, 274sylib 217 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦 ∈ β„‚ ∧ 𝑦 β‰  0))
276 logcl 26417 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ β„‚ ∧ 𝑦 β‰  0) β†’ (logβ€˜π‘¦) ∈ β„‚)
277275, 276syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (logβ€˜π‘¦) ∈ β„‚)
278277subid1d 11567 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((logβ€˜π‘¦) βˆ’ 0) = (logβ€˜π‘¦))
279272, 278eqtr2d 2772 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (logβ€˜π‘¦) = (((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) βˆ’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1)))
280279oveq1d 7427 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)) = ((((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) βˆ’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1)) / (𝑦 βˆ’ 1)))
281266, 280ifeq12d 4549 . . . . . . . . . . . . . 14 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1))) = if(𝑦 = 1, ((β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜1), ((((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) βˆ’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1)) / (𝑦 βˆ’ 1))))
282281mpteq2ia 5251 . . . . . . . . . . . . 13 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) = (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, ((β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜1), ((((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘¦) βˆ’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜1)) / (𝑦 βˆ’ 1))))
283256, 206, 282dvcnp 25768 . . . . . . . . . . . 12 (((β„‚ ∈ {ℝ, β„‚} ∧ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚ ∧ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚) ∧ 1 ∈ dom (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)))) β†’ (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜1))
284255, 283mpan2 688 . . . . . . . . . . 11 ((β„‚ ∈ {ℝ, β„‚} ∧ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚ ∧ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚) β†’ (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜1))
285240, 249, 224, 284mp3an 1460 . . . . . . . . . 10 (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜1)
286 oveq2 7420 . . . . . . . . . . . . . . 15 (π‘₯ = 0 β†’ (𝐴 Β· π‘₯) = (𝐴 Β· 0))
287286oveq2d 7428 . . . . . . . . . . . . . 14 (π‘₯ = 0 β†’ (1 + (𝐴 Β· π‘₯)) = (1 + (𝐴 Β· 0)))
288 eqid 2731 . . . . . . . . . . . . . 14 (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) = (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))
289 ovex 7445 . . . . . . . . . . . . . 14 (1 + (𝐴 Β· 0)) ∈ V
290287, 288, 289fvmpt 6998 . . . . . . . . . . . . 13 (0 ∈ 𝑆 β†’ ((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0) = (1 + (𝐴 Β· 0)))
291231, 290syl 17 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0) = (1 + (𝐴 Β· 0)))
292 mul01 11400 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (𝐴 Β· 0) = 0)
293292oveq2d 7428 . . . . . . . . . . . . 13 (𝐴 ∈ β„‚ β†’ (1 + (𝐴 Β· 0)) = (1 + 0))
294293, 59eqtrdi 2787 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ (1 + (𝐴 Β· 0)) = 1)
295291, 294eqtrd 2771 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0) = 1)
296295fveq2d 6895 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0)) = ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜1))
297285, 296eleqtrrid 2839 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0)))
298 cnpco 23091 . . . . . . . . 9 (((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP ((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)))β€˜0) ∧ (𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (1(ballβ€˜(abs ∘ βˆ’ ))1)) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))β€˜0))) β†’ ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∘ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
299239, 297, 298syl2anc 583 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ ((𝑦 ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ if(𝑦 = 1, 1, ((logβ€˜π‘¦) / (𝑦 βˆ’ 1)))) ∘ (π‘₯ ∈ 𝑆 ↦ (1 + (𝐴 Β· π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
300204, 299eqeltrrd 2833 . . . . . . 7 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
301208, 208, 211cnmptc 23486 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ 𝐴) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
302208cnmptid 23485 . . . . . . . . . 10 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ 𝑦) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
303208, 301, 302, 215cnmpt12f 23490 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ (𝐴 Β· 𝑦)) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
304 efcn 26295 . . . . . . . . . . 11 exp ∈ (ℂ–cnβ†’β„‚)
305206cncfcn1 24751 . . . . . . . . . . 11 (ℂ–cnβ†’β„‚) = ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld))
306304, 305eleqtri 2830 . . . . . . . . . 10 exp ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld))
307306a1i 11 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ exp ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
308208, 303, 307cnmpt11f 23488 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)))
309177fmpttd 7116 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))):π‘†βŸΆβ„‚)
310309, 231ffvelcdmd 7087 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))β€˜0) ∈ β„‚)
311 unicntop 24622 . . . . . . . . 9 β„‚ = βˆͺ (TopOpenβ€˜β„‚fld)
312311cncnpi 23102 . . . . . . . 8 (((𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∈ ((TopOpenβ€˜β„‚fld) Cn (TopOpenβ€˜β„‚fld)) ∧ ((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))β€˜0) ∈ β„‚) β†’ (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))β€˜0)))
313308, 310, 312syl2anc 583 . . . . . . 7 (𝐴 ∈ β„‚ β†’ (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))β€˜0)))
314 cnpco 23091 . . . . . . 7 (((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0) ∧ (𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜((π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))β€˜0))) β†’ ((𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∘ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
315300, 313, 314syl2anc 583 . . . . . 6 (𝐴 ∈ β„‚ β†’ ((𝑦 ∈ β„‚ ↦ (expβ€˜(𝐴 Β· 𝑦))) ∘ (π‘₯ ∈ 𝑆 ↦ if((𝐴 Β· π‘₯) = 0, 1, ((logβ€˜(1 + (𝐴 Β· π‘₯))) / (𝐴 Β· π‘₯))))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
316189, 315eqeltrd 2832 . . . . 5 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ 𝑆) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0))
317206cnfldtop 24620 . . . . . . 7 (TopOpenβ€˜β„‚fld) ∈ Top
318317a1i 11 . . . . . 6 (𝐴 ∈ β„‚ β†’ (TopOpenβ€˜β„‚fld) ∈ Top)
319206cnfldtopn 24618 . . . . . . . . . . 11 (TopOpenβ€˜β„‚fld) = (MetOpenβ€˜(abs ∘ βˆ’ ))
320319blopn 24329 . . . . . . . . . 10 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ (1 / ((absβ€˜π΄) + 1)) ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) ∈ (TopOpenβ€˜β„‚fld))
32130, 31, 41, 320mp3an2i 1465 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))(1 / ((absβ€˜π΄) + 1))) ∈ (TopOpenβ€˜β„‚fld))
32229, 321eqeltrid 2836 . . . . . . . 8 (𝐴 ∈ β„‚ β†’ 𝑆 ∈ (TopOpenβ€˜β„‚fld))
323 isopn3i 22906 . . . . . . . 8 (((TopOpenβ€˜β„‚fld) ∈ Top ∧ 𝑆 ∈ (TopOpenβ€˜β„‚fld)) β†’ ((intβ€˜(TopOpenβ€˜β„‚fld))β€˜π‘†) = 𝑆)
324317, 322, 323sylancr 586 . . . . . . 7 (𝐴 ∈ β„‚ β†’ ((intβ€˜(TopOpenβ€˜β„‚fld))β€˜π‘†) = 𝑆)
325231, 324eleqtrrd 2835 . . . . . 6 (𝐴 ∈ β„‚ β†’ 0 ∈ ((intβ€˜(TopOpenβ€˜β„‚fld))β€˜π‘†))
326 efcl 16033 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (expβ€˜π΄) ∈ β„‚)
327326ad2antrr 723 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ π‘₯ = 0) β†’ (expβ€˜π΄) ∈ β„‚)
32884, 14, 86sylancr 586 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ (1 + (𝐴 Β· π‘₯)) ∈ β„‚)
329328, 49cxpcld 26556 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) ∧ Β¬ π‘₯ = 0) β†’ ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)) ∈ β„‚)
330327, 329ifclda 4563 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯))) ∈ β„‚)
331330fmpttd 7116 . . . . . 6 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))):β„‚βŸΆβ„‚)
332311, 311cnprest 23113 . . . . . 6 ((((TopOpenβ€˜β„‚fld) ∈ Top ∧ 𝑆 βŠ† β„‚) ∧ (0 ∈ ((intβ€˜(TopOpenβ€˜β„‚fld))β€˜π‘†) ∧ (π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))):β„‚βŸΆβ„‚)) β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜0) ↔ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ 𝑆) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0)))
333318, 44, 325, 331, 332syl22anc 836 . . . . 5 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜0) ↔ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ 𝑆) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜0)))
334316, 333mpbird 257 . . . 4 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜0))
335311cnpresti 23112 . . . 4 (((0[,)+∞) βŠ† β„‚ ∧ 0 ∈ (0[,)+∞) ∧ (π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) ∈ (((TopOpenβ€˜β„‚fld) CnP (TopOpenβ€˜β„‚fld))β€˜0)) β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ (0[,)+∞)) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞)) CnP (TopOpenβ€˜β„‚fld))β€˜0))
3363, 26, 334, 335mp3an2i 1465 . . 3 (𝐴 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 Β· π‘₯))↑𝑐(1 / π‘₯)))) β†Ύ (0[,)+∞)) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞)) CnP (TopOpenβ€˜β„‚fld))β€˜0))
33724, 336eqeltrd 2832 . 2 (𝐴 ∈ β„‚ β†’ (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞)) CnP (TopOpenβ€˜β„‚fld))β€˜0))
338 simpl 482 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ 𝐴 ∈ β„‚)
339 rpcn 12991 . . . . . . 7 (π‘˜ ∈ ℝ+ β†’ π‘˜ ∈ β„‚)
340339adantl 481 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ π‘˜ ∈ β„‚)
341 rpne0 12997 . . . . . . 7 (π‘˜ ∈ ℝ+ β†’ π‘˜ β‰  0)
342341adantl 481 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ π‘˜ β‰  0)
343338, 340, 342divcld 11997 . . . . 5 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ (𝐴 / π‘˜) ∈ β„‚)
344 addcl 11198 . . . . 5 ((1 ∈ β„‚ ∧ (𝐴 / π‘˜) ∈ β„‚) β†’ (1 + (𝐴 / π‘˜)) ∈ β„‚)
34584, 343, 344sylancr 586 . . . 4 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ (1 + (𝐴 / π‘˜)) ∈ β„‚)
346345, 340cxpcld 26556 . . 3 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ ℝ+) β†’ ((1 + (𝐴 / π‘˜))β†‘π‘π‘˜) ∈ β„‚)
347 oveq2 7420 . . . . 5 (π‘˜ = (1 / π‘₯) β†’ (𝐴 / π‘˜) = (𝐴 / (1 / π‘₯)))
348347oveq2d 7428 . . . 4 (π‘˜ = (1 / π‘₯) β†’ (1 + (𝐴 / π‘˜)) = (1 + (𝐴 / (1 / π‘₯))))
349 id 22 . . . 4 (π‘˜ = (1 / π‘₯) β†’ π‘˜ = (1 / π‘₯))
350348, 349oveq12d 7430 . . 3 (π‘˜ = (1 / π‘₯) β†’ ((1 + (𝐴 / π‘˜))β†‘π‘π‘˜) = ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)))
351 eqid 2731 . . 3 ((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞)) = ((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞))
352326, 346, 350, 206, 351rlimcnp3 26813 . 2 (𝐴 ∈ β„‚ β†’ ((π‘˜ ∈ ℝ+ ↦ ((1 + (𝐴 / π‘˜))β†‘π‘π‘˜)) β‡π‘Ÿ (expβ€˜π΄) ↔ (π‘₯ ∈ (0[,)+∞) ↦ if(π‘₯ = 0, (expβ€˜π΄), ((1 + (𝐴 / (1 / π‘₯)))↑𝑐(1 / π‘₯)))) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (0[,)+∞)) CnP (TopOpenβ€˜β„‚fld))β€˜0)))
353337, 352mpbird 257 1 (𝐴 ∈ β„‚ β†’ (π‘˜ ∈ ℝ+ ↦ ((1 + (𝐴 / π‘˜))β†‘π‘π‘˜)) β‡π‘Ÿ (expβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   βˆ– cdif 3945   βŠ† wss 3948  ifcif 4528  {csn 4628  {cpr 4630  βˆͺ cuni 4908   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7412  β„‚cc 11114  β„cr 11115  0cc0 11116  1c1 11117   + caddc 11119   Β· cmul 11121  +∞cpnf 11252  -∞cmnf 11253  β„*cxr 11254   < clt 11255   ≀ cle 11256   βˆ’ cmin 11451   / cdiv 11878  β„+crp 12981  (,]cioc 13332  [,)cico 13333  abscabs 15188   β‡π‘Ÿ crli 15436  expce 16012   β†Ύt crest 17373  TopOpenctopn 17374  βˆžMetcxmet 21218  ballcbl 21220  β„‚fldccnfld 21233  Topctop 22715  TopOnctopon 22732  intcnt 22841   Cn ccn 23048   CnP ccnp 23049   Γ—t ctx 23384  β€“cnβ†’ccncf 24716   D cdv 25712  logclog 26403  β†‘𝑐ccxp 26404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-sin 16020  df-cos 16021  df-tan 16022  df-pi 16023  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-limc 25715  df-dv 25716  df-log 26405  df-cxp 26406
This theorem is referenced by:  dfef2  26816
  Copyright terms: Public domain W3C validator