Proof of Theorem xmulneg1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xneg0 13254 | . . . . . . . . 9
⊢
-𝑒0 = 0 | 
| 2 | 1 | eqeq2i 2750 | . . . . . . . 8
⊢
(-𝑒𝐴 = -𝑒0 ↔
-𝑒𝐴 =
0) | 
| 3 |  | 0xr 11308 | . . . . . . . . 9
⊢ 0 ∈
ℝ* | 
| 4 |  | xneg11 13257 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 0 ∈ ℝ*) → (-𝑒𝐴 = -𝑒0 ↔
𝐴 = 0)) | 
| 5 | 3, 4 | mpan2 691 | . . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (-𝑒𝐴 = -𝑒0 ↔ 𝐴 = 0)) | 
| 6 | 2, 5 | bitr3id 285 | . . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (-𝑒𝐴 = 0 ↔ 𝐴 = 0)) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 = 0 ↔ 𝐴 = 0)) | 
| 8 | 7 | orbi1d 917 | . . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((-𝑒𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | 
| 9 | 8 | ifbid 4549 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) | 
| 10 |  | xnegpnf 13251 | . . . . . . . . . . . . . 14
⊢
-𝑒+∞ = -∞ | 
| 11 | 10 | eqeq2i 2750 | . . . . . . . . . . . . 13
⊢
(-𝑒𝐴 = -𝑒+∞ ↔
-𝑒𝐴 =
-∞) | 
| 12 |  | simpll 767 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → 𝐴 ∈
ℝ*) | 
| 13 |  | pnfxr 11315 | . . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* | 
| 14 |  | xneg11 13257 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞
↔ 𝐴 =
+∞)) | 
| 15 | 12, 13, 14 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒+∞
↔ 𝐴 =
+∞)) | 
| 16 | 11, 15 | bitr3id 285 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -∞ ↔ 𝐴 = +∞)) | 
| 17 | 16 | anbi2d 630 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ↔ (0 <
𝐵 ∧ 𝐴 = +∞))) | 
| 18 |  | xnegmnf 13252 | . . . . . . . . . . . . . 14
⊢
-𝑒-∞ = +∞ | 
| 19 | 18 | eqeq2i 2750 | . . . . . . . . . . . . 13
⊢
(-𝑒𝐴 = -𝑒-∞ ↔
-𝑒𝐴 =
+∞) | 
| 20 |  | mnfxr 11318 | . . . . . . . . . . . . . 14
⊢ -∞
∈ ℝ* | 
| 21 |  | xneg11 13257 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ -∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒-∞
↔ 𝐴 =
-∞)) | 
| 22 | 12, 20, 21 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒-∞
↔ 𝐴 =
-∞)) | 
| 23 | 19, 22 | bitr3id 285 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = +∞ ↔ 𝐴 = -∞)) | 
| 24 | 23 | anbi2d 630 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞))) | 
| 25 | 17, 24 | orbi12d 919 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) | 
| 26 |  | xlt0neg1 13261 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ*
→ (𝐴 < 0 ↔ 0
< -𝑒𝐴)) | 
| 27 | 26 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 < 0 ↔ 0 <
-𝑒𝐴)) | 
| 28 | 27 | bicomd 223 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 <
-𝑒𝐴
↔ 𝐴 <
0)) | 
| 29 | 28 | anbi1d 631 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ↔
(𝐴 < 0 ∧ 𝐵 = -∞))) | 
| 30 |  | xlt0neg2 13262 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ*
→ (0 < 𝐴 ↔
-𝑒𝐴 <
0)) | 
| 31 | 30 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | 
| 32 | 31 | bicomd 223 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 < 0 ↔ 0 < 𝐴)) | 
| 33 | 32 | anbi1d 631 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = +∞) ↔ (0 < 𝐴 ∧ 𝐵 = +∞))) | 
| 34 | 29, 33 | orbi12d 919 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = +∞))
↔ ((𝐴 < 0 ∧
𝐵 = -∞) ∨ (0 <
𝐴 ∧ 𝐵 = +∞)))) | 
| 35 |  | orcom 871 | . . . . . . . . . . 11
⊢ (((𝐴 < 0 ∧ 𝐵 = -∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) | 
| 36 | 34, 35 | bitrdi 287 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = +∞))
↔ ((0 < 𝐴 ∧
𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) | 
| 37 | 25, 36 | orbi12d 919 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) | 
| 38 | 37 | biimpar 477 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) | 
| 39 | 38 | iftrued 4533 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)) = -∞) | 
| 40 |  | xmullem2 13307 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | 
| 41 | 40 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | 
| 42 | 23 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ↔ (0 <
𝐵 ∧ 𝐴 = -∞))) | 
| 43 | 16 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞))) | 
| 44 | 42, 43 | orbi12d 919 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) | 
| 45 | 28 | anbi1d 631 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ↔
(𝐴 < 0 ∧ 𝐵 = +∞))) | 
| 46 | 32 | anbi1d 631 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = -∞) ↔ (0 < 𝐴 ∧ 𝐵 = -∞))) | 
| 47 | 45, 46 | orbi12d 919 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = -∞))
↔ ((𝐴 < 0 ∧
𝐵 = +∞) ∨ (0 <
𝐴 ∧ 𝐵 = -∞)))) | 
| 48 |  | orcom 871 | . . . . . . . . . . . . 13
⊢ (((𝐴 < 0 ∧ 𝐵 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = -∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) | 
| 49 | 47, 48 | bitrdi 287 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = -∞))
↔ ((0 < 𝐴 ∧
𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) | 
| 50 | 44, 49 | orbi12d 919 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | 
| 51 | 50 | notbid 318 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))) ↔ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | 
| 52 | 41, 51 | sylibrd 259 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))))) | 
| 53 | 52 | imp 406 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) | 
| 54 | 53 | iffalsed 4536 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) | 
| 55 |  | iftrue 4531 | . . . . . . . . . 10
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) | 
| 56 | 55 | adantl 481 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) | 
| 57 |  | xnegeq 13249 | . . . . . . . . 9
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞ →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒+∞) | 
| 58 | 56, 57 | syl 17 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒+∞) | 
| 59 | 58, 10 | eqtrdi 2793 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞) | 
| 60 | 39, 54, 59 | 3eqtr4d 2787 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 61 | 50 | biimpar 477 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) | 
| 62 | 61 | iftrued 4533 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = +∞) | 
| 63 | 41 | con2d 134 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) | 
| 64 | 63 | imp 406 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) | 
| 65 | 64 | iffalsed 4536 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) | 
| 66 |  | iftrue 4531 | . . . . . . . . . . . . 13
⊢ ((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞) | 
| 67 | 66 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞) | 
| 68 | 65, 67 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞) | 
| 69 |  | xnegeq 13249 | . . . . . . . . . . 11
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞ →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒-∞) | 
| 70 | 68, 69 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒-∞) | 
| 71 | 70, 18 | eqtrdi 2793 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) | 
| 72 | 62, 71 | eqtr4d 2780 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 73 | 72 | adantlr 715 | . . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 74 | 37 | notbid 318 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))) ↔ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) | 
| 75 | 74 | biimpar 477 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) | 
| 76 | 75 | adantr 480 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) | 
| 77 | 76 | iffalsed 4536 | . . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)) = (-𝑒𝐴 · 𝐵)) | 
| 78 | 51 | biimpar 477 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) | 
| 79 | 78 | adantlr 715 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) | 
| 80 | 79 | iffalsed 4536 | . . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) | 
| 81 |  | iffalse 4534 | . . . . . . . . . . . 12
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) | 
| 82 | 81 | ad2antlr 727 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) | 
| 83 |  | iffalse 4534 | . . . . . . . . . . . 12
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵)) | 
| 84 | 83 | adantl 481 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵)) | 
| 85 | 82, 84 | eqtrd 2777 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵)) | 
| 86 |  | xnegeq 13249 | . . . . . . . . . 10
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵) → -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵)) | 
| 87 | 85, 86 | syl 17 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵)) | 
| 88 |  | xmullem 13306 | . . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) | 
| 89 | 88 | recnd 11289 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℂ) | 
| 90 |  | ancom 460 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈
ℝ*)) | 
| 91 |  | orcom 871 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐴 = 0)) | 
| 92 | 91 | notbii 320 | . . . . . . . . . . . . . . 15
⊢ (¬
(𝐴 = 0 ∨ 𝐵 = 0) ↔ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) | 
| 93 | 90, 92 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
∧ ¬ (𝐵 = 0 ∨
𝐴 = 0))) | 
| 94 |  | orcom 871 | . . . . . . . . . . . . . . 15
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) | 
| 95 | 94 | notbii 320 | . . . . . . . . . . . . . 14
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ¬ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) | 
| 96 | 93, 95 | anbi12i 628 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ↔ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
∧ ¬ (𝐵 = 0 ∨
𝐴 = 0)) ∧ ¬ (((0
< 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))) | 
| 97 |  | orcom 871 | . . . . . . . . . . . . . 14
⊢ ((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) | 
| 98 | 97 | notbii 320 | . . . . . . . . . . . . 13
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ¬ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) | 
| 99 |  | xmullem 13306 | . . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
ℝ* ∧ 𝐴
∈ ℝ*) ∧ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) ∧ ¬ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) ∧ ¬ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) → 𝐵 ∈ ℝ) | 
| 100 | 96, 98, 99 | syl2anb 598 | . . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℝ) | 
| 101 | 100 | recnd 11289 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℂ) | 
| 102 | 89, 101 | mulneg1d 11716 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | 
| 103 |  | rexneg 13253 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 =
-𝐴) | 
| 104 | 88, 103 | syl 17 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒𝐴 =
-𝐴) | 
| 105 | 104 | oveq1d 7446 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
(-𝑒𝐴
· 𝐵) = (-𝐴 · 𝐵)) | 
| 106 | 88, 100 | remulcld 11291 | . . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (𝐴 · 𝐵) ∈ ℝ) | 
| 107 |  | rexneg 13253 | . . . . . . . . . . 11
⊢ ((𝐴 · 𝐵) ∈ ℝ →
-𝑒(𝐴
· 𝐵) = -(𝐴 · 𝐵)) | 
| 108 | 106, 107 | syl 17 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒(𝐴
· 𝐵) = -(𝐴 · 𝐵)) | 
| 109 | 102, 105,
108 | 3eqtr4d 2787 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
(-𝑒𝐴
· 𝐵) =
-𝑒(𝐴
· 𝐵)) | 
| 110 | 87, 109 | eqtr4d 2780 | . . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (-𝑒𝐴 · 𝐵)) | 
| 111 | 77, 80, 110 | 3eqtr4d 2787 | . . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 112 | 73, 111 | pm2.61dan 813 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 113 | 60, 112 | pm2.61dan 813 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 114 | 113 | ifeq2da 4558 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 115 | 9, 114 | eqtrd 2777 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 116 |  | xnegeq 13249 | . . . . 5
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 →
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) =
-𝑒0) | 
| 117 | 116, 1 | eqtrdi 2793 | . . . 4
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 →
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0) | 
| 118 |  | xnegeq 13249 | . . . 4
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) → -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 119 | 117, 118 | ifsb 4539 | . . 3
⊢
-𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 120 | 115, 119 | eqtr4di 2795 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 121 |  | xnegcl 13255 | . . 3
⊢ (𝐴 ∈ ℝ*
→ -𝑒𝐴 ∈
ℝ*) | 
| 122 |  | xmulval 13267 | . . 3
⊢
((-𝑒𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) | 
| 123 | 121, 122 | sylan 580 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) | 
| 124 |  | xmulval 13267 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 125 |  | xnegeq 13249 | . . 3
⊢ ((𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) → -𝑒(𝐴 ·e 𝐵) =
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 126 | 124, 125 | syl 17 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → -𝑒(𝐴 ·e 𝐵) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 127 | 120, 123,
126 | 3eqtr4d 2787 | 1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) |