Proof of Theorem xmulneg1
Step | Hyp | Ref
| Expression |
1 | | xneg0 12946 |
. . . . . . . . 9
⊢
-𝑒0 = 0 |
2 | 1 | eqeq2i 2751 |
. . . . . . . 8
⊢
(-𝑒𝐴 = -𝑒0 ↔
-𝑒𝐴 =
0) |
3 | | 0xr 11022 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
4 | | xneg11 12949 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 0 ∈ ℝ*) → (-𝑒𝐴 = -𝑒0 ↔
𝐴 = 0)) |
5 | 3, 4 | mpan2 688 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (-𝑒𝐴 = -𝑒0 ↔ 𝐴 = 0)) |
6 | 2, 5 | bitr3id 285 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (-𝑒𝐴 = 0 ↔ 𝐴 = 0)) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 = 0 ↔ 𝐴 = 0)) |
8 | 7 | orbi1d 914 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((-𝑒𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
9 | 8 | ifbid 4482 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) |
10 | | xnegpnf 12943 |
. . . . . . . . . . . . . 14
⊢
-𝑒+∞ = -∞ |
11 | 10 | eqeq2i 2751 |
. . . . . . . . . . . . 13
⊢
(-𝑒𝐴 = -𝑒+∞ ↔
-𝑒𝐴 =
-∞) |
12 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → 𝐴 ∈
ℝ*) |
13 | | pnfxr 11029 |
. . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* |
14 | | xneg11 12949 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞
↔ 𝐴 =
+∞)) |
15 | 12, 13, 14 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒+∞
↔ 𝐴 =
+∞)) |
16 | 11, 15 | bitr3id 285 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -∞ ↔ 𝐴 = +∞)) |
17 | 16 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ↔ (0 <
𝐵 ∧ 𝐴 = +∞))) |
18 | | xnegmnf 12944 |
. . . . . . . . . . . . . 14
⊢
-𝑒-∞ = +∞ |
19 | 18 | eqeq2i 2751 |
. . . . . . . . . . . . 13
⊢
(-𝑒𝐴 = -𝑒-∞ ↔
-𝑒𝐴 =
+∞) |
20 | | mnfxr 11032 |
. . . . . . . . . . . . . 14
⊢ -∞
∈ ℝ* |
21 | | xneg11 12949 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ -∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒-∞
↔ 𝐴 =
-∞)) |
22 | 12, 20, 21 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = -𝑒-∞
↔ 𝐴 =
-∞)) |
23 | 19, 22 | bitr3id 285 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 = +∞ ↔ 𝐴 = -∞)) |
24 | 23 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞))) |
25 | 17, 24 | orbi12d 916 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) |
26 | | xlt0neg1 12953 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ*
→ (𝐴 < 0 ↔ 0
< -𝑒𝐴)) |
27 | 26 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 < 0 ↔ 0 <
-𝑒𝐴)) |
28 | 27 | bicomd 222 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 <
-𝑒𝐴
↔ 𝐴 <
0)) |
29 | 28 | anbi1d 630 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ↔
(𝐴 < 0 ∧ 𝐵 = -∞))) |
30 | | xlt0neg2 12954 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ*
→ (0 < 𝐴 ↔
-𝑒𝐴 <
0)) |
31 | 30 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) |
32 | 31 | bicomd 222 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (-𝑒𝐴 < 0 ↔ 0 < 𝐴)) |
33 | 32 | anbi1d 630 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = +∞) ↔ (0 < 𝐴 ∧ 𝐵 = +∞))) |
34 | 29, 33 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = +∞))
↔ ((𝐴 < 0 ∧
𝐵 = -∞) ∨ (0 <
𝐴 ∧ 𝐵 = +∞)))) |
35 | | orcom 867 |
. . . . . . . . . . 11
⊢ (((𝐴 < 0 ∧ 𝐵 = -∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) |
36 | 34, 35 | bitrdi 287 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = +∞))
↔ ((0 < 𝐴 ∧
𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
37 | 25, 36 | orbi12d 916 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) |
38 | 37 | biimpar 478 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) |
39 | 38 | iftrued 4467 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)) = -∞) |
40 | | xmullem2 12999 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
41 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
42 | 23 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ↔ (0 <
𝐵 ∧ 𝐴 = -∞))) |
43 | 16 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐵 < 0 ∧ -𝑒𝐴 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞))) |
44 | 42, 43 | orbi12d 916 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) |
45 | 28 | anbi1d 630 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ↔
(𝐴 < 0 ∧ 𝐵 = +∞))) |
46 | 32 | anbi1d 630 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((-𝑒𝐴 < 0 ∧ 𝐵 = -∞) ↔ (0 < 𝐴 ∧ 𝐵 = -∞))) |
47 | 45, 46 | orbi12d 916 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = -∞))
↔ ((𝐴 < 0 ∧
𝐵 = +∞) ∨ (0 <
𝐴 ∧ 𝐵 = -∞)))) |
48 | | orcom 867 |
. . . . . . . . . . . . 13
⊢ (((𝐴 < 0 ∧ 𝐵 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = -∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) |
49 | 47, 48 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 = -∞))
↔ ((0 < 𝐴 ∧
𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
50 | 44, 49 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
51 | 50 | notbid 318 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))) ↔ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
52 | 41, 51 | sylibrd 258 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))))) |
53 | 52 | imp 407 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) |
54 | 53 | iffalsed 4470 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) |
55 | | iftrue 4465 |
. . . . . . . . . 10
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) |
56 | 55 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) |
57 | | xnegeq 12941 |
. . . . . . . . 9
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞ →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒+∞) |
58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒+∞) |
59 | 58, 10 | eqtrdi 2794 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞) |
60 | 39, 54, 59 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
61 | 50 | biimpar 478 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) |
62 | 61 | iftrued 4467 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = +∞) |
63 | 41 | con2d 134 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) |
64 | 63 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
65 | 64 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) |
66 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ ((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞) |
67 | 66 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = -∞) |
68 | 65, 67 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞) |
69 | | xnegeq 12941 |
. . . . . . . . . . 11
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -∞ →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒-∞) |
70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) =
-𝑒-∞) |
71 | 70, 18 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = +∞) |
72 | 62, 71 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
73 | 72 | adantlr 712 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
74 | 37 | notbid 318 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))) ↔ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) |
75 | 74 | biimpar 478 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) |
76 | 75 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞)))) |
77 | 76 | iffalsed 4470 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
-∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = +∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)) = (-𝑒𝐴 · 𝐵)) |
78 | 51 | biimpar 478 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) |
79 | 78 | adantlr 712 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞)))) |
80 | 79 | iffalsed 4470 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) |
81 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) |
82 | 81 | ad2antlr 724 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) |
83 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
84 | 83 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
85 | 82, 84 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵)) |
86 | | xnegeq 12941 |
. . . . . . . . . 10
⊢ (if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (𝐴 · 𝐵) → -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵)) |
87 | 85, 86 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = -𝑒(𝐴 · 𝐵)) |
88 | | xmullem 12998 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) |
89 | 88 | recnd 11003 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℂ) |
90 | | ancom 461 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈
ℝ*)) |
91 | | orcom 867 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 = 0 ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐴 = 0)) |
92 | 91 | notbii 320 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝐴 = 0 ∨ 𝐵 = 0) ↔ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) |
93 | 90, 92 | anbi12i 627 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
∧ ¬ (𝐵 = 0 ∨
𝐴 = 0))) |
94 | | orcom 867 |
. . . . . . . . . . . . . . 15
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) |
95 | 94 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ¬ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) |
96 | 93, 95 | anbi12i 627 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ↔ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
∧ ¬ (𝐵 = 0 ∨
𝐴 = 0)) ∧ ¬ (((0
< 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))) |
97 | | orcom 867 |
. . . . . . . . . . . . . 14
⊢ ((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) |
98 | 97 | notbii 320 |
. . . . . . . . . . . . 13
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ¬ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) |
99 | | xmullem 12998 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
ℝ* ∧ 𝐴
∈ ℝ*) ∧ ¬ (𝐵 = 0 ∨ 𝐴 = 0)) ∧ ¬ (((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) ∧ ¬ (((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ∨ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) → 𝐵 ∈ ℝ) |
100 | 96, 98, 99 | syl2anb 598 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℝ) |
101 | 100 | recnd 11003 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐵 ∈ ℂ) |
102 | 89, 101 | mulneg1d 11428 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
103 | | rexneg 12945 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 =
-𝐴) |
104 | 88, 103 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒𝐴 =
-𝐴) |
105 | 104 | oveq1d 7290 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
(-𝑒𝐴
· 𝐵) = (-𝐴 · 𝐵)) |
106 | 88, 100 | remulcld 11005 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → (𝐴 · 𝐵) ∈ ℝ) |
107 | | rexneg 12945 |
. . . . . . . . . . 11
⊢ ((𝐴 · 𝐵) ∈ ℝ →
-𝑒(𝐴
· 𝐵) = -(𝐴 · 𝐵)) |
108 | 106, 107 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒(𝐴
· 𝐵) = -(𝐴 · 𝐵)) |
109 | 102, 105,
108 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
(-𝑒𝐴
· 𝐵) =
-𝑒(𝐴
· 𝐵)) |
110 | 87, 109 | eqtr4d 2781 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) →
-𝑒if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) = (-𝑒𝐴 · 𝐵)) |
111 | 77, 80, 110 | 3eqtr4d 2788 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
112 | 73, 111 | pm2.61dan 810 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) → if((((0 < 𝐵 ∧
-𝑒𝐴 =
+∞) ∨ (𝐵 < 0
∧ -𝑒𝐴 = -∞)) ∨ ((0 <
-𝑒𝐴
∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
113 | 60, 112 | pm2.61dan 810 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
114 | 113 | ifeq2da 4491 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
115 | 9, 114 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
116 | | xnegeq 12941 |
. . . . 5
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 →
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) =
-𝑒0) |
117 | 116, 1 | eqtrdi 2794 |
. . . 4
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0 →
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = 0) |
118 | | xnegeq 12941 |
. . . 4
⊢
(if((𝐴 = 0 ∨
𝐵 = 0), 0, if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) → -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
119 | 117, 118 | ifsb 4472 |
. . 3
⊢
-𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, -𝑒if((((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) |
120 | 115, 119 | eqtr4di 2796 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵)))) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
121 | | xnegcl 12947 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ -𝑒𝐴 ∈
ℝ*) |
122 | | xmulval 12959 |
. . 3
⊢
((-𝑒𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) |
123 | 121, 122 | sylan 580 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 ·e 𝐵) = if((-𝑒𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ -𝑒𝐴 = +∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
-∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = +∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
-∞))), +∞, if((((0 < 𝐵 ∧ -𝑒𝐴 = -∞) ∨ (𝐵 < 0 ∧
-𝑒𝐴 =
+∞)) ∨ ((0 < -𝑒𝐴 ∧ 𝐵 = -∞) ∨
(-𝑒𝐴
< 0 ∧ 𝐵 =
+∞))), -∞, (-𝑒𝐴 · 𝐵))))) |
124 | | xmulval 12959 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
125 | | xnegeq 12941 |
. . 3
⊢ ((𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) → -𝑒(𝐴 ·e 𝐵) =
-𝑒if((𝐴
= 0 ∨ 𝐵 = 0), 0, if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
126 | 124, 125 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → -𝑒(𝐴 ·e 𝐵) = -𝑒if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |
127 | 120, 123,
126 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) |