| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovif2 | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| ovif2 | ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7357 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵)) | |
| 2 | oveq2 7357 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶)) | |
| 3 | 1, 2 | ifsb 4490 | 1 ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4476 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: ramcl 16941 psrascl 21886 psdmvr 22054 matsc 22335 scmatscmide 22392 mulmarep1el 22457 maducoeval2 22525 madugsum 22528 itg2const 25639 itg2monolem1 25649 iblmulc2 25730 itgmulc2lem1 25731 bddmulibl 25738 dchrvmasumiflem2 27411 rpvmasum2 27421 sgnneg 32778 itg2addnclem 37655 itgaddnclem2 37663 itgmulc2nclem1 37670 readvrec 42339 selvvvval 42562 sqrtcval2 43619 |
| Copyright terms: Public domain | W3C validator |