MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif2 Structured version   Visualization version   GIF version

Theorem ovif2 7532
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
ovif2 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))

Proof of Theorem ovif2
StepHypRef Expression
1 oveq2 7439 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵))
2 oveq2 7439 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶))
31, 2ifsb 4544 1 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ifcif 4531  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  ramcl  17063  psrascl  22017  matsc  22472  scmatscmide  22529  mulmarep1el  22594  maducoeval2  22662  madugsum  22665  itg2const  25790  itg2monolem1  25800  iblmulc2  25881  itgmulc2lem1  25882  bddmulibl  25889  dchrvmasumiflem2  27561  rpvmasum2  27571  sgnneg  34522  itg2addnclem  37658  itgaddnclem2  37666  itgmulc2nclem1  37673  readvrec  42371  selvvvval  42572  sqrtcval2  43632
  Copyright terms: Public domain W3C validator