| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovif2 | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| ovif2 | ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵)) | |
| 2 | oveq2 7354 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶)) | |
| 3 | 1, 2 | ifsb 4486 | 1 ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4472 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: ramcl 16941 psrascl 21916 psdmvr 22084 matsc 22365 scmatscmide 22422 mulmarep1el 22487 maducoeval2 22555 madugsum 22558 itg2const 25668 itg2monolem1 25678 iblmulc2 25759 itgmulc2lem1 25760 bddmulibl 25767 dchrvmasumiflem2 27440 rpvmasum2 27450 sgnneg 32816 itg2addnclem 37721 itgaddnclem2 37729 itgmulc2nclem1 37736 readvrec 42465 selvvvval 42688 sqrtcval2 43745 |
| Copyright terms: Public domain | W3C validator |