MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif2 Structured version   Visualization version   GIF version

Theorem ovif2 7351
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
ovif2 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))

Proof of Theorem ovif2
StepHypRef Expression
1 oveq2 7263 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵))
2 oveq2 7263 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶))
31, 2ifsb 4469 1 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ifcif 4456  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  ramcl  16658  matsc  21507  scmatscmide  21564  mulmarep1el  21629  maducoeval2  21697  madugsum  21700  itg2const  24810  itg2monolem1  24820  iblmulc2  24900  itgmulc2lem1  24901  bddmulibl  24908  dchrvmasumiflem2  26555  rpvmasum2  26565  sgnneg  32407  itg2addnclem  35755  itgaddnclem2  35763  itgmulc2nclem1  35770  mhphf  40208  sqrtcval2  41139
  Copyright terms: Public domain W3C validator