Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovif2 | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
Ref | Expression |
---|---|
ovif2 | ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵)) | |
2 | oveq2 7283 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶)) | |
3 | 1, 2 | ifsb 4472 | 1 ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4459 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: ramcl 16730 matsc 21599 scmatscmide 21656 mulmarep1el 21721 maducoeval2 21789 madugsum 21792 itg2const 24905 itg2monolem1 24915 iblmulc2 24995 itgmulc2lem1 24996 bddmulibl 25003 dchrvmasumiflem2 26650 rpvmasum2 26660 sgnneg 32507 itg2addnclem 35828 itgaddnclem2 35836 itgmulc2nclem1 35843 mhphf 40285 sqrtcval2 41250 |
Copyright terms: Public domain | W3C validator |