| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovif2 | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| ovif2 | ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵)) | |
| 2 | oveq2 7377 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶)) | |
| 3 | 1, 2 | ifsb 4498 | 1 ⊢ (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4484 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: ramcl 16976 psrascl 21921 psdmvr 22089 matsc 22370 scmatscmide 22427 mulmarep1el 22492 maducoeval2 22560 madugsum 22563 itg2const 25674 itg2monolem1 25684 iblmulc2 25765 itgmulc2lem1 25766 bddmulibl 25773 dchrvmasumiflem2 27446 rpvmasum2 27456 sgnneg 32808 itg2addnclem 37658 itgaddnclem2 37666 itgmulc2nclem1 37673 readvrec 42343 selvvvval 42566 sqrtcval2 43624 |
| Copyright terms: Public domain | W3C validator |