MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif2 Structured version   Visualization version   GIF version

Theorem ovif2 7506
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
ovif2 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))

Proof of Theorem ovif2
StepHypRef Expression
1 oveq2 7413 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐵))
2 oveq2 7413 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = (𝐴𝐹𝐶))
31, 2ifsb 4514 1 (𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4500  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408
This theorem is referenced by:  ramcl  17049  psrascl  21939  psdmvr  22107  matsc  22388  scmatscmide  22445  mulmarep1el  22510  maducoeval2  22578  madugsum  22581  itg2const  25693  itg2monolem1  25703  iblmulc2  25784  itgmulc2lem1  25785  bddmulibl  25792  dchrvmasumiflem2  27465  rpvmasum2  27475  sgnneg  32812  itg2addnclem  37695  itgaddnclem2  37703  itgmulc2nclem1  37710  readvrec  42405  selvvvval  42608  sqrtcval2  43666
  Copyright terms: Public domain W3C validator