MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif Structured version   Visualization version   GIF version

Theorem ovif 7265
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
ovif (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))

Proof of Theorem ovif
StepHypRef Expression
1 oveq1 7177 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶))
2 oveq1 7177 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶))
31, 2ifsb 4427 1 (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  ifcif 4414  (class class class)co 7170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-iota 6297  df-fv 6347  df-ov 7173
This theorem is referenced by:  scmatscm  21264  pmatcollpwscmatlem1  21540  idpm2idmp  21552  monmat2matmon  21575  chmatval  21580  leibpi  25680  musumsum  25929  muinv  25930  dchrinvcl  25989  rpvmasum2  26248  padicabvcxp  26368  pnfneige0  31473  plymulx0  32096  ftc1anclem6  35478  reabssgn  40789  sqrtcval  40794  linc0scn0  45298
  Copyright terms: Public domain W3C validator