| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovif | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovif | ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶)) | |
| 2 | oveq1 7348 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 3 | 1, 2 | ifsb 4484 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4470 (class class class)co 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: scmatscm 22423 pmatcollpwscmatlem1 22699 idpm2idmp 22711 monmat2matmon 22734 chmatval 22739 leibpi 26874 musumsum 27124 muinv 27125 dchrinvcl 27186 rpvmasum2 27445 padicabvcxp 27565 pnfneige0 33956 plymulx0 34552 ftc1anclem6 37738 reabssgn 43669 sqrtcval 43674 linc0scn0 48455 |
| Copyright terms: Public domain | W3C validator |