MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif Structured version   Visualization version   GIF version

Theorem ovif 7490
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
ovif (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))

Proof of Theorem ovif
StepHypRef Expression
1 oveq1 7397 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶))
2 oveq1 7397 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶))
31, 2ifsb 4505 1 (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4491  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  scmatscm  22407  pmatcollpwscmatlem1  22683  idpm2idmp  22695  monmat2matmon  22718  chmatval  22723  leibpi  26859  musumsum  27109  muinv  27110  dchrinvcl  27171  rpvmasum2  27430  padicabvcxp  27550  pnfneige0  33948  plymulx0  34545  ftc1anclem6  37699  reabssgn  43632  sqrtcval  43637  linc0scn0  48416
  Copyright terms: Public domain W3C validator