MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif Structured version   Visualization version   GIF version

Theorem ovif 7372
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
ovif (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))

Proof of Theorem ovif
StepHypRef Expression
1 oveq1 7282 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶))
2 oveq1 7282 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶))
31, 2ifsb 4472 1 (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ifcif 4459  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  scmatscm  21662  pmatcollpwscmatlem1  21938  idpm2idmp  21950  monmat2matmon  21973  chmatval  21978  leibpi  26092  musumsum  26341  muinv  26342  dchrinvcl  26401  rpvmasum2  26660  padicabvcxp  26780  pnfneige0  31901  plymulx0  32526  ftc1anclem6  35855  reabssgn  41244  sqrtcval  41249  linc0scn0  45764
  Copyright terms: Public domain W3C validator