![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovif | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
ovif | ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶)) | |
2 | oveq1 7438 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶)) | |
3 | 1, 2 | ifsb 4544 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: scmatscm 22535 pmatcollpwscmatlem1 22811 idpm2idmp 22823 monmat2matmon 22846 chmatval 22851 leibpi 27000 musumsum 27250 muinv 27251 dchrinvcl 27312 rpvmasum2 27571 padicabvcxp 27691 pnfneige0 33912 plymulx0 34541 ftc1anclem6 37685 reabssgn 43626 sqrtcval 43631 linc0scn0 48269 |
Copyright terms: Public domain | W3C validator |