![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovif | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
ovif | ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶)) | |
2 | oveq1 7455 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶)) | |
3 | 1, 2 | ifsb 4561 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: scmatscm 22540 pmatcollpwscmatlem1 22816 idpm2idmp 22828 monmat2matmon 22851 chmatval 22856 leibpi 27003 musumsum 27253 muinv 27254 dchrinvcl 27315 rpvmasum2 27574 padicabvcxp 27694 pnfneige0 33897 plymulx0 34524 ftc1anclem6 37658 reabssgn 43598 sqrtcval 43603 linc0scn0 48152 |
Copyright terms: Public domain | W3C validator |