![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovif | Structured version Visualization version GIF version |
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
ovif | ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7433 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐴𝐹𝐶)) | |
2 | oveq1 7433 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = (𝐵𝐹𝐶)) | |
3 | 1, 2 | ifsb 4546 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ifcif 4533 (class class class)co 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-iota 6508 df-fv 6564 df-ov 7429 |
This theorem is referenced by: scmatscm 22509 pmatcollpwscmatlem1 22785 idpm2idmp 22797 monmat2matmon 22820 chmatval 22825 leibpi 26973 musumsum 27223 muinv 27224 dchrinvcl 27285 rpvmasum2 27544 padicabvcxp 27664 pnfneige0 33768 plymulx0 34395 ftc1anclem6 37401 reabssgn 43321 sqrtcval 43326 linc0scn0 47824 |
Copyright terms: Public domain | W3C validator |