MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumn0 Structured version   Visualization version   GIF version

Theorem dchrisumn0 26108
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 26081 and dchrvmasumif 26090. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
dchrmusum.g 𝐺 = (DChr‘𝑁)
dchrmusum.d 𝐷 = (Base‘𝐺)
dchrmusum.1 1 = (0g𝐺)
dchrmusum.b (𝜑𝑋𝐷)
dchrmusum.n1 (𝜑𝑋1 )
dchrmusum.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrmusum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrmusum.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrmusum.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrisumn0 (𝜑𝑇 ≠ 0)
Distinct variable groups:   𝑦, 1   𝑦,𝐶   𝑦,𝐹   𝑦,𝑎   𝑦,𝑁   𝑦,𝑇   𝑦,𝑍   𝑦,𝐷   𝐿,𝑎,𝑦   𝑋,𝑎,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑇(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑎)   𝑁(𝑎)   𝑍(𝑎)

Proof of Theorem dchrisumn0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . . 4 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
43adantr 484 . . . 4 ((𝜑𝑇 = 0) → 𝑁 ∈ ℕ)
5 dchrmusum.g . . . 4 𝐺 = (DChr‘𝑁)
6 dchrmusum.d . . . 4 𝐷 = (Base‘𝐺)
7 dchrmusum.1 . . . 4 1 = (0g𝐺)
8 eqid 2801 . . . 4 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
9 dchrmusum.b . . . . . 6 (𝜑𝑋𝐷)
10 dchrmusum.n1 . . . . . 6 (𝜑𝑋1 )
11 dchrmusum.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
12 dchrmusum.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
13 dchrmusum.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
14 dchrmusum.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
151, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 8dchrvmaeq0 26091 . . . . 5 (𝜑 → (𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ↔ 𝑇 = 0))
1615biimpar 481 . . . 4 ((𝜑𝑇 = 0) → 𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
171, 2, 4, 5, 6, 7, 8, 16dchrisum0 26107 . . 3 ¬ (𝜑𝑇 = 0)
1817imnani 404 . 2 (𝜑 → ¬ 𝑇 = 0)
1918neqned 2997 1 (𝜑𝑇 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  {crab 3113  cdif 3881  {csn 4528   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533  +∞cpnf 10665  cle 10669  cmin 10863   / cdiv 11290  cn 11629  [,)cico 12732  cfl 13159  seqcseq 13368  abscabs 14588  cli 14836  Σcsu 15037  Basecbs 16478  0gc0g 16708  ℤRHomczrh 20196  ℤ/nczn 20199  DChrcdchr 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-rpss 7433  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-o1 14842  df-lo1 14843  df-sum 15038  df-ef 15416  df-e 15417  df-sin 15418  df-cos 15419  df-tan 15420  df-pi 15421  df-dvds 15603  df-gcd 15837  df-prm 16009  df-numer 16068  df-denom 16069  df-phi 16096  df-pc 16167  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-qus 16777  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-nsg 18272  df-eqg 18273  df-ghm 18351  df-gim 18394  df-ga 18415  df-cntz 18442  df-oppg 18469  df-od 18651  df-gex 18652  df-pgp 18653  df-lsm 18756  df-pj1 18757  df-cmn 18903  df-abl 18904  df-cyg 18993  df-dprd 19113  df-dpj 19114  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19500  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-2idl 20001  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-zring 20167  df-zrh 20200  df-zn 20203  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-0p 24277  df-limc 24472  df-dv 24473  df-ply 24788  df-idp 24789  df-coe 24790  df-dgr 24791  df-quot 24890  df-ulm 24975  df-log 25151  df-cxp 25152  df-atan 25456  df-em 25581  df-cht 25685  df-vma 25686  df-chp 25687  df-ppi 25688  df-mu 25689  df-dchr 25820
This theorem is referenced by:  dchrmusumlem  26109  dchrvmasumlem  26110
  Copyright terms: Public domain W3C validator