| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisumn0 | Structured version Visualization version GIF version | ||
| Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋 ∈ 𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27433 and dchrvmasumif 27442. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
| dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
| dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
| dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
| Ref | Expression |
|---|---|
| dchrisumn0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 2 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 3 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 = 0) → 𝑁 ∈ ℕ) |
| 5 | dchrmusum.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 6 | dchrmusum.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
| 7 | dchrmusum.1 | . . . 4 ⊢ 1 = (0g‘𝐺) | |
| 8 | eqid 2733 | . . . 4 ⊢ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
| 9 | dchrmusum.b | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 10 | dchrmusum.n1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
| 11 | dchrmusum.f | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
| 12 | dchrmusum.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
| 13 | dchrmusum.t | . . . . . 6 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
| 14 | dchrmusum.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
| 15 | 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 8 | dchrvmaeq0 27443 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} ↔ 𝑇 = 0)) |
| 16 | 15 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 = 0) → 𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
| 17 | 1, 2, 4, 5, 6, 7, 8, 16 | dchrisum0 27459 | . . 3 ⊢ ¬ (𝜑 ∧ 𝑇 = 0) |
| 18 | 17 | imnani 400 | . 2 ⊢ (𝜑 → ¬ 𝑇 = 0) |
| 19 | 18 | neqned 2936 | 1 ⊢ (𝜑 → 𝑇 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 ∖ cdif 3895 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 +∞cpnf 11150 ≤ cle 11154 − cmin 11351 / cdiv 11781 ℕcn 12132 [,)cico 13249 ⌊cfl 13696 seqcseq 13910 abscabs 15143 ⇝ cli 15393 Σcsu 15595 Basecbs 17122 0gc0g 17345 ℤRHomczrh 21438 ℤ/nℤczn 21441 DChrcdchr 27171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-o1 15399 df-lo1 15400 df-sum 15596 df-ef 15976 df-e 15977 df-sin 15978 df-cos 15979 df-tan 15980 df-pi 15981 df-dvds 16166 df-gcd 16408 df-prm 16585 df-numer 16648 df-denom 16649 df-phi 16679 df-pc 16751 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-qus 17415 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19127 df-gim 19173 df-ga 19204 df-cntz 19231 df-oppg 19260 df-od 19442 df-gex 19443 df-pgp 19444 df-lsm 19550 df-pj1 19551 df-cmn 19696 df-abl 19697 df-cyg 19792 df-dprd 19911 df-dpj 19912 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-2idl 21189 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-zring 21386 df-zrh 21442 df-zn 21445 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-0p 25599 df-limc 25795 df-dv 25796 df-ply 26121 df-idp 26122 df-coe 26123 df-dgr 26124 df-quot 26227 df-ulm 26314 df-log 26493 df-cxp 26494 df-atan 26805 df-em 26931 df-cht 27035 df-vma 27036 df-chp 27037 df-ppi 27038 df-mu 27039 df-dchr 27172 |
| This theorem is referenced by: dchrmusumlem 27461 dchrvmasumlem 27462 |
| Copyright terms: Public domain | W3C validator |