MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumn0 Structured version   Visualization version   GIF version

Theorem dchrisumn0 27432
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27405 and dchrvmasumif 27414. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
dchrmusum.g 𝐺 = (DChr‘𝑁)
dchrmusum.d 𝐷 = (Base‘𝐺)
dchrmusum.1 1 = (0g𝐺)
dchrmusum.b (𝜑𝑋𝐷)
dchrmusum.n1 (𝜑𝑋1 )
dchrmusum.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrmusum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrmusum.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrmusum.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrisumn0 (𝜑𝑇 ≠ 0)
Distinct variable groups:   𝑦, 1   𝑦,𝐶   𝑦,𝐹   𝑦,𝑎   𝑦,𝑁   𝑦,𝑇   𝑦,𝑍   𝑦,𝐷   𝐿,𝑎,𝑦   𝑋,𝑎,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑇(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑎)   𝑁(𝑎)   𝑍(𝑎)

Proof of Theorem dchrisumn0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . . 4 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
43adantr 480 . . . 4 ((𝜑𝑇 = 0) → 𝑁 ∈ ℕ)
5 dchrmusum.g . . . 4 𝐺 = (DChr‘𝑁)
6 dchrmusum.d . . . 4 𝐷 = (Base‘𝐺)
7 dchrmusum.1 . . . 4 1 = (0g𝐺)
8 eqid 2729 . . . 4 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
9 dchrmusum.b . . . . . 6 (𝜑𝑋𝐷)
10 dchrmusum.n1 . . . . . 6 (𝜑𝑋1 )
11 dchrmusum.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
12 dchrmusum.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
13 dchrmusum.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
14 dchrmusum.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
151, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 8dchrvmaeq0 27415 . . . . 5 (𝜑 → (𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ↔ 𝑇 = 0))
1615biimpar 477 . . . 4 ((𝜑𝑇 = 0) → 𝑋 ∈ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
171, 2, 4, 5, 6, 7, 8, 16dchrisum0 27431 . . 3 ¬ (𝜑𝑇 = 0)
1817imnani 400 . 2 (𝜑 → ¬ 𝑇 = 0)
1918neqned 2932 1 (𝜑𝑇 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  cle 11209  cmin 11405   / cdiv 11835  cn 12186  [,)cico 13308  cfl 13752  seqcseq 13966  abscabs 15200  cli 15450  Σcsu 15652  Basecbs 17179  0gc0g 17402  ℤRHomczrh 21409  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-numer 16705  df-denom 16706  df-phi 16736  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-ga 19222  df-cntz 19249  df-oppg 19278  df-od 19458  df-gex 19459  df-pgp 19460  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-cyg 19808  df-dprd 19927  df-dpj 19928  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-quot 26199  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903  df-cht 27007  df-vma 27008  df-chp 27009  df-ppi 27010  df-mu 27011  df-dchr 27144
This theorem is referenced by:  dchrmusumlem  27433  dchrvmasumlem  27434
  Copyright terms: Public domain W3C validator