MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Visualization version   GIF version

Theorem dvferm2 25056
Description: One-sided version of dvferm 25057. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm2 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm2
Dummy variables 𝑧 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21oveq1d 7270 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑥) − (𝐹𝑈)) = ((𝐹𝑧) − (𝐹𝑈)))
3 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑈) = (𝑧𝑈))
42, 3oveq12d 7273 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
5 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))
6 ovex 7288 . . . . . . . . . 10 (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) ∈ V
74, 5, 6fvmpt 6857 . . . . . . . . 9 (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
87fvoveq1d 7277 . . . . . . . 8 (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9 id 22 . . . . . . . 8 (𝑦 = -((ℝ D 𝐹)‘𝑈) → 𝑦 = -((ℝ D 𝐹)‘𝑈))
108, 9breqan12rd 5087 . . . . . . 7 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
1110imbi2d 340 . . . . . 6 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1211ralbidva 3119 . . . . 5 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1312rexbidv 3225 . . . 4 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
14 dvferm.d . . . . . . . . . 10 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
15 dvf 24976 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
16 ffun 6587 . . . . . . . . . . 11 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
17 funfvbrb 6910 . . . . . . . . . . 11 (Fun (ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)))
1815, 16, 17mp2b 10 . . . . . . . . . 10 (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
1914, 18sylib 217 . . . . . . . . 9 (𝜑𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
20 eqid 2738 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2738 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 ax-resscn 10859 . . . . . . . . . . 11 ℝ ⊆ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
24 dvferm.a . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℝ)
25 fss 6601 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
2624, 22, 25sylancl 585 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
27 dvferm.b . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
2820, 21, 5, 23, 26, 27eldv 24967 . . . . . . . . 9 (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))))
2919, 28mpbid 231 . . . . . . . 8 (𝜑 → (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈)))
3029simprd 495 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3130adantr 480 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3227, 22sstrdi 3929 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
33 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
34 dvferm.u . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴(,)𝐵))
3533, 34sseldd 3918 . . . . . . . . . 10 (𝜑𝑈𝑋)
3626, 32, 35dvlem 24965 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) ∈ ℂ)
3736fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3837adantr 480 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3932adantr 480 . . . . . . . 8 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑋 ⊆ ℂ)
4039ssdifssd 4073 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑋 ∖ {𝑈}) ⊆ ℂ)
4132, 35sseldd 3918 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
4241adantr 480 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑈 ∈ ℂ)
4338, 40, 42ellimc3 24948 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))))
4431, 43mpbid 231 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))
4544simprd 495 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))
46 dvfre 25020 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4724, 27, 46syl2anc 583 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4847, 14ffvelrnd 6944 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
4948adantr 480 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5049renegcld 11332 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5148lt0neg1d 11474 . . . . . 6 (𝜑 → (((ℝ D 𝐹)‘𝑈) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑈)))
5251biimpa 476 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 0 < -((ℝ D 𝐹)‘𝑈))
5350, 52elrpd 12698 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ+)
5413, 45, 53rspcdva 3554 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5524ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ)
5627ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ)
5734ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵))
5833ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋)
5914ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹))
60 dvferm2.r . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
6160ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
62 simpllr 772 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ((ℝ D 𝐹)‘𝑈) < 0)
63 simplr 765 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+)
64 simpr 484 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
65 eqid 2738 . . . . . 6 ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2) = ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2)
6655, 56, 57, 58, 59, 61, 62, 63, 64, 65dvferm2lem 25055 . . . . 5 ¬ (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6766imnani 400 . . . 4 (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) → ¬ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6867nrexdv 3197 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ¬ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6954, 68pm2.65da 813 . 2 (𝜑 → ¬ ((ℝ D 𝐹)‘𝑈) < 0)
70 0re 10908 . . 3 0 ∈ ℝ
71 lenlt 10984 . . 3 ((0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑈) ∈ ℝ) → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7270, 48, 71sylancr 586 . 2 (𝜑 → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7369, 72mpbird 256 1 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  dom cdm 5580  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  abscabs 14873  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  intcnt 22076   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvferm  25057  dvivthlem1  25077
  Copyright terms: Public domain W3C validator