Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
2 | 1 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) − (𝐹‘𝑈)) = ((𝐹‘𝑧) − (𝐹‘𝑈))) |
3 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 − 𝑈) = (𝑧 − 𝑈)) |
4 | 2, 3 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)) = (((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈))) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) |
6 | | ovex 7288 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) ∈ V |
7 | 4, 5, 6 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) = (((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈))) |
8 | 7 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈)))) |
9 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = -((ℝ D 𝐹)‘𝑈) → 𝑦 = -((ℝ D 𝐹)‘𝑈)) |
10 | 8, 9 | breqan12rd 5087 |
. . . . . . 7
⊢ ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
11 | 10 | imbi2d 340 |
. . . . . 6
⊢ ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))) |
12 | 11 | ralbidva 3119 |
. . . . 5
⊢ (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))) |
13 | 12 | rexbidv 3225 |
. . . 4
⊢ (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))) |
14 | | dvferm.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
15 | | dvf 24976 |
. . . . . . . . . . 11
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
16 | | ffun 6587 |
. . . . . . . . . . 11
⊢ ((ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun
(ℝ D 𝐹)) |
17 | | funfvbrb 6910 |
. . . . . . . . . . 11
⊢ (Fun
(ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))) |
18 | 15, 16, 17 | mp2b 10 |
. . . . . . . . . 10
⊢ (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)) |
19 | 14, 18 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t ℝ) =
((TopOpen‘ℂfld) ↾t
ℝ) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
22 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
24 | | dvferm.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
25 | | fss 6601 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝑋⟶ℂ) |
26 | 24, 22, 25 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
27 | | dvferm.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
28 | 20, 21, 5, 23, 26, 27 | eldv 24967 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘𝑋) ∧
((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) limℂ 𝑈)))) |
29 | 19, 28 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ∈
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘𝑋) ∧
((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) limℂ 𝑈))) |
30 | 29 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) limℂ 𝑈)) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) limℂ 𝑈)) |
32 | 27, 22 | sstrdi 3929 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
33 | | dvferm.s |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
34 | | dvferm.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
35 | 33, 34 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ 𝑋) |
36 | 26, 32, 35 | dvlem 24965 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)) ∈ ℂ) |
37 | 36 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))):(𝑋 ∖ {𝑈})⟶ℂ) |
38 | 37 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))):(𝑋 ∖ {𝑈})⟶ℂ) |
39 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑋 ⊆ ℂ) |
40 | 39 | ssdifssd 4073 |
. . . . . . 7
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑋 ∖ {𝑈}) ⊆ ℂ) |
41 | 32, 35 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ ℂ) |
42 | 41 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑈 ∈ ℂ) |
43 | 38, 40, 42 | ellimc3 24948 |
. . . . . 6
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈))) limℂ 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))) |
44 | 31, 43 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))) |
45 | 44 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∀𝑦 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹‘𝑥) − (𝐹‘𝑈)) / (𝑥 − 𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)) |
46 | | dvfre 25020 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
47 | 24, 27, 46 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
48 | 47, 14 | ffvelrnd 6944 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
49 | 48 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
50 | 49 | renegcld 11332 |
. . . . 5
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
51 | 48 | lt0neg1d 11474 |
. . . . . 6
⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑈))) |
52 | 51 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 0 < -((ℝ D 𝐹)‘𝑈)) |
53 | 50, 52 | elrpd 12698 |
. . . 4
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈
ℝ+) |
54 | 13, 45, 53 | rspcdva 3554 |
. . 3
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∃𝑢 ∈ ℝ+ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
55 | 24 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ) |
56 | 27 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ) |
57 | 34 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵)) |
58 | 33 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋) |
59 | 14 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹)) |
60 | | dvferm2.r |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
61 | 60 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
62 | | simpllr 772 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ((ℝ D 𝐹)‘𝑈) < 0) |
63 | | simplr 765 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+) |
64 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
65 | | eqid 2738 |
. . . . . 6
⊢
((if(𝐴 ≤ (𝑈 − 𝑢), (𝑈 − 𝑢), 𝐴) + 𝑈) / 2) = ((if(𝐴 ≤ (𝑈 − 𝑢), (𝑈 − 𝑢), 𝐴) + 𝑈) / 2) |
66 | 55, 56, 57, 58, 59, 61, 62, 63, 64, 65 | dvferm2lem 25055 |
. . . . 5
⊢ ¬
(((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
67 | 66 | imnani 400 |
. . . 4
⊢ (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) → ¬
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
68 | 67 | nrexdv 3197 |
. . 3
⊢ ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ¬ ∃𝑢 ∈ ℝ+
∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑢) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) |
69 | 54, 68 | pm2.65da 813 |
. 2
⊢ (𝜑 → ¬ ((ℝ D 𝐹)‘𝑈) < 0) |
70 | | 0re 10908 |
. . 3
⊢ 0 ∈
ℝ |
71 | | lenlt 10984 |
. . 3
⊢ ((0
∈ ℝ ∧ ((ℝ D 𝐹)‘𝑈) ∈ ℝ) → (0 ≤ ((ℝ D
𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0)) |
72 | 70, 48, 71 | sylancr 586 |
. 2
⊢ (𝜑 → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0)) |
73 | 69, 72 | mpbird 256 |
1
⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |