MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Visualization version   GIF version

Theorem dvferm2 24838
Description: One-sided version of dvferm 24839. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm2 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm2
Dummy variables 𝑧 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6695 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21oveq1d 7206 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑥) − (𝐹𝑈)) = ((𝐹𝑧) − (𝐹𝑈)))
3 oveq1 7198 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑈) = (𝑧𝑈))
42, 3oveq12d 7209 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
5 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))
6 ovex 7224 . . . . . . . . . 10 (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) ∈ V
74, 5, 6fvmpt 6796 . . . . . . . . 9 (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
87fvoveq1d 7213 . . . . . . . 8 (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9 id 22 . . . . . . . 8 (𝑦 = -((ℝ D 𝐹)‘𝑈) → 𝑦 = -((ℝ D 𝐹)‘𝑈))
108, 9breqan12rd 5056 . . . . . . 7 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
1110imbi2d 344 . . . . . 6 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1211ralbidva 3107 . . . . 5 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1312rexbidv 3206 . . . 4 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
14 dvferm.d . . . . . . . . . 10 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
15 dvf 24758 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
16 ffun 6526 . . . . . . . . . . 11 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
17 funfvbrb 6849 . . . . . . . . . . 11 (Fun (ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)))
1815, 16, 17mp2b 10 . . . . . . . . . 10 (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
1914, 18sylib 221 . . . . . . . . 9 (𝜑𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
20 eqid 2736 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2736 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 ax-resscn 10751 . . . . . . . . . . 11 ℝ ⊆ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
24 dvferm.a . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℝ)
25 fss 6540 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
2624, 22, 25sylancl 589 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
27 dvferm.b . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
2820, 21, 5, 23, 26, 27eldv 24749 . . . . . . . . 9 (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))))
2919, 28mpbid 235 . . . . . . . 8 (𝜑 → (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈)))
3029simprd 499 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3130adantr 484 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3227, 22sstrdi 3899 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
33 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
34 dvferm.u . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴(,)𝐵))
3533, 34sseldd 3888 . . . . . . . . . 10 (𝜑𝑈𝑋)
3626, 32, 35dvlem 24747 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) ∈ ℂ)
3736fmpttd 6910 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3837adantr 484 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3932adantr 484 . . . . . . . 8 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑋 ⊆ ℂ)
4039ssdifssd 4043 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑋 ∖ {𝑈}) ⊆ ℂ)
4132, 35sseldd 3888 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
4241adantr 484 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑈 ∈ ℂ)
4338, 40, 42ellimc3 24730 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))))
4431, 43mpbid 235 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))
4544simprd 499 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))
46 dvfre 24802 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4724, 27, 46syl2anc 587 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4847, 14ffvelrnd 6883 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
4948adantr 484 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5049renegcld 11224 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5148lt0neg1d 11366 . . . . . 6 (𝜑 → (((ℝ D 𝐹)‘𝑈) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑈)))
5251biimpa 480 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 0 < -((ℝ D 𝐹)‘𝑈))
5350, 52elrpd 12590 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ+)
5413, 45, 53rspcdva 3529 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5524ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ)
5627ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ)
5734ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵))
5833ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋)
5914ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹))
60 dvferm2.r . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
6160ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
62 simpllr 776 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ((ℝ D 𝐹)‘𝑈) < 0)
63 simplr 769 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+)
64 simpr 488 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
65 eqid 2736 . . . . . 6 ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2) = ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2)
6655, 56, 57, 58, 59, 61, 62, 63, 64, 65dvferm2lem 24837 . . . . 5 ¬ (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6766imnani 404 . . . 4 (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) → ¬ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6867nrexdv 3179 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ¬ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6954, 68pm2.65da 817 . 2 (𝜑 → ¬ ((ℝ D 𝐹)‘𝑈) < 0)
70 0re 10800 . . 3 0 ∈ ℝ
71 lenlt 10876 . . 3 ((0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑈) ∈ ℝ) → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7270, 48, 71sylancr 590 . 2 (𝜑 → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7369, 72mpbird 260 1 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  cdif 3850  wss 3853  ifcif 4425  {csn 4527   class class class wbr 5039  cmpt 5120  dom cdm 5536  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694   + caddc 10697   < clt 10832  cle 10833  cmin 11027  -cneg 11028   / cdiv 11454  2c2 11850  +crp 12551  (,)cioo 12900  abscabs 14762  t crest 16879  TopOpenctopn 16880  fldccnfld 20317  intcnt 21868   lim climc 24713   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-icc 12907  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-starv 16764  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-rest 16881  df-topn 16882  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-cncf 23729  df-limc 24717  df-dv 24718
This theorem is referenced by:  dvferm  24839  dvivthlem1  24859
  Copyright terms: Public domain W3C validator