MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Visualization version   GIF version

Theorem dvferm2 26026
Description: One-sided version of dvferm 26027. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm2 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm2
Dummy variables 𝑧 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21oveq1d 7447 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑥) − (𝐹𝑈)) = ((𝐹𝑧) − (𝐹𝑈)))
3 oveq1 7439 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑈) = (𝑧𝑈))
42, 3oveq12d 7450 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
5 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))
6 ovex 7465 . . . . . . . . . 10 (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) ∈ V
74, 5, 6fvmpt 7015 . . . . . . . . 9 (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
87fvoveq1d 7454 . . . . . . . 8 (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9 id 22 . . . . . . . 8 (𝑦 = -((ℝ D 𝐹)‘𝑈) → 𝑦 = -((ℝ D 𝐹)‘𝑈))
108, 9breqan12rd 5159 . . . . . . 7 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
1110imbi2d 340 . . . . . 6 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1211ralbidva 3175 . . . . 5 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1312rexbidv 3178 . . . 4 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
14 dvferm.d . . . . . . . . . 10 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
15 dvf 25943 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
16 ffun 6738 . . . . . . . . . . 11 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
17 funfvbrb 7070 . . . . . . . . . . 11 (Fun (ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)))
1815, 16, 17mp2b 10 . . . . . . . . . 10 (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
1914, 18sylib 218 . . . . . . . . 9 (𝜑𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
20 eqid 2736 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2736 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 ax-resscn 11213 . . . . . . . . . . 11 ℝ ⊆ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
24 dvferm.a . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℝ)
25 fss 6751 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
2624, 22, 25sylancl 586 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
27 dvferm.b . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
2820, 21, 5, 23, 26, 27eldv 25934 . . . . . . . . 9 (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))))
2919, 28mpbid 232 . . . . . . . 8 (𝜑 → (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈)))
3029simprd 495 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3130adantr 480 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3227, 22sstrdi 3995 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
33 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
34 dvferm.u . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴(,)𝐵))
3533, 34sseldd 3983 . . . . . . . . . 10 (𝜑𝑈𝑋)
3626, 32, 35dvlem 25932 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) ∈ ℂ)
3736fmpttd 7134 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3837adantr 480 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3932adantr 480 . . . . . . . 8 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑋 ⊆ ℂ)
4039ssdifssd 4146 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑋 ∖ {𝑈}) ⊆ ℂ)
4132, 35sseldd 3983 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
4241adantr 480 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑈 ∈ ℂ)
4338, 40, 42ellimc3 25915 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))))
4431, 43mpbid 232 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))
4544simprd 495 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))
46 dvfre 25990 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4724, 27, 46syl2anc 584 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4847, 14ffvelcdmd 7104 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
4948adantr 480 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5049renegcld 11691 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5148lt0neg1d 11833 . . . . . 6 (𝜑 → (((ℝ D 𝐹)‘𝑈) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑈)))
5251biimpa 476 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 0 < -((ℝ D 𝐹)‘𝑈))
5350, 52elrpd 13075 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ+)
5413, 45, 53rspcdva 3622 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5524ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ)
5627ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ)
5734ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵))
5833ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋)
5914ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹))
60 dvferm2.r . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
6160ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
62 simpllr 775 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ((ℝ D 𝐹)‘𝑈) < 0)
63 simplr 768 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+)
64 simpr 484 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
65 eqid 2736 . . . . . 6 ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2) = ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2)
6655, 56, 57, 58, 59, 61, 62, 63, 64, 65dvferm2lem 26025 . . . . 5 ¬ (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6766imnani 400 . . . 4 (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) → ¬ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6867nrexdv 3148 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ¬ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6954, 68pm2.65da 816 . 2 (𝜑 → ¬ ((ℝ D 𝐹)‘𝑈) < 0)
70 0re 11264 . . 3 0 ∈ ℝ
71 lenlt 11340 . . 3 ((0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑈) ∈ ℝ) → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7270, 48, 71sylancr 587 . 2 (𝜑 → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7369, 72mpbird 257 1 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  cdif 3947  wss 3950  ifcif 4524  {csn 4625   class class class wbr 5142  cmpt 5224  dom cdm 5684  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156   + caddc 11159   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  +crp 13035  (,)cioo 13388  abscabs 15274  t crest 17466  TopOpenctopn 17467  fldccnfld 21365  intcnt 23026   lim climc 25898   D cdv 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-icc 13395  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  dvferm  26027  dvivthlem1  26048
  Copyright terms: Public domain W3C validator