MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   GIF version

Theorem pwfseq 10679
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem pwfseq
Dummy variables 𝑓 𝑏 𝑔 β„Ž π‘˜ π‘š 𝑝 π‘Ÿ 𝑠 𝑑 𝑒 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8961 . . 3 Rel β‰Ό
21brrelex2i 5729 . 2 (Ο‰ β‰Ό 𝐴 β†’ 𝐴 ∈ V)
3 domeng 8974 . . 3 (𝐴 ∈ V β†’ (Ο‰ β‰Ό 𝐴 ↔ βˆƒπ‘‘(Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴)))
4 bren 8965 . . . . . 6 (Ο‰ β‰ˆ 𝑑 ↔ βˆƒβ„Ž β„Ž:ω–1-1-onto→𝑑)
5 harcl 9574 . . . . . . . . . 10 (harβ€˜π’« 𝐴) ∈ On
6 infxpenc2 10037 . . . . . . . . . 10 ((harβ€˜π’« 𝐴) ∈ On β†’ βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
75, 6ax-mp 5 . . . . . . . . 9 βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)
8 simpr 484 . . . . . . . . . . . . . . . 16 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
9 oveq2 7422 . . . . . . . . . . . . . . . . . 18 (𝑛 = π‘˜ β†’ (𝐴 ↑m 𝑛) = (𝐴 ↑m π‘˜))
109cbviunv 5037 . . . . . . . . . . . . . . . . 17 βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜)
11 f1eq3 6784 . . . . . . . . . . . . . . . . 17 (βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜) β†’ (𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜))
138, 12sylib 217 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜))
14 simpllr 775 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑑 βŠ† 𝐴)
15 simplll 774 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ β„Ž:ω–1-1-onto→𝑑)
16 biid 261 . . . . . . . . . . . . . . 15 (((𝑒 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑒 Γ— 𝑒) ∧ π‘Ÿ We 𝑒) ∧ Ο‰ β‰Ό 𝑒) ↔ ((𝑒 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑒 Γ— 𝑒) ∧ π‘Ÿ We 𝑒) ∧ Ο‰ β‰Ό 𝑒))
17 simplr 768 . . . . . . . . . . . . . . . 16 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
18 sseq2 4004 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑀 β†’ (Ο‰ βŠ† 𝑏 ↔ Ο‰ βŠ† 𝑀))
19 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑀 β†’ (π‘šβ€˜π‘) = (π‘šβ€˜π‘€))
2019f1oeq1d 6828 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
21 xpeq12 5697 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑀 ∧ 𝑏 = 𝑀) β†’ (𝑏 Γ— 𝑏) = (𝑀 Γ— 𝑀))
2221anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑀 β†’ (𝑏 Γ— 𝑏) = (𝑀 Γ— 𝑀))
2322f1oeq2d 6829 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘€):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑏))
24 f1oeq3 6823 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2520, 23, 243bitrd 305 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2618, 25imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑀 β†’ ((Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) ↔ (Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀)))
2726cbvralvw 3229 . . . . . . . . . . . . . . . 16 (βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) ↔ βˆ€π‘€ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2817, 27sylib 217 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ βˆ€π‘€ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
29 eqid 2727 . . . . . . . . . . . . . . 15 OrdIso(π‘Ÿ, 𝑒) = OrdIso(π‘Ÿ, 𝑒)
30 eqid 2727 . . . . . . . . . . . . . . 15 (𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩) = (𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)
31 eqid 2727 . . . . . . . . . . . . . . 15 ((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) = ((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))
32 eqid 2727 . . . . . . . . . . . . . . 15 seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩}) = seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})
33 oveq2 7422 . . . . . . . . . . . . . . . . 17 (𝑛 = π‘˜ β†’ (𝑒 ↑m 𝑛) = (𝑒 ↑m π‘˜))
3433cbviunv 5037 . . . . . . . . . . . . . . . 16 βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝑒 ↑m π‘˜)
3534mpteq1i 5238 . . . . . . . . . . . . . . 15 (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩) = (𝑦 ∈ βˆͺ π‘˜ ∈ Ο‰ (𝑒 ↑m π‘˜) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩)
36 eqid 2727 . . . . . . . . . . . . . . 15 (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©) = (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)
37 eqid 2727 . . . . . . . . . . . . . . 15 ((((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) ∘ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)) ∘ (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩)) = ((((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) ∘ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)) ∘ (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩))
3813, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37pwfseqlem5 10678 . . . . . . . . . . . . . 14 Β¬ (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
3938imnani 400 . . . . . . . . . . . . 13 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4039nexdv 1932 . . . . . . . . . . . 12 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ βˆƒπ‘” 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
41 brdomi 8970 . . . . . . . . . . . 12 (𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) β†’ βˆƒπ‘” 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4240, 41nsyl 140 . . . . . . . . . . 11 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4342ex 412 . . . . . . . . . 10 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ (βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4443exlimdv 1929 . . . . . . . . 9 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ (βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
457, 44mpi 20 . . . . . . . 8 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4645ex 412 . . . . . . 7 (β„Ž:ω–1-1-onto→𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4746exlimiv 1926 . . . . . 6 (βˆƒβ„Ž β„Ž:ω–1-1-onto→𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
484, 47sylbi 216 . . . . 5 (Ο‰ β‰ˆ 𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4948imp 406 . . . 4 ((Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
5049exlimiv 1926 . . 3 (βˆƒπ‘‘(Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
513, 50biimtrdi 252 . 2 (𝐴 ∈ V β†’ (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
522, 51mpcom 38 1 (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534  βˆƒwex 1774   ∈ wcel 2099  βˆ€wral 3056  Vcvv 3469   βŠ† wss 3944  βˆ…c0 4318  π’« cpw 4598  {csn 4624  βŸ¨cop 4630  βˆͺ ciun 4991   class class class wbr 5142   ↦ cmpt 5225   We wwe 5626   Γ— cxp 5670  β—‘ccnv 5671  dom cdm 5672   β†Ύ cres 5674   ∘ ccom 5676  Oncon0 6363  suc csuc 6365  β€“1-1β†’wf1 6539  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  Ο‰com 7864  seqΟ‰cseqom 8461   ↑m cmap 8836   β‰ˆ cen 8952   β‰Ό cdom 8953  OrdIsocoi 9524  harchar 9571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-oi 9525  df-har 9572  df-cnf 9677  df-card 9954
This theorem is referenced by:  pwxpndom2  10680
  Copyright terms: Public domain W3C validator