| Step | Hyp | Ref
| Expression |
| 1 | | reldom 8974 |
. . 3
⊢ Rel
≼ |
| 2 | 1 | brrelex2i 5724 |
. 2
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
| 3 | | domeng 8986 |
. . 3
⊢ (𝐴 ∈ V → (ω
≼ 𝐴 ↔
∃𝑡(ω ≈
𝑡 ∧ 𝑡 ⊆ 𝐴))) |
| 4 | | bren 8978 |
. . . . . 6
⊢ (ω
≈ 𝑡 ↔
∃ℎ ℎ:ω–1-1-onto→𝑡) |
| 5 | | harcl 9582 |
. . . . . . . . . 10
⊢
(har‘𝒫 𝐴) ∈ On |
| 6 | | infxpenc2 10045 |
. . . . . . . . . 10
⊢
((har‘𝒫 𝐴) ∈ On → ∃𝑚∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . 9
⊢
∃𝑚∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) |
| 8 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 9 | | oveq2 7422 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → (𝐴 ↑m 𝑛) = (𝐴 ↑m 𝑘)) |
| 10 | 9 | cbviunv 5022 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) = ∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘) |
| 11 | | f1eq3 6782 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) = ∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘) → (𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1→∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘))) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1→∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘)) |
| 13 | 8, 12 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → 𝑔:𝒫 𝐴–1-1→∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘)) |
| 14 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → 𝑡 ⊆ 𝐴) |
| 15 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → ℎ:ω–1-1-onto→𝑡) |
| 16 | | biid 261 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢) ↔ ((𝑢 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢)) |
| 17 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → ∀𝑏 ∈ (har‘𝒫
𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 18 | | sseq2 3992 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑤 → (ω ⊆ 𝑏 ↔ ω ⊆ 𝑤)) |
| 19 | | fveq2 6887 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑤 → (𝑚‘𝑏) = (𝑚‘𝑤)) |
| 20 | 19 | f1oeq1d 6824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑤 → ((𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ (𝑚‘𝑤):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 21 | | xpeq12 5692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑤 ∧ 𝑏 = 𝑤) → (𝑏 × 𝑏) = (𝑤 × 𝑤)) |
| 22 | 21 | anidms 566 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑤 → (𝑏 × 𝑏) = (𝑤 × 𝑤)) |
| 23 | 22 | f1oeq2d 6825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑤 → ((𝑚‘𝑤):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑏)) |
| 24 | | f1oeq3 6819 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑤 → ((𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑏 ↔ (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑤)) |
| 25 | 20, 23, 24 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑤 → ((𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑤)) |
| 26 | 18, 25 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑤 → ((ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) ↔ (ω ⊆ 𝑤 → (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑤))) |
| 27 | 26 | cbvralvw 3224 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑏 ∈
(har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) ↔ ∀𝑤 ∈ (har‘𝒫
𝐴)(ω ⊆ 𝑤 → (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑤)) |
| 28 | 17, 27 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) → ∀𝑤 ∈ (har‘𝒫
𝐴)(ω ⊆ 𝑤 → (𝑚‘𝑤):(𝑤 × 𝑤)–1-1-onto→𝑤)) |
| 29 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
OrdIso(𝑟, 𝑢) = OrdIso(𝑟, 𝑢) |
| 30 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉) = (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉) |
| 31 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉)) = ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉)) |
| 32 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉}) =
seqω((𝑝
∈ V, 𝑓 ∈ V
↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉}) |
| 33 | | oveq2 7422 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (𝑢 ↑m 𝑛) = (𝑢 ↑m 𝑘)) |
| 34 | 33 | cbviunv 5022 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑛 ∈ ω (𝑢 ↑m 𝑛) = ∪ 𝑘 ∈ ω (𝑢 ↑m 𝑘) |
| 35 | 34 | mpteq1i 5220 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ∪ 𝑛 ∈ ω (𝑢 ↑m 𝑛) ↦ 〈dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉})‘dom 𝑦)‘𝑦)〉) = (𝑦 ∈ ∪
𝑘 ∈ ω (𝑢 ↑m 𝑘) ↦ 〈dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉})‘dom 𝑦)‘𝑦)〉) |
| 36 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ω, 𝑦 ∈ 𝑢 ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦〉) = (𝑥 ∈ ω, 𝑦 ∈ 𝑢 ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦〉) |
| 37 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉)) ∘ (𝑥 ∈ ω, 𝑦 ∈ 𝑢 ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦〉)) ∘ (𝑦 ∈ ∪
𝑛 ∈ ω (𝑢 ↑m 𝑛) ↦ 〈dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉})‘dom 𝑦)‘𝑦)〉)) = ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉)) ∘ (𝑥 ∈ ω, 𝑦 ∈ 𝑢 ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦〉)) ∘ (𝑦 ∈ ∪
𝑛 ∈ ω (𝑢 ↑m 𝑛) ↦ 〈dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢 ↑m suc 𝑝) ↦ ((𝑓‘(𝑥 ↾ 𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ ◡(𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ 〈(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)〉))(𝑥‘𝑝)))), {〈∅, (OrdIso(𝑟, 𝑢)‘∅)〉})‘dom 𝑦)‘𝑦)〉)) |
| 38 | 13, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37 | pwfseqlem5 10686 |
. . . . . . . . . . . . . 14
⊢ ¬
(((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 39 | 38 | imnani 400 |
. . . . . . . . . . . . 13
⊢ (((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) → ¬ 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 40 | 39 | nexdv 1935 |
. . . . . . . . . . . 12
⊢ (((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) → ¬ ∃𝑔 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 41 | | brdomi 8982 |
. . . . . . . . . . . 12
⊢
(𝒫 𝐴 ≼
∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) → ∃𝑔 𝑔:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 42 | 40, 41 | nsyl 140 |
. . . . . . . . . . 11
⊢ (((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 43 | 42 | ex 412 |
. . . . . . . . . 10
⊢ ((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) → (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 44 | 43 | exlimdv 1932 |
. . . . . . . . 9
⊢ ((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) → (∃𝑚∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 45 | 7, 44 | mpi 20 |
. . . . . . . 8
⊢ ((ℎ:ω–1-1-onto→𝑡 ∧ 𝑡 ⊆ 𝐴) → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 46 | 45 | ex 412 |
. . . . . . 7
⊢ (ℎ:ω–1-1-onto→𝑡 → (𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 47 | 46 | exlimiv 1929 |
. . . . . 6
⊢
(∃ℎ ℎ:ω–1-1-onto→𝑡 → (𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 48 | 4, 47 | sylbi 217 |
. . . . 5
⊢ (ω
≈ 𝑡 → (𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 49 | 48 | imp 406 |
. . . 4
⊢ ((ω
≈ 𝑡 ∧ 𝑡 ⊆ 𝐴) → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 50 | 49 | exlimiv 1929 |
. . 3
⊢
(∃𝑡(ω
≈ 𝑡 ∧ 𝑡 ⊆ 𝐴) → ¬ 𝒫 𝐴 ≼ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 51 | 3, 50 | biimtrdi 253 |
. 2
⊢ (𝐴 ∈ V → (ω
≼ 𝐴 → ¬
𝒫 𝐴 ≼
∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛))) |
| 52 | 2, 51 | mpcom 38 |
1
⊢ (ω
≼ 𝐴 → ¬
𝒫 𝐴 ≼
∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |