MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   GIF version

Theorem pwfseq 10561
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem pwfseq
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑚 𝑝 𝑟 𝑠 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8881 . . 3 Rel ≼
21brrelex2i 5676 . 2 (ω ≼ 𝐴𝐴 ∈ V)
3 domeng 8891 . . 3 (𝐴 ∈ V → (ω ≼ 𝐴 ↔ ∃𝑡(ω ≈ 𝑡𝑡𝐴)))
4 bren 8885 . . . . . 6 (ω ≈ 𝑡 ↔ ∃ :ω–1-1-onto𝑡)
5 harcl 9451 . . . . . . . . . 10 (har‘𝒫 𝐴) ∈ On
6 infxpenc2 9919 . . . . . . . . . 10 ((har‘𝒫 𝐴) ∈ On → ∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
75, 6ax-mp 5 . . . . . . . . 9 𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)
8 simpr 484 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
9 oveq2 7360 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝐴m 𝑛) = (𝐴m 𝑘))
109cbviunv 4989 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘)
11 f1eq3 6722 . . . . . . . . . . . . . . . . 17 ( 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘) → (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
138, 12sylib 218 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
14 simpllr 775 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑡𝐴)
15 simplll 774 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → :ω–1-1-onto𝑡)
16 biid 261 . . . . . . . . . . . . . . 15 (((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢) ↔ ((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢))
17 simplr 768 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
18 sseq2 3956 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (ω ⊆ 𝑏 ↔ ω ⊆ 𝑤))
19 fveq2 6828 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑚𝑏) = (𝑚𝑤))
2019f1oeq1d 6764 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏))
21 xpeq12 5644 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑤𝑏 = 𝑤) → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2221anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2322f1oeq2d 6765 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏))
24 f1oeq3 6759 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2520, 23, 243bitrd 305 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2618, 25imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤)))
2726cbvralvw 3210 . . . . . . . . . . . . . . . 16 (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2817, 27sylib 218 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
29 eqid 2731 . . . . . . . . . . . . . . 15 OrdIso(𝑟, 𝑢) = OrdIso(𝑟, 𝑢)
30 eqid 2731 . . . . . . . . . . . . . . 15 (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩) = (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)
31 eqid 2731 . . . . . . . . . . . . . . 15 ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) = ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))
32 eqid 2731 . . . . . . . . . . . . . . 15 seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩}) = seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})
33 oveq2 7360 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑢m 𝑛) = (𝑢m 𝑘))
3433cbviunv 4989 . . . . . . . . . . . . . . . 16 𝑛 ∈ ω (𝑢m 𝑛) = 𝑘 ∈ ω (𝑢m 𝑘)
3534mpteq1i 5184 . . . . . . . . . . . . . . 15 (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩) = (𝑦 𝑘 ∈ ω (𝑢m 𝑘) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)
36 eqid 2731 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩) = (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)
37 eqid 2731 . . . . . . . . . . . . . . 15 ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)) = ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩))
3813, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37pwfseqlem5 10560 . . . . . . . . . . . . . 14 ¬ (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
3938imnani 400 . . . . . . . . . . . . 13 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4039nexdv 1937 . . . . . . . . . . . 12 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
41 brdomi 8888 . . . . . . . . . . . 12 (𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛) → ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4240, 41nsyl 140 . . . . . . . . . . 11 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4342ex 412 . . . . . . . . . 10 ((:ω–1-1-onto𝑡𝑡𝐴) → (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4443exlimdv 1934 . . . . . . . . 9 ((:ω–1-1-onto𝑡𝑡𝐴) → (∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
457, 44mpi 20 . . . . . . . 8 ((:ω–1-1-onto𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4645ex 412 . . . . . . 7 (:ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4746exlimiv 1931 . . . . . 6 (∃ :ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
484, 47sylbi 217 . . . . 5 (ω ≈ 𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4948imp 406 . . . 4 ((ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5049exlimiv 1931 . . 3 (∃𝑡(ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
513, 50biimtrdi 253 . 2 (𝐴 ∈ V → (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
522, 51mpcom 38 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4282  𝒫 cpw 4549  {csn 4575  cop 4581   ciun 4941   class class class wbr 5093  cmpt 5174   We wwe 5571   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  ccom 5623  Oncon0 6312  suc csuc 6314  1-1wf1 6484  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352  cmpo 7354  ωcom 7802  seqωcseqom 8372  m cmap 8756  cen 8872  cdom 8873  OrdIsocoi 9401  harchar 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seqom 8373  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-oexp 8397  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-oi 9402  df-har 9449  df-cnf 9558  df-card 9838
This theorem is referenced by:  pwxpndom2  10562
  Copyright terms: Public domain W3C validator