MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   GIF version

Theorem pwfseq 10687
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem pwfseq
Dummy variables 𝑓 𝑏 𝑔 β„Ž π‘˜ π‘š 𝑝 π‘Ÿ 𝑠 𝑑 𝑒 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8968 . . 3 Rel β‰Ό
21brrelex2i 5734 . 2 (Ο‰ β‰Ό 𝐴 β†’ 𝐴 ∈ V)
3 domeng 8981 . . 3 (𝐴 ∈ V β†’ (Ο‰ β‰Ό 𝐴 ↔ βˆƒπ‘‘(Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴)))
4 bren 8972 . . . . . 6 (Ο‰ β‰ˆ 𝑑 ↔ βˆƒβ„Ž β„Ž:ω–1-1-onto→𝑑)
5 harcl 9582 . . . . . . . . . 10 (harβ€˜π’« 𝐴) ∈ On
6 infxpenc2 10045 . . . . . . . . . 10 ((harβ€˜π’« 𝐴) ∈ On β†’ βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
75, 6ax-mp 5 . . . . . . . . 9 βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)
8 simpr 483 . . . . . . . . . . . . . . . 16 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
9 oveq2 7425 . . . . . . . . . . . . . . . . . 18 (𝑛 = π‘˜ β†’ (𝐴 ↑m 𝑛) = (𝐴 ↑m π‘˜))
109cbviunv 5043 . . . . . . . . . . . . . . . . 17 βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜)
11 f1eq3 6788 . . . . . . . . . . . . . . . . 17 (βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜) β†’ (𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ↔ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜))
138, 12sylib 217 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑔:𝒫 𝐴–1-1β†’βˆͺ π‘˜ ∈ Ο‰ (𝐴 ↑m π‘˜))
14 simpllr 774 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ 𝑑 βŠ† 𝐴)
15 simplll 773 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ β„Ž:ω–1-1-onto→𝑑)
16 biid 260 . . . . . . . . . . . . . . 15 (((𝑒 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑒 Γ— 𝑒) ∧ π‘Ÿ We 𝑒) ∧ Ο‰ β‰Ό 𝑒) ↔ ((𝑒 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑒 Γ— 𝑒) ∧ π‘Ÿ We 𝑒) ∧ Ο‰ β‰Ό 𝑒))
17 simplr 767 . . . . . . . . . . . . . . . 16 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
18 sseq2 4004 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑀 β†’ (Ο‰ βŠ† 𝑏 ↔ Ο‰ βŠ† 𝑀))
19 fveq2 6894 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑀 β†’ (π‘šβ€˜π‘) = (π‘šβ€˜π‘€))
2019f1oeq1d 6831 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
21 xpeq12 5702 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑀 ∧ 𝑏 = 𝑀) β†’ (𝑏 Γ— 𝑏) = (𝑀 Γ— 𝑀))
2221anidms 565 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑀 β†’ (𝑏 Γ— 𝑏) = (𝑀 Γ— 𝑀))
2322f1oeq2d 6832 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘€):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑏))
24 f1oeq3 6826 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2520, 23, 243bitrd 304 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑀 β†’ ((π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2618, 25imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑀 β†’ ((Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) ↔ (Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀)))
2726cbvralvw 3225 . . . . . . . . . . . . . . . 16 (βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) ↔ βˆ€π‘€ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
2817, 27sylib 217 . . . . . . . . . . . . . . 15 ((((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)) β†’ βˆ€π‘€ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑀 β†’ (π‘šβ€˜π‘€):(𝑀 Γ— 𝑀)–1-1-onto→𝑀))
29 eqid 2725 . . . . . . . . . . . . . . 15 OrdIso(π‘Ÿ, 𝑒) = OrdIso(π‘Ÿ, 𝑒)
30 eqid 2725 . . . . . . . . . . . . . . 15 (𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩) = (𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)
31 eqid 2725 . . . . . . . . . . . . . . 15 ((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) = ((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))
32 eqid 2725 . . . . . . . . . . . . . . 15 seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩}) = seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})
33 oveq2 7425 . . . . . . . . . . . . . . . . 17 (𝑛 = π‘˜ β†’ (𝑒 ↑m 𝑛) = (𝑒 ↑m π‘˜))
3433cbviunv 5043 . . . . . . . . . . . . . . . 16 βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) = βˆͺ π‘˜ ∈ Ο‰ (𝑒 ↑m π‘˜)
3534mpteq1i 5244 . . . . . . . . . . . . . . 15 (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩) = (𝑦 ∈ βˆͺ π‘˜ ∈ Ο‰ (𝑒 ↑m π‘˜) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩)
36 eqid 2725 . . . . . . . . . . . . . . 15 (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©) = (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)
37 eqid 2725 . . . . . . . . . . . . . . 15 ((((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) ∘ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)) ∘ (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩)) = ((((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩)) ∘ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑒 ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘₯), π‘¦βŸ©)) ∘ (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑒 ↑m 𝑛) ↦ ⟨dom 𝑦, ((seqΟ‰((𝑝 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑒 ↑m suc 𝑝) ↦ ((π‘“β€˜(π‘₯ β†Ύ 𝑝))((OrdIso(π‘Ÿ, 𝑒) ∘ (π‘šβ€˜dom OrdIso(π‘Ÿ, 𝑒))) ∘ β—‘(𝑠 ∈ dom OrdIso(π‘Ÿ, 𝑒), 𝑧 ∈ dom OrdIso(π‘Ÿ, 𝑒) ↦ ⟨(OrdIso(π‘Ÿ, 𝑒)β€˜π‘ ), (OrdIso(π‘Ÿ, 𝑒)β€˜π‘§)⟩))(π‘₯β€˜π‘)))), {βŸ¨βˆ…, (OrdIso(π‘Ÿ, 𝑒)β€˜βˆ…)⟩})β€˜dom 𝑦)β€˜π‘¦)⟩))
3813, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37pwfseqlem5 10686 . . . . . . . . . . . . . 14 Β¬ (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) ∧ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
3938imnani 399 . . . . . . . . . . . . 13 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4039nexdv 1931 . . . . . . . . . . . 12 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ βˆƒπ‘” 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
41 brdomi 8977 . . . . . . . . . . . 12 (𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) β†’ βˆƒπ‘” 𝑔:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4240, 41nsyl 140 . . . . . . . . . . 11 (((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) ∧ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4342ex 411 . . . . . . . . . 10 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ (βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4443exlimdv 1928 . . . . . . . . 9 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ (βˆƒπ‘šβˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘šβ€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
457, 44mpi 20 . . . . . . . 8 ((β„Ž:ω–1-1-onto→𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
4645ex 411 . . . . . . 7 (β„Ž:ω–1-1-onto→𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4746exlimiv 1925 . . . . . 6 (βˆƒβ„Ž β„Ž:ω–1-1-onto→𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
484, 47sylbi 216 . . . . 5 (Ο‰ β‰ˆ 𝑑 β†’ (𝑑 βŠ† 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
4948imp 405 . . . 4 ((Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
5049exlimiv 1925 . . 3 (βˆƒπ‘‘(Ο‰ β‰ˆ 𝑑 ∧ 𝑑 βŠ† 𝐴) β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
513, 50biimtrdi 252 . 2 (𝐴 ∈ V β†’ (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛)))
522, 51mpcom 38 1 (Ο‰ β‰Ό 𝐴 β†’ Β¬ 𝒫 𝐴 β‰Ό βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3051  Vcvv 3463   βŠ† wss 3945  βˆ…c0 4323  π’« cpw 4603  {csn 4629  βŸ¨cop 4635  βˆͺ ciun 4996   class class class wbr 5148   ↦ cmpt 5231   We wwe 5631   Γ— cxp 5675  β—‘ccnv 5676  dom cdm 5677   β†Ύ cres 5679   ∘ ccom 5681  Oncon0 6369  suc csuc 6371  β€“1-1β†’wf1 6544  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  Ο‰com 7869  seqΟ‰cseqom 8466   ↑m cmap 8843   β‰ˆ cen 8959   β‰Ό cdom 8960  OrdIsocoi 9532  harchar 9579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seqom 8467  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-oexp 8491  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-har 9580  df-cnf 9685  df-card 9962
This theorem is referenced by:  pwxpndom2  10688
  Copyright terms: Public domain W3C validator