MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   GIF version

Theorem pwfseq 10600
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem pwfseq
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑚 𝑝 𝑟 𝑠 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8889 . . 3 Rel ≼
21brrelex2i 5689 . 2 (ω ≼ 𝐴𝐴 ∈ V)
3 domeng 8902 . . 3 (𝐴 ∈ V → (ω ≼ 𝐴 ↔ ∃𝑡(ω ≈ 𝑡𝑡𝐴)))
4 bren 8893 . . . . . 6 (ω ≈ 𝑡 ↔ ∃ :ω–1-1-onto𝑡)
5 harcl 9495 . . . . . . . . . 10 (har‘𝒫 𝐴) ∈ On
6 infxpenc2 9958 . . . . . . . . . 10 ((har‘𝒫 𝐴) ∈ On → ∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
75, 6ax-mp 5 . . . . . . . . 9 𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)
8 simpr 485 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
9 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝐴m 𝑛) = (𝐴m 𝑘))
109cbviunv 5000 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘)
11 f1eq3 6735 . . . . . . . . . . . . . . . . 17 ( 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘) → (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
138, 12sylib 217 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
14 simpllr 774 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑡𝐴)
15 simplll 773 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → :ω–1-1-onto𝑡)
16 biid 260 . . . . . . . . . . . . . . 15 (((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢) ↔ ((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢))
17 simplr 767 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
18 sseq2 3970 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (ω ⊆ 𝑏 ↔ ω ⊆ 𝑤))
19 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑚𝑏) = (𝑚𝑤))
2019f1oeq1d 6779 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏))
21 xpeq12 5658 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑤𝑏 = 𝑤) → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2221anidms 567 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2322f1oeq2d 6780 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏))
24 f1oeq3 6774 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2520, 23, 243bitrd 304 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2618, 25imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤)))
2726cbvralvw 3225 . . . . . . . . . . . . . . . 16 (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2817, 27sylib 217 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
29 eqid 2736 . . . . . . . . . . . . . . 15 OrdIso(𝑟, 𝑢) = OrdIso(𝑟, 𝑢)
30 eqid 2736 . . . . . . . . . . . . . . 15 (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩) = (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)
31 eqid 2736 . . . . . . . . . . . . . . 15 ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) = ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))
32 eqid 2736 . . . . . . . . . . . . . . 15 seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩}) = seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})
33 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑢m 𝑛) = (𝑢m 𝑘))
3433cbviunv 5000 . . . . . . . . . . . . . . . 16 𝑛 ∈ ω (𝑢m 𝑛) = 𝑘 ∈ ω (𝑢m 𝑘)
3534mpteq1i 5201 . . . . . . . . . . . . . . 15 (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩) = (𝑦 𝑘 ∈ ω (𝑢m 𝑘) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)
36 eqid 2736 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩) = (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)
37 eqid 2736 . . . . . . . . . . . . . . 15 ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)) = ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩))
3813, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37pwfseqlem5 10599 . . . . . . . . . . . . . 14 ¬ (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
3938imnani 401 . . . . . . . . . . . . 13 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4039nexdv 1939 . . . . . . . . . . . 12 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
41 brdomi 8898 . . . . . . . . . . . 12 (𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛) → ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4240, 41nsyl 140 . . . . . . . . . . 11 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4342ex 413 . . . . . . . . . 10 ((:ω–1-1-onto𝑡𝑡𝐴) → (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4443exlimdv 1936 . . . . . . . . 9 ((:ω–1-1-onto𝑡𝑡𝐴) → (∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
457, 44mpi 20 . . . . . . . 8 ((:ω–1-1-onto𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4645ex 413 . . . . . . 7 (:ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4746exlimiv 1933 . . . . . 6 (∃ :ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
484, 47sylbi 216 . . . . 5 (ω ≈ 𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4948imp 407 . . . 4 ((ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5049exlimiv 1933 . . 3 (∃𝑡(ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
513, 50syl6bi 252 . 2 (𝐴 ∈ V → (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
522, 51mpcom 38 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586  cop 4592   ciun 4954   class class class wbr 5105  cmpt 5188   We wwe 5587   × cxp 5631  ccnv 5632  dom cdm 5633  cres 5635  ccom 5637  Oncon0 6317  suc csuc 6319  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  ωcom 7802  seqωcseqom 8393  m cmap 8765  cen 8880  cdom 8881  OrdIsocoi 9445  harchar 9492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-har 9493  df-cnf 9598  df-card 9875
This theorem is referenced by:  pwxpndom2  10601
  Copyright terms: Public domain W3C validator