MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   GIF version

Theorem pwfseq 10577
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem pwfseq
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑚 𝑝 𝑟 𝑠 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8885 . . 3 Rel ≼
21brrelex2i 5680 . 2 (ω ≼ 𝐴𝐴 ∈ V)
3 domeng 8895 . . 3 (𝐴 ∈ V → (ω ≼ 𝐴 ↔ ∃𝑡(ω ≈ 𝑡𝑡𝐴)))
4 bren 8889 . . . . . 6 (ω ≈ 𝑡 ↔ ∃ :ω–1-1-onto𝑡)
5 harcl 9470 . . . . . . . . . 10 (har‘𝒫 𝐴) ∈ On
6 infxpenc2 9935 . . . . . . . . . 10 ((har‘𝒫 𝐴) ∈ On → ∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
75, 6ax-mp 5 . . . . . . . . 9 𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)
8 simpr 484 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
9 oveq2 7361 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝐴m 𝑛) = (𝐴m 𝑘))
109cbviunv 4992 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘)
11 f1eq3 6721 . . . . . . . . . . . . . . . . 17 ( 𝑛 ∈ ω (𝐴m 𝑛) = 𝑘 ∈ ω (𝐴m 𝑘) → (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ↔ 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
138, 12sylib 218 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑔:𝒫 𝐴1-1 𝑘 ∈ ω (𝐴m 𝑘))
14 simpllr 775 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑡𝐴)
15 simplll 774 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → :ω–1-1-onto𝑡)
16 biid 261 . . . . . . . . . . . . . . 15 (((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢) ↔ ((𝑢𝐴𝑟 ⊆ (𝑢 × 𝑢) ∧ 𝑟 We 𝑢) ∧ ω ≼ 𝑢))
17 simplr 768 . . . . . . . . . . . . . . . 16 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
18 sseq2 3964 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (ω ⊆ 𝑏 ↔ ω ⊆ 𝑤))
19 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑚𝑏) = (𝑚𝑤))
2019f1oeq1d 6763 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏))
21 xpeq12 5648 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑤𝑏 = 𝑤) → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2221anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑤 → (𝑏 × 𝑏) = (𝑤 × 𝑤))
2322f1oeq2d 6764 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏))
24 f1oeq3 6758 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑤 → ((𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2520, 23, 243bitrd 305 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → ((𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2618, 25imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤)))
2726cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
2817, 27sylib 218 . . . . . . . . . . . . . . 15 ((((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛)) → ∀𝑤 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑤 → (𝑚𝑤):(𝑤 × 𝑤)–1-1-onto𝑤))
29 eqid 2729 . . . . . . . . . . . . . . 15 OrdIso(𝑟, 𝑢) = OrdIso(𝑟, 𝑢)
30 eqid 2729 . . . . . . . . . . . . . . 15 (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩) = (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)
31 eqid 2729 . . . . . . . . . . . . . . 15 ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) = ((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))
32 eqid 2729 . . . . . . . . . . . . . . 15 seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩}) = seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})
33 oveq2 7361 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑢m 𝑛) = (𝑢m 𝑘))
3433cbviunv 4992 . . . . . . . . . . . . . . . 16 𝑛 ∈ ω (𝑢m 𝑛) = 𝑘 ∈ ω (𝑢m 𝑘)
3534mpteq1i 5186 . . . . . . . . . . . . . . 15 (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩) = (𝑦 𝑘 ∈ ω (𝑢m 𝑘) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)
36 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩) = (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)
37 eqid 2729 . . . . . . . . . . . . . . 15 ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩)) = ((((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩)) ∘ (𝑥 ∈ ω, 𝑦𝑢 ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑥), 𝑦⟩)) ∘ (𝑦 𝑛 ∈ ω (𝑢m 𝑛) ↦ ⟨dom 𝑦, ((seqω((𝑝 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑢m suc 𝑝) ↦ ((𝑓‘(𝑥𝑝))((OrdIso(𝑟, 𝑢) ∘ (𝑚‘dom OrdIso(𝑟, 𝑢))) ∘ (𝑠 ∈ dom OrdIso(𝑟, 𝑢), 𝑧 ∈ dom OrdIso(𝑟, 𝑢) ↦ ⟨(OrdIso(𝑟, 𝑢)‘𝑠), (OrdIso(𝑟, 𝑢)‘𝑧)⟩))(𝑥𝑝)))), {⟨∅, (OrdIso(𝑟, 𝑢)‘∅)⟩})‘dom 𝑦)‘𝑦)⟩))
3813, 14, 15, 16, 28, 29, 30, 31, 32, 35, 36, 37pwfseqlem5 10576 . . . . . . . . . . . . . 14 ¬ (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) ∧ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
3938imnani 400 . . . . . . . . . . . . 13 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4039nexdv 1936 . . . . . . . . . . . 12 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
41 brdomi 8892 . . . . . . . . . . . 12 (𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛) → ∃𝑔 𝑔:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4240, 41nsyl 140 . . . . . . . . . . 11 (((:ω–1-1-onto𝑡𝑡𝐴) ∧ ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4342ex 412 . . . . . . . . . 10 ((:ω–1-1-onto𝑡𝑡𝐴) → (∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4443exlimdv 1933 . . . . . . . . 9 ((:ω–1-1-onto𝑡𝑡𝐴) → (∃𝑚𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑚𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
457, 44mpi 20 . . . . . . . 8 ((:ω–1-1-onto𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
4645ex 412 . . . . . . 7 (:ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4746exlimiv 1930 . . . . . 6 (∃ :ω–1-1-onto𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
484, 47sylbi 217 . . . . 5 (ω ≈ 𝑡 → (𝑡𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
4948imp 406 . . . 4 ((ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5049exlimiv 1930 . . 3 (∃𝑡(ω ≈ 𝑡𝑡𝐴) → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
513, 50biimtrdi 253 . 2 (𝐴 ∈ V → (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
522, 51mpcom 38 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585   ciun 4944   class class class wbr 5095  cmpt 5176   We wwe 5575   × cxp 5621  ccnv 5622  dom cdm 5623  cres 5625  ccom 5627  Oncon0 6311  suc csuc 6313  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cmpo 7355  ωcom 7806  seqωcseqom 8376  m cmap 8760  cen 8876  cdom 8877  OrdIsocoi 9420  harchar 9467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-har 9468  df-cnf 9577  df-card 9854
This theorem is referenced by:  pwxpndom2  10578
  Copyright terms: Public domain W3C validator