MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucdom Structured version   Visualization version   GIF version

Theorem alephsucdom 10088
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsucdom (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) ↔ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))

Proof of Theorem alephsucdom
StepHypRef Expression
1 alephordilem1 10082 . . 3 (𝐡 ∈ On β†’ (β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡))
2 domsdomtr 9126 . . . 4 ((𝐴 β‰Ό (β„΅β€˜π΅) ∧ (β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡)) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡))
32ex 412 . . 3 (𝐴 β‰Ό (β„΅β€˜π΅) β†’ ((β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
41, 3syl5com 31 . 2 (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
5 sdomdom 8990 . . . . 5 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ό (β„΅β€˜suc 𝐡))
6 alephon 10078 . . . . . 6 (β„΅β€˜suc 𝐡) ∈ On
7 ondomen 10046 . . . . . 6 (((β„΅β€˜suc 𝐡) ∈ On ∧ 𝐴 β‰Ό (β„΅β€˜suc 𝐡)) β†’ 𝐴 ∈ dom card)
86, 7mpan 689 . . . . 5 (𝐴 β‰Ό (β„΅β€˜suc 𝐡) β†’ 𝐴 ∈ dom card)
9 cardid2 9962 . . . . 5 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
105, 8, 93syl 18 . . . 4 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
1110ensymd 9015 . . 3 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
12 alephnbtwn2 10081 . . . . . 6 Β¬ ((β„΅β€˜π΅) β‰Ί (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1312imnani 400 . . . . 5 ((β„΅β€˜π΅) β‰Ί (cardβ€˜π΄) β†’ Β¬ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
14 ensdomtr 9127 . . . . . 6 (((cardβ€˜π΄) β‰ˆ 𝐴 ∧ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)) β†’ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1510, 14mpancom 687 . . . . 5 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1613, 15nsyl3 138 . . . 4 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄))
17 cardon 9953 . . . . 5 (cardβ€˜π΄) ∈ On
18 alephon 10078 . . . . 5 (β„΅β€˜π΅) ∈ On
19 domtriord 9137 . . . . 5 (((cardβ€˜π΄) ∈ On ∧ (β„΅β€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) β‰Ό (β„΅β€˜π΅) ↔ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄)))
2017, 18, 19mp2an 691 . . . 4 ((cardβ€˜π΄) β‰Ό (β„΅β€˜π΅) ↔ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄))
2116, 20sylibr 233 . . 3 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰Ό (β„΅β€˜π΅))
22 endomtr 9022 . . 3 ((𝐴 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰Ό (β„΅β€˜π΅)) β†’ 𝐴 β‰Ό (β„΅β€˜π΅))
2311, 21, 22syl2anc 583 . 2 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ό (β„΅β€˜π΅))
244, 23impbid1 224 1 (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) ↔ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∈ wcel 2099   class class class wbr 5142  dom cdm 5672  Oncon0 6363  suc csuc 6365  β€˜cfv 6542   β‰ˆ cen 8950   β‰Ό cdom 8951   β‰Ί csdm 8952  cardccrd 9944  β„΅cale 9945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-oi 9519  df-har 9566  df-card 9948  df-aleph 9949
This theorem is referenced by:  alephsuc2  10089  alephreg  10591
  Copyright terms: Public domain W3C validator