| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucdom | Structured version Visualization version GIF version | ||
| Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucdom | ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 9967 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) | |
| 2 | domsdomtr 9029 | . . . 4 ⊢ ((𝐴 ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) → 𝐴 ≺ (ℵ‘suc 𝐵)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐴 ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ≺ (ℵ‘suc 𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 4 | 1, 3 | syl5com 31 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 5 | sdomdom 8905 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘suc 𝐵)) | |
| 6 | alephon 9963 | . . . . . 6 ⊢ (ℵ‘suc 𝐵) ∈ On | |
| 7 | ondomen 9931 | . . . . . 6 ⊢ (((ℵ‘suc 𝐵) ∈ On ∧ 𝐴 ≼ (ℵ‘suc 𝐵)) → 𝐴 ∈ dom card) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ≼ (ℵ‘suc 𝐵) → 𝐴 ∈ dom card) |
| 9 | cardid2 9849 | . . . . 5 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≈ 𝐴) |
| 11 | 10 | ensymd 8930 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≈ (card‘𝐴)) |
| 12 | alephnbtwn2 9966 | . . . . . 6 ⊢ ¬ ((ℵ‘𝐵) ≺ (card‘𝐴) ∧ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 13 | 12 | imnani 400 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (card‘𝐴) → ¬ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 14 | ensdomtr 9030 | . . . . . 6 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≺ (ℵ‘suc 𝐵)) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 15 | 10, 14 | mpancom 688 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 16 | 13, 15 | nsyl3 138 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 17 | cardon 9840 | . . . . 5 ⊢ (card‘𝐴) ∈ On | |
| 18 | alephon 9963 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
| 19 | domtriord 9040 | . . . . 5 ⊢ (((card‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴))) | |
| 20 | 17, 18, 19 | mp2an 692 | . . . 4 ⊢ ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 21 | 16, 20 | sylibr 234 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≼ (ℵ‘𝐵)) |
| 22 | endomtr 8937 | . . 3 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≼ (ℵ‘𝐵)) → 𝐴 ≼ (ℵ‘𝐵)) | |
| 23 | 11, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘𝐵)) |
| 24 | 4, 23 | impbid1 225 | 1 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 Oncon0 6307 suc csuc 6309 ‘cfv 6482 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 cardccrd 9831 ℵcale 9832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-card 9835 df-aleph 9836 |
| This theorem is referenced by: alephsuc2 9974 alephreg 10476 |
| Copyright terms: Public domain | W3C validator |