| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucdom | Structured version Visualization version GIF version | ||
| Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucdom | ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 10033 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) | |
| 2 | domsdomtr 9082 | . . . 4 ⊢ ((𝐴 ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) → 𝐴 ≺ (ℵ‘suc 𝐵)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐴 ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ≺ (ℵ‘suc 𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 4 | 1, 3 | syl5com 31 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 5 | sdomdom 8954 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘suc 𝐵)) | |
| 6 | alephon 10029 | . . . . . 6 ⊢ (ℵ‘suc 𝐵) ∈ On | |
| 7 | ondomen 9997 | . . . . . 6 ⊢ (((ℵ‘suc 𝐵) ∈ On ∧ 𝐴 ≼ (ℵ‘suc 𝐵)) → 𝐴 ∈ dom card) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ≼ (ℵ‘suc 𝐵) → 𝐴 ∈ dom card) |
| 9 | cardid2 9913 | . . . . 5 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≈ 𝐴) |
| 11 | 10 | ensymd 8979 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≈ (card‘𝐴)) |
| 12 | alephnbtwn2 10032 | . . . . . 6 ⊢ ¬ ((ℵ‘𝐵) ≺ (card‘𝐴) ∧ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 13 | 12 | imnani 400 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (card‘𝐴) → ¬ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 14 | ensdomtr 9083 | . . . . . 6 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≺ (ℵ‘suc 𝐵)) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 15 | 10, 14 | mpancom 688 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 16 | 13, 15 | nsyl3 138 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 17 | cardon 9904 | . . . . 5 ⊢ (card‘𝐴) ∈ On | |
| 18 | alephon 10029 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
| 19 | domtriord 9093 | . . . . 5 ⊢ (((card‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴))) | |
| 20 | 17, 18, 19 | mp2an 692 | . . . 4 ⊢ ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 21 | 16, 20 | sylibr 234 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≼ (ℵ‘𝐵)) |
| 22 | endomtr 8986 | . . 3 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≼ (ℵ‘𝐵)) → 𝐴 ≼ (ℵ‘𝐵)) | |
| 23 | 11, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘𝐵)) |
| 24 | 4, 23 | impbid1 225 | 1 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Oncon0 6335 suc csuc 6337 ‘cfv 6514 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 cardccrd 9895 ℵcale 9896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-har 9517 df-card 9899 df-aleph 9900 |
| This theorem is referenced by: alephsuc2 10040 alephreg 10542 |
| Copyright terms: Public domain | W3C validator |