| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucdom | Structured version Visualization version GIF version | ||
| Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucdom | ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 10087 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) | |
| 2 | domsdomtr 9126 | . . . 4 ⊢ ((𝐴 ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) → 𝐴 ≺ (ℵ‘suc 𝐵)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐴 ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ≺ (ℵ‘suc 𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 4 | 1, 3 | syl5com 31 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 5 | sdomdom 8994 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘suc 𝐵)) | |
| 6 | alephon 10083 | . . . . . 6 ⊢ (ℵ‘suc 𝐵) ∈ On | |
| 7 | ondomen 10051 | . . . . . 6 ⊢ (((ℵ‘suc 𝐵) ∈ On ∧ 𝐴 ≼ (ℵ‘suc 𝐵)) → 𝐴 ∈ dom card) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ≼ (ℵ‘suc 𝐵) → 𝐴 ∈ dom card) |
| 9 | cardid2 9967 | . . . . 5 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≈ 𝐴) |
| 11 | 10 | ensymd 9019 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≈ (card‘𝐴)) |
| 12 | alephnbtwn2 10086 | . . . . . 6 ⊢ ¬ ((ℵ‘𝐵) ≺ (card‘𝐴) ∧ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 13 | 12 | imnani 400 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (card‘𝐴) → ¬ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 14 | ensdomtr 9127 | . . . . . 6 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≺ (ℵ‘suc 𝐵)) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 15 | 10, 14 | mpancom 688 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 16 | 13, 15 | nsyl3 138 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 17 | cardon 9958 | . . . . 5 ⊢ (card‘𝐴) ∈ On | |
| 18 | alephon 10083 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
| 19 | domtriord 9137 | . . . . 5 ⊢ (((card‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴))) | |
| 20 | 17, 18, 19 | mp2an 692 | . . . 4 ⊢ ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 21 | 16, 20 | sylibr 234 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≼ (ℵ‘𝐵)) |
| 22 | endomtr 9026 | . . 3 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≼ (ℵ‘𝐵)) → 𝐴 ≼ (ℵ‘𝐵)) | |
| 23 | 11, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘𝐵)) |
| 24 | 4, 23 | impbid1 225 | 1 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 Oncon0 6352 suc csuc 6354 ‘cfv 6531 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 cardccrd 9949 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-har 9571 df-card 9953 df-aleph 9954 |
| This theorem is referenced by: alephsuc2 10094 alephreg 10596 |
| Copyright terms: Public domain | W3C validator |