MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucdom Structured version   Visualization version   GIF version

Theorem alephsucdom 9766
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsucdom (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵)))

Proof of Theorem alephsucdom
StepHypRef Expression
1 alephordilem1 9760 . . 3 (𝐵 ∈ On → (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵))
2 domsdomtr 8848 . . . 4 ((𝐴 ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) → 𝐴 ≺ (ℵ‘suc 𝐵))
32ex 412 . . 3 (𝐴 ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ≺ (ℵ‘suc 𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵)))
41, 3syl5com 31 . 2 (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵)))
5 sdomdom 8723 . . . . 5 (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘suc 𝐵))
6 alephon 9756 . . . . . 6 (ℵ‘suc 𝐵) ∈ On
7 ondomen 9724 . . . . . 6 (((ℵ‘suc 𝐵) ∈ On ∧ 𝐴 ≼ (ℵ‘suc 𝐵)) → 𝐴 ∈ dom card)
86, 7mpan 686 . . . . 5 (𝐴 ≼ (ℵ‘suc 𝐵) → 𝐴 ∈ dom card)
9 cardid2 9642 . . . . 5 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
105, 8, 93syl 18 . . . 4 (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≈ 𝐴)
1110ensymd 8746 . . 3 (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≈ (card‘𝐴))
12 alephnbtwn2 9759 . . . . . 6 ¬ ((ℵ‘𝐵) ≺ (card‘𝐴) ∧ (card‘𝐴) ≺ (ℵ‘suc 𝐵))
1312imnani 400 . . . . 5 ((ℵ‘𝐵) ≺ (card‘𝐴) → ¬ (card‘𝐴) ≺ (ℵ‘suc 𝐵))
14 ensdomtr 8849 . . . . . 6 (((card‘𝐴) ≈ 𝐴𝐴 ≺ (ℵ‘suc 𝐵)) → (card‘𝐴) ≺ (ℵ‘suc 𝐵))
1510, 14mpancom 684 . . . . 5 (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≺ (ℵ‘suc 𝐵))
1613, 15nsyl3 138 . . . 4 (𝐴 ≺ (ℵ‘suc 𝐵) → ¬ (ℵ‘𝐵) ≺ (card‘𝐴))
17 cardon 9633 . . . . 5 (card‘𝐴) ∈ On
18 alephon 9756 . . . . 5 (ℵ‘𝐵) ∈ On
19 domtriord 8859 . . . . 5 (((card‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴)))
2017, 18, 19mp2an 688 . . . 4 ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴))
2116, 20sylibr 233 . . 3 (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≼ (ℵ‘𝐵))
22 endomtr 8753 . . 3 ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≼ (ℵ‘𝐵)) → 𝐴 ≼ (ℵ‘𝐵))
2311, 21, 22syl2anc 583 . 2 (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘𝐵))
244, 23impbid1 224 1 (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2108   class class class wbr 5070  dom cdm 5580  Oncon0 6251  suc csuc 6253  cfv 6418  cen 8688  cdom 8689  csdm 8690  cardccrd 9624  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-card 9628  df-aleph 9629
This theorem is referenced by:  alephsuc2  9767  alephreg  10269
  Copyright terms: Public domain W3C validator