MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucdom Structured version   Visualization version   GIF version

Theorem alephsucdom 10074
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsucdom (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) ↔ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))

Proof of Theorem alephsucdom
StepHypRef Expression
1 alephordilem1 10068 . . 3 (𝐡 ∈ On β†’ (β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡))
2 domsdomtr 9112 . . . 4 ((𝐴 β‰Ό (β„΅β€˜π΅) ∧ (β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡)) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡))
32ex 414 . . 3 (𝐴 β‰Ό (β„΅β€˜π΅) β†’ ((β„΅β€˜π΅) β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
41, 3syl5com 31 . 2 (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) β†’ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
5 sdomdom 8976 . . . . 5 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ό (β„΅β€˜suc 𝐡))
6 alephon 10064 . . . . . 6 (β„΅β€˜suc 𝐡) ∈ On
7 ondomen 10032 . . . . . 6 (((β„΅β€˜suc 𝐡) ∈ On ∧ 𝐴 β‰Ό (β„΅β€˜suc 𝐡)) β†’ 𝐴 ∈ dom card)
86, 7mpan 689 . . . . 5 (𝐴 β‰Ό (β„΅β€˜suc 𝐡) β†’ 𝐴 ∈ dom card)
9 cardid2 9948 . . . . 5 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
105, 8, 93syl 18 . . . 4 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
1110ensymd 9001 . . 3 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
12 alephnbtwn2 10067 . . . . . 6 Β¬ ((β„΅β€˜π΅) β‰Ί (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1312imnani 402 . . . . 5 ((β„΅β€˜π΅) β‰Ί (cardβ€˜π΄) β†’ Β¬ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
14 ensdomtr 9113 . . . . . 6 (((cardβ€˜π΄) β‰ˆ 𝐴 ∧ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)) β†’ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1510, 14mpancom 687 . . . . 5 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰Ί (β„΅β€˜suc 𝐡))
1613, 15nsyl3 138 . . . 4 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄))
17 cardon 9939 . . . . 5 (cardβ€˜π΄) ∈ On
18 alephon 10064 . . . . 5 (β„΅β€˜π΅) ∈ On
19 domtriord 9123 . . . . 5 (((cardβ€˜π΄) ∈ On ∧ (β„΅β€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) β‰Ό (β„΅β€˜π΅) ↔ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄)))
2017, 18, 19mp2an 691 . . . 4 ((cardβ€˜π΄) β‰Ό (β„΅β€˜π΅) ↔ Β¬ (β„΅β€˜π΅) β‰Ί (cardβ€˜π΄))
2116, 20sylibr 233 . . 3 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ (cardβ€˜π΄) β‰Ό (β„΅β€˜π΅))
22 endomtr 9008 . . 3 ((𝐴 β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰Ό (β„΅β€˜π΅)) β†’ 𝐴 β‰Ό (β„΅β€˜π΅))
2311, 21, 22syl2anc 585 . 2 (𝐴 β‰Ί (β„΅β€˜suc 𝐡) β†’ 𝐴 β‰Ό (β„΅β€˜π΅))
244, 23impbid1 224 1 (𝐡 ∈ On β†’ (𝐴 β‰Ό (β„΅β€˜π΅) ↔ 𝐴 β‰Ί (β„΅β€˜suc 𝐡)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∈ wcel 2107   class class class wbr 5149  dom cdm 5677  Oncon0 6365  suc csuc 6367  β€˜cfv 6544   β‰ˆ cen 8936   β‰Ό cdom 8937   β‰Ί csdm 8938  cardccrd 9930  β„΅cale 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-har 9552  df-card 9934  df-aleph 9935
This theorem is referenced by:  alephsuc2  10075  alephreg  10577
  Copyright terms: Public domain W3C validator