| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucdom | Structured version Visualization version GIF version | ||
| Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsucdom | ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 10095 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) | |
| 2 | domsdomtr 9134 | . . . 4 ⊢ ((𝐴 ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≺ (ℵ‘suc 𝐵)) → 𝐴 ≺ (ℵ‘suc 𝐵)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐴 ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ≺ (ℵ‘suc 𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 4 | 1, 3 | syl5com 31 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) → 𝐴 ≺ (ℵ‘suc 𝐵))) |
| 5 | sdomdom 9002 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘suc 𝐵)) | |
| 6 | alephon 10091 | . . . . . 6 ⊢ (ℵ‘suc 𝐵) ∈ On | |
| 7 | ondomen 10059 | . . . . . 6 ⊢ (((ℵ‘suc 𝐵) ∈ On ∧ 𝐴 ≼ (ℵ‘suc 𝐵)) → 𝐴 ∈ dom card) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ≼ (ℵ‘suc 𝐵) → 𝐴 ∈ dom card) |
| 9 | cardid2 9975 | . . . . 5 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≈ 𝐴) |
| 11 | 10 | ensymd 9027 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≈ (card‘𝐴)) |
| 12 | alephnbtwn2 10094 | . . . . . 6 ⊢ ¬ ((ℵ‘𝐵) ≺ (card‘𝐴) ∧ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 13 | 12 | imnani 400 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (card‘𝐴) → ¬ (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 14 | ensdomtr 9135 | . . . . . 6 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≺ (ℵ‘suc 𝐵)) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) | |
| 15 | 10, 14 | mpancom 688 | . . . . 5 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≺ (ℵ‘suc 𝐵)) |
| 16 | 13, 15 | nsyl3 138 | . . . 4 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 17 | cardon 9966 | . . . . 5 ⊢ (card‘𝐴) ∈ On | |
| 18 | alephon 10091 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
| 19 | domtriord 9145 | . . . . 5 ⊢ (((card‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ On) → ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴))) | |
| 20 | 17, 18, 19 | mp2an 692 | . . . 4 ⊢ ((card‘𝐴) ≼ (ℵ‘𝐵) ↔ ¬ (ℵ‘𝐵) ≺ (card‘𝐴)) |
| 21 | 16, 20 | sylibr 234 | . . 3 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → (card‘𝐴) ≼ (ℵ‘𝐵)) |
| 22 | endomtr 9034 | . . 3 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≼ (ℵ‘𝐵)) → 𝐴 ≼ (ℵ‘𝐵)) | |
| 23 | 11, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≺ (ℵ‘suc 𝐵) → 𝐴 ≼ (ℵ‘𝐵)) |
| 24 | 4, 23 | impbid1 225 | 1 ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5123 dom cdm 5665 Oncon0 6363 suc csuc 6365 ‘cfv 6541 ≈ cen 8964 ≼ cdom 8965 ≺ csdm 8966 cardccrd 9957 ℵcale 9958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-oi 9532 df-har 9579 df-card 9961 df-aleph 9962 |
| This theorem is referenced by: alephsuc2 10102 alephreg 10604 |
| Copyright terms: Public domain | W3C validator |