Step | Hyp | Ref
| Expression |
1 | | mreexmrid.2 |
. 2
⊢ 𝑁 = (mrCls‘𝐴) |
2 | | mreexmrid.3 |
. 2
⊢ 𝐼 = (mrInd‘𝐴) |
3 | | mreexmrid.1 |
. 2
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
4 | | mreexmrid.5 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝐼) |
5 | 2, 3, 4 | mrissd 17356 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
6 | | mreexmrid.6 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
7 | 6 | snssd 4748 |
. . 3
⊢ (𝜑 → {𝑌} ⊆ 𝑋) |
8 | 5, 7 | unssd 4125 |
. 2
⊢ (𝜑 → (𝑆 ∪ {𝑌}) ⊆ 𝑋) |
9 | 3 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝐴 ∈ (Moore‘𝑋)) |
10 | 9 | elfvexd 6805 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑋 ∈ V) |
11 | | mreexmrid.4 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
12 | 11 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
13 | 4 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑆 ∈ 𝐼) |
14 | 2, 9, 13 | mrissd 17356 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑆 ⊆ 𝑋) |
15 | 14 | ssdifssd 4082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
16 | 6 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑌 ∈ 𝑋) |
17 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
18 | | difundir 4220 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∖ {𝑥}) ∪ ({𝑌} ∖ {𝑥})) |
19 | | simp2 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥 ∈ 𝑆) |
20 | 3, 1, 5 | mrcssidd 17345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
21 | | mreexmrid.7 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘𝑆)) |
22 | 20, 21 | ssneldd 3929 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝑌 ∈ 𝑆) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌 ∈ 𝑆) |
24 | | nelneq 2865 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑆 ∧ ¬ 𝑌 ∈ 𝑆) → ¬ 𝑥 = 𝑌) |
25 | 19, 23, 24 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 = 𝑌) |
26 | | elsni 4584 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑌} → 𝑥 = 𝑌) |
27 | 25, 26 | nsyl 140 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 ∈ {𝑌}) |
28 | | difsnb 4745 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ {𝑌} ↔ ({𝑌} ∖ {𝑥}) = {𝑌}) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ({𝑌} ∖ {𝑥}) = {𝑌}) |
30 | 29 | uneq2d 4102 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∖ {𝑥}) ∪ ({𝑌} ∖ {𝑥})) = ((𝑆 ∖ {𝑥}) ∪ {𝑌})) |
31 | 18, 30 | eqtrid 2792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∖ {𝑥}) ∪ {𝑌})) |
32 | 31 | fveq2d 6775 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})) = (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑌}))) |
33 | 17, 32 | eleqtrd 2843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑌}))) |
34 | 1, 2, 9, 13, 19 | ismri2dad 17357 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
35 | 10, 12, 15, 16, 33, 34 | mreexd 17362 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑌 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥}))) |
36 | 21 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌 ∈ (𝑁‘𝑆)) |
37 | | undif1 4415 |
. . . . . . . . . . 11
⊢ ((𝑆 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥}) |
38 | 19 | snssd 4748 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → {𝑥} ⊆ 𝑆) |
39 | | ssequn2 4122 |
. . . . . . . . . . . 12
⊢ ({𝑥} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑥}) = 𝑆) |
40 | 38, 39 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑆 ∪ {𝑥}) = 𝑆) |
41 | 37, 40 | eqtrid 2792 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∖ {𝑥}) ∪ {𝑥}) = 𝑆) |
42 | 41 | fveq2d 6775 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥})) = (𝑁‘𝑆)) |
43 | 36, 42 | neleqtrrd 2863 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥}))) |
44 | 35, 43 | pm2.65i 193 |
. . . . . . 7
⊢ ¬
(𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
45 | | df-3an 1088 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))) |
46 | 44, 45 | mtbi 322 |
. . . . . 6
⊢ ¬
((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
47 | 46 | imnani 401 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
48 | 47 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ 𝑆) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
49 | 26 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → 𝑥 = 𝑌) |
50 | 21 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑌 ∈ (𝑁‘𝑆)) |
51 | 49, 50 | eqneltrd 2860 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑥 ∈ (𝑁‘𝑆)) |
52 | 49 | sneqd 4579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → {𝑥} = {𝑌}) |
53 | 52 | difeq2d 4062 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∪ {𝑌}) ∖ {𝑌})) |
54 | | difun2 4420 |
. . . . . . . 8
⊢ ((𝑆 ∪ {𝑌}) ∖ {𝑌}) = (𝑆 ∖ {𝑌}) |
55 | 53, 54 | eqtrdi 2796 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
56 | | difsnb 4745 |
. . . . . . . . 9
⊢ (¬
𝑌 ∈ 𝑆 ↔ (𝑆 ∖ {𝑌}) = 𝑆) |
57 | 22, 56 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∖ {𝑌}) = 𝑆) |
58 | 57 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → (𝑆 ∖ {𝑌}) = 𝑆) |
59 | 55, 58 | eqtrd 2780 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = 𝑆) |
60 | 59 | fveq2d 6775 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})) = (𝑁‘𝑆)) |
61 | 51, 60 | neleqtrrd 2863 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
62 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) → 𝑥 ∈ (𝑆 ∪ {𝑌})) |
63 | | elun 4088 |
. . . . 5
⊢ (𝑥 ∈ (𝑆 ∪ {𝑌}) ↔ (𝑥 ∈ 𝑆 ∨ 𝑥 ∈ {𝑌})) |
64 | 62, 63 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) → (𝑥 ∈ 𝑆 ∨ 𝑥 ∈ {𝑌})) |
65 | 48, 61, 64 | mpjaodan 956 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ∪ {𝑌})) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
66 | 65 | ralrimiva 3110 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝑆 ∪ {𝑌}) ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) |
67 | 1, 2, 3, 8, 66 | ismri2dd 17354 |
1
⊢ (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼) |