![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpvmasum | Structured version Visualization version GIF version |
Description: The sum of the von Mangoldt function over those integers πβ‘π΄ (mod π) is asymptotic to logπ₯ / Ο(π₯) + π(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum.u | β’ π = (Unitβπ) |
rpvmasum.b | β’ (π β π΄ β π) |
rpvmasum.t | β’ π = (β‘πΏ β {π΄}) |
Ref | Expression |
---|---|
rpvmasum | β’ (π β (π₯ β β+ β¦ (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β (logβπ₯))) β π(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . . . . . . . . . . . . 14 β’ π = (β€/nβ€βπ) | |
2 | rpvmasum.l | . . . . . . . . . . . . . 14 β’ πΏ = (β€RHomβπ) | |
3 | rpvmasum.a | . . . . . . . . . . . . . . 15 β’ (π β π β β) | |
4 | 3 | adantr 479 | . . . . . . . . . . . . . 14 β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π β β) |
5 | eqid 2728 | . . . . . . . . . . . . . 14 β’ (DChrβπ) = (DChrβπ) | |
6 | eqid 2728 | . . . . . . . . . . . . . 14 β’ (Baseβ(DChrβπ)) = (Baseβ(DChrβπ)) | |
7 | eqid 2728 | . . . . . . . . . . . . . 14 β’ (0gβ(DChrβπ)) = (0gβ(DChrβπ)) | |
8 | 2fveq3 6907 | . . . . . . . . . . . . . . . . . 18 β’ (π = π β (π¦β(πΏβπ)) = (π¦β(πΏβπ))) | |
9 | id 22 | . . . . . . . . . . . . . . . . . 18 β’ (π = π β π = π) | |
10 | 8, 9 | oveq12d 7444 | . . . . . . . . . . . . . . . . 17 β’ (π = π β ((π¦β(πΏβπ)) / π) = ((π¦β(πΏβπ)) / π)) |
11 | 10 | cbvsumv 15684 | . . . . . . . . . . . . . . . 16 β’ Ξ£π β β ((π¦β(πΏβπ)) / π) = Ξ£π β β ((π¦β(πΏβπ)) / π) |
12 | 11 | eqeq1i 2733 | . . . . . . . . . . . . . . 15 β’ (Ξ£π β β ((π¦β(πΏβπ)) / π) = 0 β Ξ£π β β ((π¦β(πΏβπ)) / π) = 0) |
13 | 12 | rabbii 3436 | . . . . . . . . . . . . . 14 β’ {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} |
14 | simpr 483 | . . . . . . . . . . . . . 14 β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) | |
15 | 1, 2, 4, 5, 6, 7, 13, 14 | dchrisum0 27481 | . . . . . . . . . . . . 13 β’ Β¬ (π β§ π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) |
16 | 15 | imnani 399 | . . . . . . . . . . . 12 β’ (π β Β¬ π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) |
17 | 16 | eq0rdv 4408 | . . . . . . . . . . 11 β’ (π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = β ) |
18 | 17 | fveq2d 6906 | . . . . . . . . . 10 β’ (π β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) = (β―ββ )) |
19 | hash0 14368 | . . . . . . . . . 10 β’ (β―ββ ) = 0 | |
20 | 18, 19 | eqtrdi 2784 | . . . . . . . . 9 β’ (π β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) = 0) |
21 | 20 | oveq2d 7442 | . . . . . . . 8 β’ (π β (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = (1 β 0)) |
22 | 1m0e1 12373 | . . . . . . . 8 β’ (1 β 0) = 1 | |
23 | 21, 22 | eqtrdi 2784 | . . . . . . 7 β’ (π β (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = 1) |
24 | 23 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β β+) β (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = 1) |
25 | 24 | oveq2d 7442 | . . . . 5 β’ ((π β§ π₯ β β+) β ((logβπ₯) Β· (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))) = ((logβπ₯) Β· 1)) |
26 | relogcl 26537 | . . . . . . . 8 β’ (π₯ β β+ β (logβπ₯) β β) | |
27 | 26 | adantl 480 | . . . . . . 7 β’ ((π β§ π₯ β β+) β (logβπ₯) β β) |
28 | 27 | recnd 11282 | . . . . . 6 β’ ((π β§ π₯ β β+) β (logβπ₯) β β) |
29 | 28 | mulridd 11271 | . . . . 5 β’ ((π β§ π₯ β β+) β ((logβπ₯) Β· 1) = (logβπ₯)) |
30 | 25, 29 | eqtrd 2768 | . . . 4 β’ ((π β§ π₯ β β+) β ((logβπ₯) Β· (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))) = (logβπ₯)) |
31 | 30 | oveq2d 7442 | . . 3 β’ ((π β§ π₯ β β+) β (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})))) = (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β (logβπ₯))) |
32 | 31 | mpteq2dva 5252 | . 2 β’ (π β (π₯ β β+ β¦ (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))))) = (π₯ β β+ β¦ (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β (logβπ₯)))) |
33 | eqid 2728 | . . 3 β’ {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} | |
34 | rpvmasum.u | . . 3 β’ π = (Unitβπ) | |
35 | rpvmasum.b | . . 3 β’ (π β π΄ β π) | |
36 | rpvmasum.t | . . 3 β’ π = (β‘πΏ β {π΄}) | |
37 | 15 | pm2.21i 119 | . . 3 β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π΄ = (1rβπ)) |
38 | 1, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37 | rpvmasum2 27473 | . 2 β’ (π β (π₯ β β+ β¦ (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β ((Baseβ(DChrβπ)) β {(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))))) β π(1)) |
39 | 32, 38 | eqeltrrd 2830 | 1 β’ (π β (π₯ β β+ β¦ (((Οβπ) Β· Ξ£π β ((1...(ββπ₯)) β© π)((Ξβπ) / π)) β (logβπ₯))) β π(1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3430 β cdif 3946 β© cin 3948 β c0 4326 {csn 4632 β¦ cmpt 5235 β‘ccnv 5681 β cima 5685 βcfv 6553 (class class class)co 7426 βcr 11147 0cc0 11148 1c1 11149 Β· cmul 11153 β cmin 11484 / cdiv 11911 βcn 12252 β+crp 13016 ...cfz 13526 βcfl 13797 β―chash 14331 π(1)co1 15472 Ξ£csu 15674 Οcphi 16742 Basecbs 17189 0gc0g 17430 1rcur 20135 Unitcui 20308 β€RHomczrh 21439 β€/nβ€czn 21442 logclog 26516 Ξcvma 27052 DChrcdchr 27193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 ax-mulf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-disj 5118 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-rpss 7736 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-oadd 8499 df-omul 8500 df-er 8733 df-ec 8735 df-qs 8739 df-map 8855 df-pm 8856 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-dju 9934 df-card 9972 df-acn 9975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-xnn0 12585 df-z 12599 df-dec 12718 df-uz 12863 df-q 12973 df-rp 13017 df-xneg 13134 df-xadd 13135 df-xmul 13136 df-ioo 13370 df-ioc 13371 df-ico 13372 df-icc 13373 df-fz 13527 df-fzo 13670 df-fl 13799 df-mod 13877 df-seq 14009 df-exp 14069 df-fac 14275 df-bc 14304 df-hash 14332 df-word 14507 df-concat 14563 df-s1 14588 df-shft 15056 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-limsup 15457 df-clim 15474 df-rlim 15475 df-o1 15476 df-lo1 15477 df-sum 15675 df-ef 16053 df-e 16054 df-sin 16055 df-cos 16056 df-tan 16057 df-pi 16058 df-dvds 16241 df-gcd 16479 df-prm 16652 df-numer 16716 df-denom 16717 df-phi 16744 df-pc 16815 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-hom 17266 df-cco 17267 df-rest 17413 df-topn 17414 df-0g 17432 df-gsum 17433 df-topgen 17434 df-pt 17435 df-prds 17438 df-xrs 17493 df-qtop 17498 df-imas 17499 df-qus 17500 df-xps 17501 df-mre 17575 df-mrc 17576 df-acs 17578 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mhm 18749 df-submnd 18750 df-grp 18907 df-minusg 18908 df-sbg 18909 df-mulg 19038 df-subg 19092 df-nsg 19093 df-eqg 19094 df-ghm 19182 df-gim 19227 df-ga 19255 df-cntz 19282 df-oppg 19311 df-od 19497 df-gex 19498 df-pgp 19499 df-lsm 19605 df-pj1 19606 df-cmn 19751 df-abl 19752 df-cyg 19847 df-dprd 19966 df-dpj 19967 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-cring 20190 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-rhm 20425 df-subrng 20497 df-subrg 20522 df-drng 20640 df-lmod 20759 df-lss 20830 df-lsp 20870 df-sra 21072 df-rgmod 21073 df-lidl 21118 df-rsp 21119 df-2idl 21158 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-zring 21387 df-zrh 21443 df-zn 21446 df-top 22824 df-topon 22841 df-topsp 22863 df-bases 22877 df-cld 22951 df-ntr 22952 df-cls 22953 df-nei 23030 df-lp 23068 df-perf 23069 df-cn 23159 df-cnp 23160 df-haus 23247 df-cmp 23319 df-tx 23494 df-hmeo 23687 df-fil 23778 df-fm 23870 df-flim 23871 df-flf 23872 df-xms 24254 df-ms 24255 df-tms 24256 df-cncf 24826 df-0p 25627 df-limc 25823 df-dv 25824 df-ply 26150 df-idp 26151 df-coe 26152 df-dgr 26153 df-quot 26254 df-ulm 26341 df-log 26518 df-cxp 26519 df-atan 26827 df-em 26953 df-cht 27057 df-vma 27058 df-chp 27059 df-ppi 27060 df-mu 27061 df-dchr 27194 |
This theorem is referenced by: rplogsum 27488 |
Copyright terms: Public domain | W3C validator |