![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpvmasum | Structured version Visualization version GIF version |
Description: The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.u | ⊢ 𝑈 = (Unit‘𝑍) |
rpvmasum.b | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
rpvmasum.t | ⊢ 𝑇 = (◡𝐿 “ {𝐴}) |
Ref | Expression |
---|---|
rpvmasum | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . . . . . . . . . . . . 14 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | 3 | adantr 473 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ) |
5 | eqid 2797 | . . . . . . . . . . . . . 14 ⊢ (DChr‘𝑁) = (DChr‘𝑁) | |
6 | eqid 2797 | . . . . . . . . . . . . . 14 ⊢ (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁)) | |
7 | eqid 2797 | . . . . . . . . . . . . . 14 ⊢ (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁)) | |
8 | 2fveq3 6414 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → (𝑦‘(𝐿‘𝑚)) = (𝑦‘(𝐿‘𝑛))) | |
9 | id 22 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) | |
10 | 8, 9 | oveq12d 6894 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑚 = 𝑛 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑦‘(𝐿‘𝑛)) / 𝑛)) |
11 | 10 | cbvsumv 14764 | . . . . . . . . . . . . . . . 16 ⊢ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) |
12 | 11 | eqeq1i 2802 | . . . . . . . . . . . . . . 15 ⊢ (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0) |
13 | 12 | rabbii 3367 | . . . . . . . . . . . . . 14 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0} |
14 | simpr 478 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) | |
15 | 1, 2, 4, 5, 6, 7, 13, 14 | dchrisum0 25558 | . . . . . . . . . . . . 13 ⊢ ¬ (𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
16 | 15 | imnani 390 | . . . . . . . . . . . 12 ⊢ (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
17 | 16 | eq0rdv 4173 | . . . . . . . . . . 11 ⊢ (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = ∅) |
18 | 17 | fveq2d 6413 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = (♯‘∅)) |
19 | hash0 13404 | . . . . . . . . . 10 ⊢ (♯‘∅) = 0 | |
20 | 18, 19 | syl6eq 2847 | . . . . . . . . 9 ⊢ (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = 0) |
21 | 20 | oveq2d 6892 | . . . . . . . 8 ⊢ (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = (1 − 0)) |
22 | 1m0e1 11437 | . . . . . . . 8 ⊢ (1 − 0) = 1 | |
23 | 21, 22 | syl6eq 2847 | . . . . . . 7 ⊢ (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
24 | 23 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
25 | 24 | oveq2d 6892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1)) |
26 | relogcl 24660 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
27 | 26 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
28 | 27 | recnd 10355 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
29 | 28 | mulid1d 10344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥)) |
30 | 25, 29 | eqtrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = (log‘𝑥)) |
31 | 30 | oveq2d 6892 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) |
32 | 31 | mpteq2dva 4935 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))) |
33 | eqid 2797 | . . 3 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
34 | rpvmasum.u | . . 3 ⊢ 𝑈 = (Unit‘𝑍) | |
35 | rpvmasum.b | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
36 | rpvmasum.t | . . 3 ⊢ 𝑇 = (◡𝐿 “ {𝐴}) | |
37 | 15 | pm2.21i 117 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝐴 = (1r‘𝑍)) |
38 | 1, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37 | rpvmasum2 25550 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1)) |
39 | 32, 38 | eqeltrrd 2877 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3091 ∖ cdif 3764 ∩ cin 3766 ∅c0 4113 {csn 4366 ↦ cmpt 4920 ◡ccnv 5309 “ cima 5313 ‘cfv 6099 (class class class)co 6876 ℝcr 10221 0cc0 10222 1c1 10223 · cmul 10227 − cmin 10554 / cdiv 10974 ℕcn 11310 ℝ+crp 12070 ...cfz 12576 ⌊cfl 12842 ♯chash 13366 𝑂(1)co1 14555 Σcsu 14754 ϕcphi 15799 Basecbs 16181 0gc0g 16412 1rcur 18814 Unitcui 18952 ℤRHomczrh 20167 ℤ/nℤczn 20170 logclog 24639 Λcvma 25167 DChrcdchr 25306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-disj 4810 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-rpss 7169 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-omul 7802 df-er 7980 df-ec 7982 df-qs 7986 df-map 8095 df-pm 8096 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-fi 8557 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-acn 9052 df-cda 9276 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-xnn0 11649 df-z 11663 df-dec 11780 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ioo 12424 df-ioc 12425 df-ico 12426 df-icc 12427 df-fz 12577 df-fzo 12717 df-fl 12844 df-mod 12920 df-seq 13052 df-exp 13111 df-fac 13310 df-bc 13339 df-hash 13367 df-word 13531 df-concat 13587 df-s1 13612 df-shft 14145 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-limsup 14540 df-clim 14557 df-rlim 14558 df-o1 14559 df-lo1 14560 df-sum 14755 df-ef 15131 df-e 15132 df-sin 15133 df-cos 15134 df-pi 15136 df-dvds 15317 df-gcd 15549 df-prm 15717 df-numer 15773 df-denom 15774 df-phi 15801 df-pc 15872 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-hom 16288 df-cco 16289 df-rest 16395 df-topn 16396 df-0g 16414 df-gsum 16415 df-topgen 16416 df-pt 16417 df-prds 16420 df-xrs 16474 df-qtop 16479 df-imas 16480 df-qus 16481 df-xps 16482 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-nsg 17902 df-eqg 17903 df-ghm 17968 df-gim 18011 df-ga 18032 df-cntz 18059 df-oppg 18085 df-od 18258 df-gex 18259 df-pgp 18260 df-lsm 18361 df-pj1 18362 df-cmn 18507 df-abl 18508 df-cyg 18592 df-dprd 18707 df-dpj 18708 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-dvr 18996 df-rnghom 19030 df-drng 19064 df-subrg 19093 df-lmod 19180 df-lss 19248 df-lsp 19290 df-sra 19492 df-rgmod 19493 df-lidl 19494 df-rsp 19495 df-2idl 19552 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-fbas 20062 df-fg 20063 df-cnfld 20066 df-zring 20138 df-zrh 20171 df-zn 20174 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-cld 21149 df-ntr 21150 df-cls 21151 df-nei 21228 df-lp 21266 df-perf 21267 df-cn 21357 df-cnp 21358 df-haus 21445 df-cmp 21516 df-tx 21691 df-hmeo 21884 df-fil 21975 df-fm 22067 df-flim 22068 df-flf 22069 df-xms 22450 df-ms 22451 df-tms 22452 df-cncf 23006 df-0p 23775 df-limc 23968 df-dv 23969 df-ply 24282 df-idp 24283 df-coe 24284 df-dgr 24285 df-quot 24384 df-log 24641 df-cxp 24642 df-em 25068 df-cht 25172 df-vma 25173 df-chp 25174 df-ppi 25175 df-mu 25176 df-dchr 25307 |
This theorem is referenced by: rplogsum 25565 |
Copyright terms: Public domain | W3C validator |