MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum Structured version   Visualization version   GIF version

Theorem rpvmasum 26029
Description: The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rpvmasum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥   𝑈,𝑛,𝑥   𝑛,𝑍,𝑥   𝑛,𝐿,𝑥   𝐴,𝑛

Proof of Theorem rpvmasum
Dummy variables 𝑚 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . . . . . . . . . . . 14 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . . . . . . . . . . . . 14 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
43adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ)
5 eqid 2818 . . . . . . . . . . . . . 14 (DChr‘𝑁) = (DChr‘𝑁)
6 eqid 2818 . . . . . . . . . . . . . 14 (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁))
7 eqid 2818 . . . . . . . . . . . . . 14 (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁))
8 2fveq3 6668 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑦‘(𝐿𝑚)) = (𝑦‘(𝐿𝑛)))
9 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛𝑚 = 𝑛)
108, 9oveq12d 7163 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑦‘(𝐿𝑛)) / 𝑛))
1110cbvsumv 15041 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛)
1211eqeq1i 2823 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0)
1312rabbii 3471 . . . . . . . . . . . . . 14 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0}
14 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
151, 2, 4, 5, 6, 7, 13, 14dchrisum0 26023 . . . . . . . . . . . . 13 ¬ (𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1615imnani 401 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1716eq0rdv 4354 . . . . . . . . . . 11 (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = ∅)
1817fveq2d 6667 . . . . . . . . . 10 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = (♯‘∅))
19 hash0 13716 . . . . . . . . . 10 (♯‘∅) = 0
2018, 19syl6eq 2869 . . . . . . . . 9 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = 0)
2120oveq2d 7161 . . . . . . . 8 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = (1 − 0))
22 1m0e1 11746 . . . . . . . 8 (1 − 0) = 1
2321, 22syl6eq 2869 . . . . . . 7 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2423adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2524oveq2d 7161 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1))
26 relogcl 25086 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 10657 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2928mulid1d 10646 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
3025, 29eqtrd 2853 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = (log‘𝑥))
3130oveq2d 7161 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
3231mpteq2dva 5152 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
33 eqid 2818 . . 3 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
34 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
35 rpvmasum.b . . 3 (𝜑𝐴𝑈)
36 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
3715pm2.21i 119 . . 3 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝐴 = (1r𝑍))
381, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37rpvmasum2 26015 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1))
3932, 38eqeltrrd 2911 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {crab 3139  cdif 3930  cin 3932  c0 4288  {csn 4557  cmpt 5137  ccnv 5547  cima 5551  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  cmin 10858   / cdiv 11285  cn 11626  +crp 12377  ...cfz 12880  cfl 13148  chash 13678  𝑂(1)co1 14831  Σcsu 15030  ϕcphi 16089  Basecbs 16471  0gc0g 16701  1rcur 19180  Unitcui 19318  ℤRHomczrh 20575  ℤ/nczn 20578  logclog 25065  Λcvma 25596  DChrcdchr 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-rpss 7438  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-o1 14835  df-lo1 14836  df-sum 15031  df-ef 15409  df-e 15410  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-dvds 15596  df-gcd 15832  df-prm 16004  df-numer 16063  df-denom 16064  df-phi 16091  df-pc 16162  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-qus 16770  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-nsg 18215  df-eqg 18216  df-ghm 18294  df-gim 18337  df-ga 18358  df-cntz 18385  df-oppg 18412  df-od 18585  df-gex 18586  df-pgp 18587  df-lsm 18690  df-pj1 18691  df-cmn 18837  df-abl 18838  df-cyg 18926  df-dprd 19046  df-dpj 19047  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rsp 19876  df-2idl 19933  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-zring 20546  df-zrh 20579  df-zn 20582  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-0p 24198  df-limc 24391  df-dv 24392  df-ply 24705  df-idp 24706  df-coe 24707  df-dgr 24708  df-quot 24807  df-ulm 24892  df-log 25067  df-cxp 25068  df-atan 25372  df-em 25497  df-cht 25601  df-vma 25602  df-chp 25603  df-ppi 25604  df-mu 25605  df-dchr 25736
This theorem is referenced by:  rplogsum  26030
  Copyright terms: Public domain W3C validator