| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpvmasum | Structured version Visualization version GIF version | ||
| Description: The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum.u | ⊢ 𝑈 = (Unit‘𝑍) |
| rpvmasum.b | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| rpvmasum.t | ⊢ 𝑇 = (◡𝐿 “ {𝐴}) |
| Ref | Expression |
|---|---|
| rpvmasum | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpvmasum.z | . . . . . . . . . . . . . 14 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 2 | rpvmasum.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 3 | rpvmasum.a | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | 3 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ) |
| 5 | eqid 2731 | . . . . . . . . . . . . . 14 ⊢ (DChr‘𝑁) = (DChr‘𝑁) | |
| 6 | eqid 2731 | . . . . . . . . . . . . . 14 ⊢ (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁)) | |
| 7 | eqid 2731 | . . . . . . . . . . . . . 14 ⊢ (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁)) | |
| 8 | 2fveq3 6822 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → (𝑦‘(𝐿‘𝑚)) = (𝑦‘(𝐿‘𝑛))) | |
| 9 | id 22 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) | |
| 10 | 8, 9 | oveq12d 7359 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑚 = 𝑛 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑦‘(𝐿‘𝑛)) / 𝑛)) |
| 11 | 10 | cbvsumv 15598 | . . . . . . . . . . . . . . . 16 ⊢ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) |
| 12 | 11 | eqeq1i 2736 | . . . . . . . . . . . . . . 15 ⊢ (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0) |
| 13 | 12 | rabbii 3400 | . . . . . . . . . . . . . 14 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿‘𝑛)) / 𝑛) = 0} |
| 14 | simpr 484 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) | |
| 15 | 1, 2, 4, 5, 6, 7, 13, 14 | dchrisum0 27453 | . . . . . . . . . . . . 13 ⊢ ¬ (𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
| 16 | 15 | imnani 400 | . . . . . . . . . . . 12 ⊢ (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) |
| 17 | 16 | eq0rdv 4352 | . . . . . . . . . . 11 ⊢ (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = ∅) |
| 18 | 17 | fveq2d 6821 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = (♯‘∅)) |
| 19 | hash0 14269 | . . . . . . . . . 10 ⊢ (♯‘∅) = 0 | |
| 20 | 18, 19 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) = 0) |
| 21 | 20 | oveq2d 7357 | . . . . . . . 8 ⊢ (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = (1 − 0)) |
| 22 | 1m0e1 12236 | . . . . . . . 8 ⊢ (1 − 0) = 1 | |
| 23 | 21, 22 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})) = 1) |
| 25 | 24 | oveq2d 7357 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1)) |
| 26 | relogcl 26506 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
| 28 | 27 | recnd 11135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 29 | 28 | mulridd 11124 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥)) |
| 30 | 25, 29 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))) = (log‘𝑥)) |
| 31 | 30 | oveq2d 7357 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) |
| 32 | 31 | mpteq2dva 5179 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))) |
| 33 | eqid 2731 | . . 3 ⊢ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
| 34 | rpvmasum.u | . . 3 ⊢ 𝑈 = (Unit‘𝑍) | |
| 35 | rpvmasum.b | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 36 | rpvmasum.t | . . 3 ⊢ 𝑇 = (◡𝐿 “ {𝐴}) | |
| 37 | 15 | pm2.21i 119 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}) → 𝐴 = (1r‘𝑍)) |
| 38 | 1, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37 | rpvmasum2 27445 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1)) |
| 39 | 32, 38 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∩ cin 3896 ∅c0 4278 {csn 4571 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 − cmin 11339 / cdiv 11769 ℕcn 12120 ℝ+crp 12885 ...cfz 13402 ⌊cfl 13689 ♯chash 14232 𝑂(1)co1 15388 Σcsu 15588 ϕcphi 16670 Basecbs 17115 0gc0g 17338 1rcur 20094 Unitcui 20268 ℤRHomczrh 21431 ℤ/nℤczn 21434 logclog 26485 Λcvma 27024 DChrcdchr 27165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-o1 15392 df-lo1 15393 df-sum 15589 df-ef 15969 df-e 15970 df-sin 15971 df-cos 15972 df-tan 15973 df-pi 15974 df-dvds 16159 df-gcd 16401 df-prm 16578 df-numer 16641 df-denom 16642 df-phi 16672 df-pc 16744 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-qus 17408 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19120 df-gim 19166 df-ga 19197 df-cntz 19224 df-oppg 19253 df-od 19435 df-gex 19436 df-pgp 19437 df-lsm 19543 df-pj1 19544 df-cmn 19689 df-abl 19690 df-cyg 19785 df-dprd 19904 df-dpj 19905 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-sra 21102 df-rgmod 21103 df-lidl 21140 df-rsp 21141 df-2idl 21182 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-zring 21379 df-zrh 21435 df-zn 21438 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-0p 25593 df-limc 25789 df-dv 25790 df-ply 26115 df-idp 26116 df-coe 26117 df-dgr 26118 df-quot 26221 df-ulm 26308 df-log 26487 df-cxp 26488 df-atan 26799 df-em 26925 df-cht 27029 df-vma 27030 df-chp 27031 df-ppi 27032 df-mu 27033 df-dchr 27166 |
| This theorem is referenced by: rplogsum 27460 |
| Copyright terms: Public domain | W3C validator |