Step | Hyp | Ref
| Expression |
1 | | rpvmasum.z |
. . . . . . . . . . . . . 14
β’ π =
(β€/nβ€βπ) |
2 | | rpvmasum.l |
. . . . . . . . . . . . . 14
β’ πΏ = (β€RHomβπ) |
3 | | rpvmasum.a |
. . . . . . . . . . . . . . 15
β’ (π β π β β) |
4 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π β β) |
5 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(DChrβπ) =
(DChrβπ) |
6 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Baseβ(DChrβπ)) = (Baseβ(DChrβπ)) |
7 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(0gβ(DChrβπ)) = (0gβ(DChrβπ)) |
8 | | 2fveq3 6896 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (π¦β(πΏβπ)) = (π¦β(πΏβπ))) |
9 | | id 22 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β π = π) |
10 | 8, 9 | oveq12d 7426 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((π¦β(πΏβπ)) / π) = ((π¦β(πΏβπ)) / π)) |
11 | 10 | cbvsumv 15641 |
. . . . . . . . . . . . . . . 16
β’
Ξ£π β
β ((π¦β(πΏβπ)) / π) = Ξ£π β β ((π¦β(πΏβπ)) / π) |
12 | 11 | eqeq1i 2737 |
. . . . . . . . . . . . . . 15
β’
(Ξ£π β
β ((π¦β(πΏβπ)) / π) = 0 β Ξ£π β β ((π¦β(πΏβπ)) / π) = 0) |
13 | 12 | rabbii 3438 |
. . . . . . . . . . . . . 14
β’ {π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} |
14 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) |
15 | 1, 2, 4, 5, 6, 7, 13, 14 | dchrisum0 27020 |
. . . . . . . . . . . . 13
β’ Β¬
(π β§ π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) |
16 | 15 | imnani 401 |
. . . . . . . . . . . 12
β’ (π β Β¬ π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) |
17 | 16 | eq0rdv 4404 |
. . . . . . . . . . 11
β’ (π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = β
) |
18 | 17 | fveq2d 6895 |
. . . . . . . . . 10
β’ (π β (β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) =
(β―ββ
)) |
19 | | hash0 14326 |
. . . . . . . . . 10
β’
(β―ββ
) = 0 |
20 | 18, 19 | eqtrdi 2788 |
. . . . . . . . 9
β’ (π β (β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) = 0) |
21 | 20 | oveq2d 7424 |
. . . . . . . 8
β’ (π β (1 β
(β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = (1 β 0)) |
22 | | 1m0e1 12332 |
. . . . . . . 8
β’ (1
β 0) = 1 |
23 | 21, 22 | eqtrdi 2788 |
. . . . . . 7
β’ (π β (1 β
(β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = 1) |
24 | 23 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β β+) β (1
β (β―β{π¦
β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})) = 1) |
25 | 24 | oveq2d 7424 |
. . . . 5
β’ ((π β§ π₯ β β+) β
((logβπ₯) Β· (1
β (β―β{π¦
β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))) = ((logβπ₯) Β· 1)) |
26 | | relogcl 26083 |
. . . . . . . 8
β’ (π₯ β β+
β (logβπ₯) β
β) |
27 | 26 | adantl 482 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
28 | 27 | recnd 11241 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
29 | 28 | mulridd 11230 |
. . . . 5
β’ ((π β§ π₯ β β+) β
((logβπ₯) Β· 1)
= (logβπ₯)) |
30 | 25, 29 | eqtrd 2772 |
. . . 4
β’ ((π β§ π₯ β β+) β
((logβπ₯) Β· (1
β (β―β{π¦
β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))) = (logβπ₯)) |
31 | 30 | oveq2d 7424 |
. . 3
β’ ((π β§ π₯ β β+) β
(((Οβπ) Β·
Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0})))) = (((Οβπ) Β· Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β (logβπ₯))) |
32 | 31 | mpteq2dva 5248 |
. 2
β’ (π β (π₯ β β+ β¦
(((Οβπ) Β·
Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))))) = (π₯ β β+ β¦
(((Οβπ) Β·
Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β (logβπ₯)))) |
33 | | eqid 2732 |
. . 3
β’ {π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} = {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} |
34 | | rpvmasum.u |
. . 3
β’ π = (Unitβπ) |
35 | | rpvmasum.b |
. . 3
β’ (π β π΄ β π) |
36 | | rpvmasum.t |
. . 3
β’ π = (β‘πΏ β {π΄}) |
37 | 15 | pm2.21i 119 |
. . 3
β’ ((π β§ π β {π¦ β ((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}) β π΄ = (1rβπ)) |
38 | 1, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37 | rpvmasum2 27012 |
. 2
β’ (π β (π₯ β β+ β¦
(((Οβπ) Β·
Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β ((logβπ₯) Β· (1 β (β―β{π¦ β
((Baseβ(DChrβπ)) β
{(0gβ(DChrβπ))}) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0}))))) β
π(1)) |
39 | 32, 38 | eqeltrrd 2834 |
1
β’ (π β (π₯ β β+ β¦
(((Οβπ) Β·
Ξ£π β
((1...(ββπ₯))
β© π)((Ξβπ) / π)) β (logβπ₯))) β π(1)) |