MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum Structured version   Visualization version   GIF version

Theorem rpvmasum 27588
Description: The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rpvmasum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥   𝑈,𝑛,𝑥   𝑛,𝑍,𝑥   𝑛,𝐿,𝑥   𝐴,𝑛

Proof of Theorem rpvmasum
Dummy variables 𝑚 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . . . . . . . . . . . 14 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . . . . . . . . . . . . 14 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ)
5 eqid 2740 . . . . . . . . . . . . . 14 (DChr‘𝑁) = (DChr‘𝑁)
6 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁))
7 eqid 2740 . . . . . . . . . . . . . 14 (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁))
8 2fveq3 6925 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑦‘(𝐿𝑚)) = (𝑦‘(𝐿𝑛)))
9 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛𝑚 = 𝑛)
108, 9oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑦‘(𝐿𝑛)) / 𝑛))
1110cbvsumv 15744 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛)
1211eqeq1i 2745 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0)
1312rabbii 3449 . . . . . . . . . . . . . 14 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0}
14 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
151, 2, 4, 5, 6, 7, 13, 14dchrisum0 27582 . . . . . . . . . . . . 13 ¬ (𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1615imnani 400 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1716eq0rdv 4430 . . . . . . . . . . 11 (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = ∅)
1817fveq2d 6924 . . . . . . . . . 10 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = (♯‘∅))
19 hash0 14416 . . . . . . . . . 10 (♯‘∅) = 0
2018, 19eqtrdi 2796 . . . . . . . . 9 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = 0)
2120oveq2d 7464 . . . . . . . 8 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = (1 − 0))
22 1m0e1 12414 . . . . . . . 8 (1 − 0) = 1
2321, 22eqtrdi 2796 . . . . . . 7 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2423adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2524oveq2d 7464 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1))
26 relogcl 26635 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 11318 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2928mulridd 11307 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
3025, 29eqtrd 2780 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = (log‘𝑥))
3130oveq2d 7464 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
3231mpteq2dva 5266 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
33 eqid 2740 . . 3 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
34 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
35 rpvmasum.b . . 3 (𝜑𝐴𝑈)
36 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
3715pm2.21i 119 . . 3 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝐴 = (1r𝑍))
381, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37rpvmasum2 27574 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1))
3932, 38eqeltrrd 2845 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  cin 3975  c0 4352  {csn 4648  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cmin 11520   / cdiv 11947  cn 12293  +crp 13057  ...cfz 13567  cfl 13841  chash 14379  𝑂(1)co1 15532  Σcsu 15734  ϕcphi 16811  Basecbs 17258  0gc0g 17499  1rcur 20208  Unitcui 20381  ℤRHomczrh 21533  ℤ/nczn 21536  logclog 26614  Λcvma 27153  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-numer 16782  df-denom 16783  df-phi 16813  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-ga 19330  df-cntz 19357  df-oppg 19386  df-od 19570  df-gex 19571  df-pgp 19572  df-lsm 19678  df-pj1 19679  df-cmn 19824  df-abl 19825  df-cyg 19920  df-dprd 20039  df-dpj 20040  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-limc 25921  df-dv 25922  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-quot 26351  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-em 27054  df-cht 27158  df-vma 27159  df-chp 27160  df-ppi 27161  df-mu 27162  df-dchr 27295
This theorem is referenced by:  rplogsum  27589
  Copyright terms: Public domain W3C validator