MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum Structured version   Visualization version   GIF version

Theorem rpvmasum 25564
Description: The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rpvmasum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥   𝑈,𝑛,𝑥   𝑛,𝑍,𝑥   𝑛,𝐿,𝑥   𝐴,𝑛

Proof of Theorem rpvmasum
Dummy variables 𝑚 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . . . . . . . . . . . . 14 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . . . . . . . . . . . . 14 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
43adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑁 ∈ ℕ)
5 eqid 2797 . . . . . . . . . . . . . 14 (DChr‘𝑁) = (DChr‘𝑁)
6 eqid 2797 . . . . . . . . . . . . . 14 (Base‘(DChr‘𝑁)) = (Base‘(DChr‘𝑁))
7 eqid 2797 . . . . . . . . . . . . . 14 (0g‘(DChr‘𝑁)) = (0g‘(DChr‘𝑁))
8 2fveq3 6414 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑦‘(𝐿𝑚)) = (𝑦‘(𝐿𝑛)))
9 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛𝑚 = 𝑛)
108, 9oveq12d 6894 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑦‘(𝐿𝑛)) / 𝑛))
1110cbvsumv 14764 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛)
1211eqeq1i 2802 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0)
1312rabbii 3367 . . . . . . . . . . . . . 14 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑛 ∈ ℕ ((𝑦‘(𝐿𝑛)) / 𝑛) = 0}
14 simpr 478 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
151, 2, 4, 5, 6, 7, 13, 14dchrisum0 25558 . . . . . . . . . . . . 13 ¬ (𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1615imnani 390 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})
1716eq0rdv 4173 . . . . . . . . . . 11 (𝜑 → {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = ∅)
1817fveq2d 6413 . . . . . . . . . 10 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = (♯‘∅))
19 hash0 13404 . . . . . . . . . 10 (♯‘∅) = 0
2018, 19syl6eq 2847 . . . . . . . . 9 (𝜑 → (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) = 0)
2120oveq2d 6892 . . . . . . . 8 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = (1 − 0))
22 1m0e1 11437 . . . . . . . 8 (1 − 0) = 1
2321, 22syl6eq 2847 . . . . . . 7 (𝜑 → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2423adantr 473 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})) = 1)
2524oveq2d 6892 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = ((log‘𝑥) · 1))
26 relogcl 24660 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 474 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 10355 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2928mulid1d 10344 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
3025, 29eqtrd 2831 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))) = (log‘𝑥))
3130oveq2d 6892 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0})))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
3231mpteq2dva 4935 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
33 eqid 2797 . . 3 {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} = {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
34 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
35 rpvmasum.b . . 3 (𝜑𝐴𝑈)
36 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
3715pm2.21i 117 . . 3 ((𝜑𝑓 ∈ {𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}) → 𝐴 = (1r𝑍))
381, 2, 3, 5, 6, 7, 33, 34, 35, 36, 37rpvmasum2 25550 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘{𝑦 ∈ ((Base‘(DChr‘𝑁)) ∖ {(0g‘(DChr‘𝑁))}) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}))))) ∈ 𝑂(1))
3932, 38eqeltrrd 2877 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  {crab 3091  cdif 3764  cin 3766  c0 4113  {csn 4366  cmpt 4920  ccnv 5309  cima 5313  cfv 6099  (class class class)co 6876  cr 10221  0cc0 10222  1c1 10223   · cmul 10227  cmin 10554   / cdiv 10974  cn 11310  +crp 12070  ...cfz 12576  cfl 12842  chash 13366  𝑂(1)co1 14555  Σcsu 14754  ϕcphi 15799  Basecbs 16181  0gc0g 16412  1rcur 18814  Unitcui 18952  ℤRHomczrh 20167  ℤ/nczn 20170  logclog 24639  Λcvma 25167  DChrcdchr 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-disj 4810  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-rpss 7169  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-tpos 7588  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-omul 7802  df-er 7980  df-ec 7982  df-qs 7986  df-map 8095  df-pm 8096  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-acn 9052  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-xnn0 11649  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-ioc 12425  df-ico 12426  df-icc 12427  df-fz 12577  df-fzo 12717  df-fl 12844  df-mod 12920  df-seq 13052  df-exp 13111  df-fac 13310  df-bc 13339  df-hash 13367  df-word 13531  df-concat 13587  df-s1 13612  df-shft 14145  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-limsup 14540  df-clim 14557  df-rlim 14558  df-o1 14559  df-lo1 14560  df-sum 14755  df-ef 15131  df-e 15132  df-sin 15133  df-cos 15134  df-pi 15136  df-dvds 15317  df-gcd 15549  df-prm 15717  df-numer 15773  df-denom 15774  df-phi 15801  df-pc 15872  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-qus 16481  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-submnd 17648  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mulg 17854  df-subg 17901  df-nsg 17902  df-eqg 17903  df-ghm 17968  df-gim 18011  df-ga 18032  df-cntz 18059  df-oppg 18085  df-od 18258  df-gex 18259  df-pgp 18260  df-lsm 18361  df-pj1 18362  df-cmn 18507  df-abl 18508  df-cyg 18592  df-dprd 18707  df-dpj 18708  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-oppr 18936  df-dvdsr 18954  df-unit 18955  df-invr 18985  df-dvr 18996  df-rnghom 19030  df-drng 19064  df-subrg 19093  df-lmod 19180  df-lss 19248  df-lsp 19290  df-sra 19492  df-rgmod 19493  df-lidl 19494  df-rsp 19495  df-2idl 19552  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-fbas 20062  df-fg 20063  df-cnfld 20066  df-zring 20138  df-zrh 20171  df-zn 20174  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-nei 21228  df-lp 21266  df-perf 21267  df-cn 21357  df-cnp 21358  df-haus 21445  df-cmp 21516  df-tx 21691  df-hmeo 21884  df-fil 21975  df-fm 22067  df-flim 22068  df-flf 22069  df-xms 22450  df-ms 22451  df-tms 22452  df-cncf 23006  df-0p 23775  df-limc 23968  df-dv 23969  df-ply 24282  df-idp 24283  df-coe 24284  df-dgr 24285  df-quot 24384  df-log 24641  df-cxp 24642  df-em 25068  df-cht 25172  df-vma 25173  df-chp 25174  df-ppi 25175  df-mu 25176  df-dchr 25307
This theorem is referenced by:  rplogsum  25565
  Copyright terms: Public domain W3C validator