MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1 Structured version   Visualization version   GIF version

Theorem dvferm1 24882
Description: One-sided version of dvferm 24885. A point 𝑈 which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm1 (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm1
Dummy variables 𝑧 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6717 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21oveq1d 7228 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑥) − (𝐹𝑈)) = ((𝐹𝑧) − (𝐹𝑈)))
3 oveq1 7220 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑈) = (𝑧𝑈))
42, 3oveq12d 7231 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
5 eqid 2737 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))
6 ovex 7246 . . . . . . . . . 10 (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) ∈ V
74, 5, 6fvmpt 6818 . . . . . . . . 9 (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
87fvoveq1d 7235 . . . . . . . 8 (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9 id 22 . . . . . . . 8 (𝑦 = ((ℝ D 𝐹)‘𝑈) → 𝑦 = ((ℝ D 𝐹)‘𝑈))
108, 9breqan12rd 5070 . . . . . . 7 ((𝑦 = ((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
1110imbi2d 344 . . . . . 6 ((𝑦 = ((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
1211ralbidva 3117 . . . . 5 (𝑦 = ((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
1312rexbidv 3216 . . . 4 (𝑦 = ((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
14 dvferm.d . . . . . . . . . 10 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
15 dvf 24804 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
16 ffun 6548 . . . . . . . . . . 11 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
17 funfvbrb 6871 . . . . . . . . . . 11 (Fun (ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)))
1815, 16, 17mp2b 10 . . . . . . . . . 10 (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
1914, 18sylib 221 . . . . . . . . 9 (𝜑𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
20 eqid 2737 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2737 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 ax-resscn 10786 . . . . . . . . . . 11 ℝ ⊆ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
24 dvferm.a . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℝ)
25 fss 6562 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
2624, 22, 25sylancl 589 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
27 dvferm.b . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
2820, 21, 5, 23, 26, 27eldv 24795 . . . . . . . . 9 (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))))
2919, 28mpbid 235 . . . . . . . 8 (𝜑 → (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈)))
3029simprd 499 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3130adantr 484 . . . . . 6 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3227, 22sstrdi 3913 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
33 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
34 dvferm.u . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴(,)𝐵))
3533, 34sseldd 3902 . . . . . . . . . 10 (𝜑𝑈𝑋)
3626, 32, 35dvlem 24793 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) ∈ ℂ)
3736fmpttd 6932 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3837adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3932adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → 𝑋 ⊆ ℂ)
4039ssdifssd 4057 . . . . . . 7 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → (𝑋 ∖ {𝑈}) ⊆ ℂ)
4132, 35sseldd 3902 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
4241adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → 𝑈 ∈ ℂ)
4338, 40, 42ellimc3 24776 . . . . . 6 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))))
4431, 43mpbid 235 . . . . 5 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))
4544simprd 499 . . . 4 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))
46 dvfre 24848 . . . . . . . 8 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4724, 27, 46syl2anc 587 . . . . . . 7 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4847, 14ffvelrnd 6905 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
4948anim1i 618 . . . . 5 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → (((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑈)))
50 elrp 12588 . . . . 5 (((ℝ D 𝐹)‘𝑈) ∈ ℝ+ ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑈)))
5149, 50sylibr 237 . . . 4 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ+)
5213, 45, 51rspcdva 3539 . . 3 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
5324ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ)
5427ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ)
5534ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵))
5633ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋)
5714ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹))
58 dvferm1.r . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
5958ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
60 simpllr 776 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 0 < ((ℝ D 𝐹)‘𝑈))
61 simplr 769 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+)
62 simpr 488 . . . . . 6 ((((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
63 eqid 2737 . . . . . 6 ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑢), 𝐵, (𝑈 + 𝑢))) / 2) = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑢), 𝐵, (𝑈 + 𝑢))) / 2)
6453, 54, 55, 56, 57, 59, 60, 61, 62, 63dvferm1lem 24881 . . . . 5 ¬ (((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
6564imnani 404 . . . 4 (((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) ∧ 𝑢 ∈ ℝ+) → ¬ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
6665nrexdv 3189 . . 3 ((𝜑 ∧ 0 < ((ℝ D 𝐹)‘𝑈)) → ¬ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
6752, 66pm2.65da 817 . 2 (𝜑 → ¬ 0 < ((ℝ D 𝐹)‘𝑈))
68 0re 10835 . . 3 0 ∈ ℝ
69 lenlt 10911 . . 3 ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) ≤ 0 ↔ ¬ 0 < ((ℝ D 𝐹)‘𝑈)))
7048, 68, 69sylancl 589 . 2 (𝜑 → (((ℝ D 𝐹)‘𝑈) ≤ 0 ↔ ¬ 0 < ((ℝ D 𝐹)‘𝑈)))
7167, 70mpbird 260 1 (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  cdif 3863  wss 3866  ifcif 4439  {csn 4541   class class class wbr 5053  cmpt 5135  dom cdm 5551  Fun wfun 6374  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   + caddc 10732   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  2c2 11885  +crp 12586  (,)cioo 12935  abscabs 14797  t crest 16925  TopOpenctopn 16926  fldccnfld 20363  intcnt 21914   lim climc 24759   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-icc 12942  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  dvferm  24885  dvivthlem1  24905
  Copyright terms: Public domain W3C validator