Step | Hyp | Ref
| Expression |
1 | | fveq2 6890 |
. . . . . . . . . . . 12
β’ (π₯ = π§ β (πΉβπ₯) = (πΉβπ§)) |
2 | 1 | oveq1d 7426 |
. . . . . . . . . . 11
β’ (π₯ = π§ β ((πΉβπ₯) β (πΉβπ)) = ((πΉβπ§) β (πΉβπ))) |
3 | | oveq1 7418 |
. . . . . . . . . . 11
β’ (π₯ = π§ β (π₯ β π) = (π§ β π)) |
4 | 2, 3 | oveq12d 7429 |
. . . . . . . . . 10
β’ (π₯ = π§ β (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)) = (((πΉβπ§) β (πΉβπ)) / (π§ β π))) |
5 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) = (π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) |
6 | | ovex 7444 |
. . . . . . . . . 10
β’ (((πΉβπ§) β (πΉβπ)) / (π§ β π)) β V |
7 | 4, 5, 6 | fvmpt 6997 |
. . . . . . . . 9
β’ (π§ β (π β {π}) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) = (((πΉβπ§) β (πΉβπ)) / (π§ β π))) |
8 | 7 | fvoveq1d 7433 |
. . . . . . . 8
β’ (π§ β (π β {π}) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) = (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ)))) |
9 | | id 22 |
. . . . . . . 8
β’ (π¦ = ((β D πΉ)βπ) β π¦ = ((β D πΉ)βπ)) |
10 | 8, 9 | breqan12rd 5164 |
. . . . . . 7
β’ ((π¦ = ((β D πΉ)βπ) β§ π§ β (π β {π})) β ((absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦ β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
11 | 10 | imbi2d 339 |
. . . . . 6
β’ ((π¦ = ((β D πΉ)βπ) β§ π§ β (π β {π})) β (((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦) β ((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ)))) |
12 | 11 | ralbidva 3173 |
. . . . 5
β’ (π¦ = ((β D πΉ)βπ) β (βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦) β βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ)))) |
13 | 12 | rexbidv 3176 |
. . . 4
β’ (π¦ = ((β D πΉ)βπ) β (βπ’ β β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦) β βπ’ β β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ)))) |
14 | | dvferm.d |
. . . . . . . . . 10
β’ (π β π β dom (β D πΉ)) |
15 | | dvf 25656 |
. . . . . . . . . . 11
β’ (β
D πΉ):dom (β D πΉ)βΆβ |
16 | | ffun 6719 |
. . . . . . . . . . 11
β’ ((β
D πΉ):dom (β D πΉ)βΆβ β Fun
(β D πΉ)) |
17 | | funfvbrb 7051 |
. . . . . . . . . . 11
β’ (Fun
(β D πΉ) β (π β dom (β D πΉ) β π(β D πΉ)((β D πΉ)βπ))) |
18 | 15, 16, 17 | mp2b 10 |
. . . . . . . . . 10
β’ (π β dom (β D πΉ) β π(β D πΉ)((β D πΉ)βπ)) |
19 | 14, 18 | sylib 217 |
. . . . . . . . 9
β’ (π β π(β D πΉ)((β D πΉ)βπ)) |
20 | | eqid 2730 |
. . . . . . . . . 10
β’
((TopOpenββfld) βΎt β) =
((TopOpenββfld) βΎt
β) |
21 | | eqid 2730 |
. . . . . . . . . 10
β’
(TopOpenββfld) =
(TopOpenββfld) |
22 | | ax-resscn 11169 |
. . . . . . . . . . 11
β’ β
β β |
23 | 22 | a1i 11 |
. . . . . . . . . 10
β’ (π β β β
β) |
24 | | dvferm.a |
. . . . . . . . . . 11
β’ (π β πΉ:πβΆβ) |
25 | | fss 6733 |
. . . . . . . . . . 11
β’ ((πΉ:πβΆβ β§ β β
β) β πΉ:πβΆβ) |
26 | 24, 22, 25 | sylancl 584 |
. . . . . . . . . 10
β’ (π β πΉ:πβΆβ) |
27 | | dvferm.b |
. . . . . . . . . 10
β’ (π β π β β) |
28 | 20, 21, 5, 23, 26, 27 | eldv 25647 |
. . . . . . . . 9
β’ (π β (π(β D πΉ)((β D πΉ)βπ) β (π β
((intβ((TopOpenββfld) βΎt
β))βπ) β§
((β D πΉ)βπ) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) limβ π)))) |
29 | 19, 28 | mpbid 231 |
. . . . . . . 8
β’ (π β (π β
((intβ((TopOpenββfld) βΎt
β))βπ) β§
((β D πΉ)βπ) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) limβ π))) |
30 | 29 | simprd 494 |
. . . . . . 7
β’ (π β ((β D πΉ)βπ) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) limβ π)) |
31 | 30 | adantr 479 |
. . . . . 6
β’ ((π β§ 0 < ((β D πΉ)βπ)) β ((β D πΉ)βπ) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) limβ π)) |
32 | 27, 22 | sstrdi 3993 |
. . . . . . . . . 10
β’ (π β π β β) |
33 | | dvferm.s |
. . . . . . . . . . 11
β’ (π β (π΄(,)π΅) β π) |
34 | | dvferm.u |
. . . . . . . . . . 11
β’ (π β π β (π΄(,)π΅)) |
35 | 33, 34 | sseldd 3982 |
. . . . . . . . . 10
β’ (π β π β π) |
36 | 26, 32, 35 | dvlem 25645 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π β {π})) β (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)) β β) |
37 | 36 | fmpttd 7115 |
. . . . . . . 8
β’ (π β (π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))):(π β {π})βΆβ) |
38 | 37 | adantr 479 |
. . . . . . 7
β’ ((π β§ 0 < ((β D πΉ)βπ)) β (π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))):(π β {π})βΆβ) |
39 | 32 | adantr 479 |
. . . . . . . 8
β’ ((π β§ 0 < ((β D πΉ)βπ)) β π β β) |
40 | 39 | ssdifssd 4141 |
. . . . . . 7
β’ ((π β§ 0 < ((β D πΉ)βπ)) β (π β {π}) β β) |
41 | 32, 35 | sseldd 3982 |
. . . . . . . 8
β’ (π β π β β) |
42 | 41 | adantr 479 |
. . . . . . 7
β’ ((π β§ 0 < ((β D πΉ)βπ)) β π β β) |
43 | 38, 40, 42 | ellimc3 25628 |
. . . . . 6
β’ ((π β§ 0 < ((β D πΉ)βπ)) β (((β D πΉ)βπ) β ((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π))) limβ π) β (((β D πΉ)βπ) β β β§ βπ¦ β β+
βπ’ β
β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦)))) |
44 | 31, 43 | mpbid 231 |
. . . . 5
β’ ((π β§ 0 < ((β D πΉ)βπ)) β (((β D πΉ)βπ) β β β§ βπ¦ β β+
βπ’ β
β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦))) |
45 | 44 | simprd 494 |
. . . 4
β’ ((π β§ 0 < ((β D πΉ)βπ)) β βπ¦ β β+ βπ’ β β+
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ(((π₯ β (π β {π}) β¦ (((πΉβπ₯) β (πΉβπ)) / (π₯ β π)))βπ§) β ((β D πΉ)βπ))) < π¦)) |
46 | | dvfre 25703 |
. . . . . . . 8
β’ ((πΉ:πβΆβ β§ π β β) β (β D πΉ):dom (β D πΉ)βΆβ) |
47 | 24, 27, 46 | syl2anc 582 |
. . . . . . 7
β’ (π β (β D πΉ):dom (β D πΉ)βΆβ) |
48 | 47, 14 | ffvelcdmd 7086 |
. . . . . 6
β’ (π β ((β D πΉ)βπ) β β) |
49 | 48 | anim1i 613 |
. . . . 5
β’ ((π β§ 0 < ((β D πΉ)βπ)) β (((β D πΉ)βπ) β β β§ 0 < ((β D
πΉ)βπ))) |
50 | | elrp 12980 |
. . . . 5
β’
(((β D πΉ)βπ) β β+ β
(((β D πΉ)βπ) β β β§ 0 <
((β D πΉ)βπ))) |
51 | 49, 50 | sylibr 233 |
. . . 4
β’ ((π β§ 0 < ((β D πΉ)βπ)) β ((β D πΉ)βπ) β
β+) |
52 | 13, 45, 51 | rspcdva 3612 |
. . 3
β’ ((π β§ 0 < ((β D πΉ)βπ)) β βπ’ β β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
53 | 24 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β πΉ:πβΆβ) |
54 | 27 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β π β β) |
55 | 34 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β π β (π΄(,)π΅)) |
56 | 33 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β (π΄(,)π΅) β π) |
57 | 14 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β π β dom (β D πΉ)) |
58 | | dvferm1.r |
. . . . . . 7
β’ (π β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ)) |
59 | 58 | ad3antrrr 726 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ)) |
60 | | simpllr 772 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β 0 < ((β D πΉ)βπ)) |
61 | | simplr 765 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β π’ β β+) |
62 | | simpr 483 |
. . . . . 6
β’ ((((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) β βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
63 | | eqid 2730 |
. . . . . 6
β’ ((π + if(π΅ β€ (π + π’), π΅, (π + π’))) / 2) = ((π + if(π΅ β€ (π + π’), π΅, (π + π’))) / 2) |
64 | 53, 54, 55, 56, 57, 59, 60, 61, 62, 63 | dvferm1lem 25736 |
. . . . 5
β’ Β¬
(((π β§ 0 < ((β D
πΉ)βπ)) β§ π’ β β+) β§
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
65 | 64 | imnani 399 |
. . . 4
β’ (((π β§ 0 < ((β D πΉ)βπ)) β§ π’ β β+) β Β¬
βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
66 | 65 | nrexdv 3147 |
. . 3
β’ ((π β§ 0 < ((β D πΉ)βπ)) β Β¬ βπ’ β β+ βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π’) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) |
67 | 52, 66 | pm2.65da 813 |
. 2
β’ (π β Β¬ 0 < ((β D
πΉ)βπ)) |
68 | | 0re 11220 |
. . 3
β’ 0 β
β |
69 | | lenlt 11296 |
. . 3
β’
((((β D πΉ)βπ) β β β§ 0 β β)
β (((β D πΉ)βπ) β€ 0 β Β¬ 0 < ((β D
πΉ)βπ))) |
70 | 48, 68, 69 | sylancl 584 |
. 2
β’ (π β (((β D πΉ)βπ) β€ 0 β Β¬ 0 < ((β D
πΉ)βπ))) |
71 | 67, 70 | mpbird 256 |
1
β’ (π β ((β D πΉ)βπ) β€ 0) |